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Ueli Daepp and Pam Gorkin

Solution to Problem 23.3. (a) A line with a rational slope is uniquely determined by its slope m and
its y-intercept b. Hence the set of all lines with rational slopes is equivalent to
{(m, b) : m ∈ Q, b ∈ R} = Q× R. Since R is uncountable and R ≈ ({0} × R) ⊆ Q× R, Corollary 22.4
implies that the set of all lines with rational slopes is uncountable.

(b) Since Q = (Q \ {0}) ∪ {0} we conclude that Q \ {0} is countably infinite.

(c) Since N is countably infinite and {1, 3} is finite, N \ {1, 3} is countably infinite.

(d) We can define a function f : R→ {(x, y) ∈ R× R : x + y = 1} by f(x) = (x, 1− x). One can check
that this is well-defined and bijective. Hence {(x, y) ∈ R× R : x + y = 1} ≈ R and so this set is
uncountable.

(e) In the proof of Theorem 22.12 we showed that (0, 1) is uncountable. Since (0, 1) ⊆ [0,∞), Corollary
22.4 implies that [0,∞) is uncountable.

Solution to Problem 23.6. Many of the details below appear in this chapter or previous ones. We
provide the basics below.

(a) Z is equivalent to N and N ⊂ Z.

(b) If A is countably infinite, then there is a bijection f : N→ A. Consider A1 = A \ {f(0)}. Then f |Z+

is a bijection of Z+ onto A1. Since Z+ and N are equivalent, there is a bijection g from Z+ onto N.
Therefore f ◦ g ◦ (f |Z+)−1 is a bijection from A1 onto A. Since A1 ⊂ A, this completes the example.

(c) If A is uncountable, we may choose any a ∈ A and consider the set Aa = A \ {a}. You should provide
the details that Aa must be uncountable.

(d) We have B ⊆ A and |A| = |B|. Therefore, Problem 22.18 part (c) implies that A = B.
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Solution to Problem 23.9. We know that every subset of N is countable and we must show that every
subset of a countable set is countable. We have already seen that every subset of a finite set is finite, so we
assume that our set, A, is infinite. Therefore, there is a bijection f : A→ N. Let A1 be a subset of A. If
A1 = ∅, then it is countable, so assume A1 6= ∅. Then f |A1 maps A1 onto a subset S of N. We have
already seen that the fact that f is one-to-one implies f |A1 is one-to-one. Therefore, f |A1 is a bijection
between A1 and a countable set S. Hence A1 is countable.

Solution to Problem 23.12. We think of the numbers as forming an infinite square matrix. Define f(0)
to be the (1, 1) entry. Thus, f(0) = 1. Now we define f moving from top to bottom along the diagonal
(skipping the fractions we have already defined) as follows:
define f(1) = 2/1;
define f(2) = 1/2;
define f(3) = 3/1;
define f(4) = 1/3, etc.
Then f will be a bijection.

Solution to Problem 23.15. For x ∈ (0, 1), denote the decimal expansion by x = 0.x1x2x3 . . ., where
xj ∈ {0, 1, . . . , 9}. This expansion is unique if we decide to replace every sequence that is finite and ends in
1 with the infinite sequence ending in a string of 9’s (see the paragraph before Theorem 22.12 of the text).
Define the function f : (0, 1)→ N∞ by f(x) = (x1, x2, x3, . . .). Because of the uniqueness of the decimal
expansion, this is a well-defined function. It is clearly one-to-one. Thus (0, 1) ≈ ran(f) ⊆ N∞. Since (0, 1)
is uncountable, Corollary 22.4 implies that N∞ is uncountable.

Solution to Problem 23.18. We define f : P(A ∪B)→ P(A)× P(B) by f(X) = (X ∩A, X ∩B).
First we show that f is well-defined. A domain and codomain are specified. For any X ∈ P(A∪B) we have
X ∩A ∈ P(A) and X ∩B ∈ P(B). Thus f(X) is defined as an element in P(A)×P(B). Suppose now that
for some X ∈ P(A ∪B) we have f(X) = (U, V ) and f(X) = (W, Z). Then U = X ∩A and W = X ∩A.
Thus U = W . Similarly, V = Z. Thus (U, V ) = (W, Z). This shows that the function is well-defined.

Next we show that f is injective. So suppose that for W, Z ∈ P(A ∪B) we have f(W ) = f(Z); that is,
W ∩A = Z ∩A and W ∩B = Z ∩B. Note that W ⊆ A ∪B and Z ⊆ A ∪B. Thus, if x ∈W , then
x ∈ A ∪B. Thus x ∈ A or x ∈ B. If x ∈ A, then x ∈W ∩A = Z ∩A. Thus x ∈ Z. If x ∈ B, then
x ∈W ∩B = Z ∩B. Thus again x ∈ Z. This shows that W ⊆ Z. Reversing the roles of W and Z shows
that W ⊆ Z. Thus W = Z. This shows that f is injective.

Finally we will show that f is surjective. Let (U, V ) ∈ P(A)× P(B). Then U ⊆ A and V ⊆ B. Set
X = U ∪ V . Then X ⊆ A ∪B and thus X ∈ dom(f). Now f(X) = (X ∩A, X ∩B). We claim that
X ∩A = U . If x ∈ X ∩A then x ∈ X = U ∪ V and x ∈ A. If x ∈ V ⊆ B, then x 6∈ A because A ∩B = ∅.
This is not possible, hence x ∈ U . We have shown that X ∩A ⊆ U . If x ∈ U ⊆ A, then also x ∈ A. Since
U ⊆ U ∪ V = X we also have x ∈ X. Thus x ∈ X ∩ U . Hence U ⊆ X ∩A. This establishes the claim. In
the same way we show that X ∩B = V . Thus f(X) = (U, V ) and we have shown that f is surjective.

We have now established a bijection f : P(A ∪B)→ P(A)× P(B). This proves that
P(A ∪B) ≈ P(A)× P(B).
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Solution to Problem 23.21. For our definition, f is decreasing if x ≤ y implies f(x) ≥ f(y). Some
authors use decreasing as another way of describing “strictly decreasing.” That will change this solution
slightly, but the main idea is the same.

Note that the well-ordering principle implies that every decreasing function from N to N is eventually
constant. Therefore, we may think of this set as a subset of the set of all eventually constant sequences.
(Think about this before proceeding!) Let E denote the set of eventually constant sequences (where each
sequence is of the form (xn)n≥1). Define a map F : E → Z by

F ((xn)) = 2x13x25x3 · · · pxm
m ,

where xm is the first term in the sequence for which xm = xn for all n ≥ m and 2, 3, . . . , pm are the prime
numbers listed in increasing order. Then you should check that F defines a one-to-one map of E into the
countable set Z. The desired conclusion follows from this.

If you choose to use the fact that a countable union of countable sets is countable, there is another way to
prove this. (See Projects 29.12 and Theorem 29.13.)
Let A0 denote the set of all constant sequences, A1 the set of all sequences that are constant after the first
term, and, in general, let An denote the set of all sequences that are constant after the n-th term. We will
show that An is countable for each n.

Since N is countable, the map f : N→ A0 defined by f(n) = (n, n, n, . . .) defines a bijection between N and
A0. Hence A0 is countable.

In general, for An, we know that Bn = N× · · ·N (taken n times) is countably infinite. If we let g be a
bijective map from N onto B we may define h : N× N→ An by h(n, m) = (g(n), m,m, . . .). It is not
difficult to check that h is a bijection. Since the domain is the Cartesian product of two countable sets
Corollary 23.10 implies that the domain is countable. So the domain (which is obviously infinite) is
countably infinite. Therefore An is countable for each n ∈ N+. The set we are interested in is equivalent a
subset of ∪nAn and a countable union of countable sets is countable, we have the desired result.


