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Solution to Problem 8.3. We claim that A = {x ∈ R : x ≥ 0}.

Proof. If y ∈ A =
⋃∞
j=0[j, j + 1], then y ∈ [j, j + 1] for some j ∈ N. Hence y ∈ R and 0 ≤ j ≤ y ≤ j + 1.

This implies that y ∈ {x ∈ R : x ≥ 0}. Hence A ⊆ {x ∈ R : x ≥ 0}.
Conversely, if y ∈ {x ∈ R : x ≥ 0}, then we let k = byc which is defined to be the greatest integer less or
equal to y. Since y ≥ 0 we conclude that k ≥ 0 and the definition of the greatest integer implies that
k ≤ y < k + 1. Hence y ∈ [k, k + 1] for some k ∈ N. We conclude that y ∈

⋃∞
j=0[j, j + 1] = A. Thus

{x ∈ R : x ≥ 0} ⊆ A.

The two parts together show that A = {x ∈ R : x ≥ 0}.

We claim that B = Z.

Proof. If y ∈ B =
⋂
j∈Z(R \ (j, j + 1)), then y ∈ R \ (j, j + 1) for all j ∈ Z. Then y ∈ R and y 6∈ (j, j + 1) for

all j ∈ Z. Hence y = k for some k ∈ Z. That is, y ∈ Z. We conclude that B ⊆ Z.

Conversely, if y ∈ Z, then y ∈ R and y 6∈ (k, k + 1) for all k ∈ Z. Hence y ∈ R \ (k, k + 1) for all k ∈ Z.
Therefore, y ∈

⋂
j∈Z(R \ (j, j + 1)) = B. This means that Z ⊆ B.

The two parts together imply that B = Z.

Solution to Problem 8.6. This statement is false, we give a counterexample.

For n ∈ Z+ we define An = [0, 1/n) and Bn = [0, 1/n], the half open and closed interval of reals,
respectively. It is clear that An ⊂ Bn for all n ∈ Z+. It is also easily seen that⋂

n∈Z+

An =
⋂
n∈Z+

Bn = {0}.
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Solution to Problem 8.9. If x ∈
⋃
n∈Z+ An, then x ∈ An0 for some n0 ∈ Z+; that is,

0 <
1
n0

< x ≤ 2 <
3
n

+ 2 for all n ∈ Z+.

Hence x ∈ Bn for all n ∈ Z+. Thus, x ∈
⋂
n∈Z+ Bn and

⋃
n∈Z+ An ⊆

⋂
n∈Z+ Bn.

Solution to Problem 8.12. (a) If x ∈
(⋃

α∈I Aα
)
∩B, then x ∈

⋃
α∈I Aα and x ∈ B. Thus x ∈ Aα for

some α ∈ I and x ∈ B. This implies that x ∈ Aα ∩B for some α ∈ I. Hence x ∈
⋃
α∈I (Aα ∩B).

Consequently,
(⋃

α∈I Aα
)
∩B ⊆

⋃
α∈I (Aα ∩B).

Conversely, if x ∈
⋃
α∈I (Aα ∩B), then x ∈ Aα ∩B for some α ∈ I. Hence x ∈ Aα for some α ∈ I

and x ∈ B. Thus, x ∈
⋃
α∈I Aα and x ∈ B. That is, x ∈

(⋃
α∈I Aα

)
∩B. This shows that⋃

α∈I (Aα ∩B) ⊆
(⋃

α∈I Aα
)
∩B.

The two parts together show the equality of the two sets.

(b) We claim that under the given conditions the following set equality holds:(⋂
α∈I

Aα

)
∪B =

⋂
α∈I

(Aα ∪B) .

If x ∈
(⋂

α∈I Aα
)
∪B, then x ∈

⋂
α∈I Aα or x ∈ B. Hence x ∈ Aα for all α ∈ I or x ∈ B. This

implies that x ∈ Aα ∪B for all α ∈ I. (Why?) Thus, x ∈
⋂
α∈I (Aα ∪B). This shows that(⋂

α∈I Aα
)
∪B ⊆

⋂
α∈I (Aα ∪B).

Conversely, if x ∈
⋂
α∈I (Aα ∪B), then x ∈ Aα ∪B for all α ∈ I. Thus x ∈ B or x ∈ Aα for all

α ∈ I. Hence x ∈ B or x ∈
⋂
α∈I Aα. (Why?) This implies that x ∈

(⋂
α∈I Aα

)
∪B. Consequently,⋂

α∈I (Aα ∪B) ⊆
(⋂

α∈I Aα
)
∪B.

The two parts together establish the claim.

Solution to Problem 8.15. Claim: A = 2Z.

Proof. If x ∈ 2Z, then x ∈ Q. Also, x = 2m for some m ∈ Z. Thus x 6∈ R \ {2m} for some m ∈ Z. Hence
x 6∈

⋂
n∈Z(R \ {2n}). Hence x ∈ Q \

⋂
n∈Z(R \ {2n}) = A. thus 2Z ⊆ A.

Conversely, if x ∈ A, then x ∈ Q \
⋂
n∈Z(R \ {2n}). That is, x ∈ Q and x 6∈

⋂
n∈Z(R \ {2n}). Thus

x 6∈ R \ {2n} for some n ∈ Z. Since x ∈ Q ⊆ R, we conclude that that x ∈ {2n} for some n ∈ Z. That is,
x = 2n for some n ∈ Z. Hence x ∈ 2Z. This shows that A ⊆ Z.

This finishes the proof that A = 2Z.
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Solution to Problem 8.18. (a) Let An = {x ∈ R : n ≤ x < n+ 1}. Then the collection
A = {An : n ∈ Z+} is pairwise disjoint: If An, Am ∈ A with An ∩Am 6= ∅, then there is
x ∈ An ∩Am. This implies that n ≤ x < m+ 1. Hence n−m < 1. Since both m and n are positive
integers, we conclude that n = m. Hence An = Am. This shows that A is pairwise disjoint.

(b) The contrapositive is: “If X 6= Y , then X ∩ Y = ∅.”

(c) The converse is: “If X = Y , then X ∩ Y 6= ∅.”

(d) Yes, it does hold. The reason is that the assertion of (b) is the contrapositive of the defining condition
of pairwise disjoint collection. The contrapositive is logically equivalent with the original statement.

(e) Yes the set A is a pairwise disjoint collection. The statement of part (b) is equivalent to the defining
statement of pairwise disjoint collection.

(f) In the trivial case, B = {B}, where B 6= ∅, this is false. In all other cases, this is true. We begin with
the trivial case. In that case, B = {B}, where B 6= ∅, thus B is pairwise disjoint. But we have⋂
X∈BX = B 6= ∅. (Recall that we have to assume that B 6= ∅ because the intersection of an empty

collection of sets is not defined!)

However, if B has at least two elements, then
⋂
X∈BX = ∅: Suppose not, then there is x ∈

⋂
X∈BX.

Let X1 and X2 be two elements of B. (We may assume that they are different because a set that has
two elements, both the same, is not considered to have two elements.) Then x ∈ X1 and x ∈ X2. This
contradicts the condition of being pairwise disjoint.

(g) No, it need not be pairwise disjoint. Consider B = {[0, 3], [2, 5], [4, 7]}. Here the sets denote closed
intervals of the reals. Then [0, 3] ∩ [2, 5] = [2, 3] 6= ∅ and thus B is not pairwise disjoint. But⋂
X∈B = [0, 3] ∩ [2, 5] ∩ [4, 7] = ∅.

Solution to Problem 8.21. There are many examples. For example, let
Aj = [−1/j,∞) = {x ∈ R : x ≥ −1/j}. We clearly have Aj+1 ⊂ Aj for all j ∈ Z+. Also,⋂∞
j=1Aj = {x ∈ R : x ≥ 0} 6= ∅.


