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Solution to Problem 24.3. Claim 1. If Bb 6= ∅, then g |Bb
: Bb −→ Ab is a bijection.

Let y ∈ B. Then x = g(y) ∈ A with corresponding sequence (xn) = (x, y, x2, . . .) while the sequence of y is
(y, y1, . . .) with yk = xk+1 for k ≥ 0. Hence, if y ∈ Bb, then the sequence (yn) is of odd length and thus the
sequence (xn) is of even length, so x ∈ Ab. This implies that range(g |Bb

) ⊆ Ab. If x ∈ Ab, then the
sequence (xn) is of even length and has at least two terms (x, x1, . . .). We set y = x1 and note that
x = g(y). As above the sequence of y satisfies yk = xk+1 for k ≥ 0. Since (xn) is of even length, (yn) is of
odd length and thus y ∈ Bb. This shows that Ab ⊆ range(g |Bb

).
We have now shown that g |Bb

: Bb −→ Ab is well-defined and is surjective. Since g |Bb
is the restriction of

an injection, it is also one-to-one. This establishes the first claim.

Claim 2. If Bb = ∅ then Ab = ∅.
If Ab 6= ∅, then there is a ∈ A such that the sequence (xn) is of even length of at least two. Setting
y = x1 ∈ B, the sequence (yn) satisfies yk = xk+1 for all k ≥ 0. In particular, (yn) is of odd length and
thus Bb 6= ∅. This establishes the second claim.

The two claims together show that Ab ≈ Bb.

Solution to Problem 24.6. If m = 0, then X = ∅ and the unique function f : ∅ −→ Y is trivially
injective. Thus |X| ≤ |Y |.
Assume now that m > 0. Using the definition for finite cardinality we have maps

X
f
−→ {1, . . . ,m} g

−→ {1, . . . , n} h
−→ Y

where f and h are bijections and g(x) = x is an injection. Thus h ◦ g ◦ f : X −→ Y is an injection, showing
that |X| ≤ |Y |.
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Solution to Problem 24.9. (a) We define a function f by

f(x) = 2a3p5q, where a =
{

0 if x ≥ 0
1 if x < 0 and

p

q
= |x| with gcd(p, q) = 1,

where p and q are integers, p ≥ 0 and q > 0. You have to convince yourself that this function is
well-defined, one-to-one, and not onto.

For g we choose g(x) = x. Other answers are possible.

(b) For f we define f(x) = |bxc|. (The inside function is the floor function, also called the greatest
integer function. It is defined by bxc = max{n ∈ N : n ≤ x}.)
For g list the positive rationals as follows.

0 1 2
1

3
1

4
1 . . .

1
2

2
2

3
2

4
2 . . .

1
3

2
3

3
3

4
3 . . .

1
4

2
4

3
4

4
4 . . .

. . . . . . . . . . . . . . .

We define g on 2N by counting the entries of the table in a diagonal way from top right to bottom
left: g(0) = 0, g(2) = 1, g(4) = 2/1, g(6) = 1/2, g(8) = 3/1, g(10) = 2/2, etc.

On the negative integers we go through the list in the same way starting with 1 and multiplying each
value by −1: g(1) = −1, g(3) = −2/1, g(5) = −1/2, g(7) = −3/1, g(9) = −2/2, etc.

(c) The existence of such a function would imply that |R| ≤ |Q|. By Theorem 22.11, |Q| = ℵ0 and thus
we would have a contraction. Hence no such function exists.

(d) Such a function is not possible either. If it were, then we would have |P(R)| ≤ |R|. By Cantor’s
Theorem, |R| < |P(R)|. The two inequalities contradict each other.

Solution to Problem 24.12. (a) The five sequences are as follows.

(0, 0, 0, . . .)
(1)
(45, 15, 5)(
4(36), 4(35), 4(34), 4(33), 4(32), 4(3), 4,−1

)(
5(36), 5(35), 5(34), 5(33), 5(32), 5(3), 5

)
(b) We will find Na, N∞ and, while we are at it, we find Nb. (Note that Nb was not requested.) We can

write every n ∈ N as n = k(3m), where k and m are natural numbers with 3 6 |k. Now we consider all
possible cases.
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Case 1 If k = 0, then n = 0 ∈ N∞ as seen in part (a).

Case 2 If k > 0 and m is odd, then the (m+ 1)st term is k and is in Z. Since k 6∈ range(f), the
sequence stops and is of even length.

Case 3 If k = 1 and m is even, then the (m+ 1)st term is 1 and is in N. Since 1 6∈ range(g), the
sequence stops and is of odd length.

Case 4 If k > 1, k ≡ 1 mod 3, and m is even, then the (m+ 1)st term is k = 3s+ 1 for some s ≥ 1 and
it is in N. It follows that the (m+ 2)nd term is −s in Z. Now −s 6∈ range(f), the sequence stops
and is of even length.

Case 5 If k ≡ 2 mod 3 and m is even, then the (m+ 1)st term is k = 3t+ 2 for some t ≥ 0 and it is in
N. Since k = 3t+ 2 6∈ range(g), the sequence stops and it is of odd length.

This exhausts all possibilities and we just need to collect the elements for each set.

N∞ = {0}.

Na = {32s : s ∈ N} ∪ {k(32s) : k, s ∈ N and k ≡ 2 (mod 3)}

Nb = {k(32s+1) : k, s ∈ N and k ≥ 1} ∪ {k(32s) : k, s ∈ N, k > 1, and k ≡ 1 (mod 3)}

Solution to Problem 24.15. Clearly the function f : (0, 1) −→ (0, 1)× (0, 1) defined by f(x) = (x, x) is
an injection and thus |(0, 1)| ≤ |(0, 1)× (0, 1)|.

To construct an injection in the other direction, first note that every x ∈ (0, 1) can be written using a
decimal representation x = 0.x1x2x3x4 . . .. Here xj ∈ {0, 1, . . . , 9} denotes the j-th digit. This
representation is unique if we agree to avoid sequences of digits that end in all 9’s. Thus, if
x = 0.x1x2x3x4 . . ., then xk 6= 9 and xj = 9 for all j > k. Then we will write x = 0.x1x2x3x4 . . . (xk + 1).
(Convince yourself that this is the same number!)

We now define g : (0, 1)× (0, 1) −→ (0, 1) by the following scheme. For (x, y) ∈ (0, 1)× (0, 1) we use the
unique decimal representations x = 0.x1x2x3x4 . . . and y = 0.y1y2y3y4 . . . (avoiding tails of 9’s) and define
g(x, y) = 0.x1y1x2y2x3y3 . . ..

Given (x, y) ∈ (0, 1)× (0, 1), we get g(x, y) ∈ (0, 1) and this value is unique, showing that the function is
well-defined. Suppose (x, y), (w, z) ∈ (0, 1)× (0, 1) and (x, y) 6= (w, z). Without loss of generality, we may
assume that x 6= w. Then there is some integer k such that xk 6= wk. This implies that the 2k − 1st digit of
g(x, y) is xk and the 2k − 1st digit of g(w, z) is wk. Since none of x, y, w, and z has a tail consisting of 9’s
neither do g(x, y) and g(w, z). That means the decimal representations are unique and thus
g(x, y) 6= g(w, z). Hence g is injective and |(0, 1)× (0, 1)| ≤ |(0, 1)|.

Using Cantor-Schröder-Bernstein we conclude that |(0, 1)× (0, 1)| = |(0, 1)|.
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Solution to Problem 24.18. We define g : 2X −→ P(X) by g(f) = {x ∈ X : f(x) = 1}.
Given f ∈ 2X , the set g(f) ⊆ X. Thus to every f ∈ 2X there is g(f) ∈ P(X). Suppose that g(f) = A and
g(f) = B. If x ∈ A then f(x) = 1. Thus, x ∈ B. The converse uses the same argument. Hence A = B,
which shows that g is a well-defined function.

Suppose that g(f1) = g(f2) and let x ∈ X. If f1(x) = 1, then x ∈ g(f1). Hence x ∈ g(f2). We conclude that
f2(x) = 1. If f1(x) = 0, then x 6∈ g(f1). Hence x 6∈ g(f2). We conclude that f2(x) = 0. Thus f1 and f2
have the same domain and range and assign the same value to each of the elements in the domain. So,
f1 = f2 and the function g is injective.

Let A ∈ P(X). We let f : X −→ {0, 1} defined by f(x) =
{

1 if x ∈ A
0 if x 6∈ A By definition of g we have

g(f) = A. Thus g is onto.

We have shown that g is a bijection and thus |P(X)| = |2X |. (Note that we are in fact assigning to each
A ∈ P(X) its characteristic function χA ∈ 2X .)


