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Ueli Daepp and Pam Gorkin

Solution to Problem 22.3. Suppose to the contrary that no integers m and n are among the twenty one
that are chosen from the set {1, . . . , 40} so that n−m = 1. That means there are no consecutive numbers
among the twenty one chosen. Hence the difference between the largest and the smallest is at least 40. This
is a contradiction, since the integers are chosen from the set {1, . . . , 40} and, therefore, the difference can
be at most 39. We conclude that there are two numbers m, n such that n−m = 1.

Solution to Problem 22.6. Suppose to the contrary that there is an injective function
f : {1, . . . , 99} → {1, . . . , 99} such that g : {1, . . . , 99} → N defined by g(n) = n + f(n) has the property that
g(n) is odd for all n ∈ {1, . . . , 99}. This implies that if n is odd, then f(n) is even.
We define the following functions: h : {1, . . . , 50} → {1, . . . , 99} by h(n) = 2n− 1 and
j : {2, 4, 6, . . . , 98} → {1, . . . , 49} by j(m) = m/2. We note that h and j are both injective and that
ran(h) ⊆ dom(f). Since n odd implies that f(n) is even, we have ran(f ◦ h) ⊆ dom(j). Thus we can
compose

(j ◦ f ◦ h) : {1, . . . , 50} → {1, . . . , 49}

Since each function is injective Theorem 5.7 implies that j ◦ f ◦ h is injective. This contradicts Theorem
21.2 (the pigeonhole principle).
We conclude that for some integer n, the value of g(n) is even.

Solution to Problem 22.9. Proof. Suppose to the contrary that R is finite. Since R 6= ∅, there must
exist a positive integer n such that R ≈ {1, . . . , n}. That is, there is a bijective function f : R→ {1, . . . , n}.
Then f |{1,...,n+1} : {1, . . . , n + 1} → {1, . . . , n} is injective, since it is the restriction of an injective function.
This contradicts the pigeonhole principle. Thus R is infinite.

Solution to Problem 22.12. (a) Note that A ∩B ⊆ A. Since A is finite, Corollary 21.10 implies that
A ∩B is finite.
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(b) We also have A \B ⊆ A. Using Corollary 21.10 again, we conclude that A \B is finite.

(c) We claim that X \A is infinite. Suppose that this set were finite. Since X = (X \A) ∪A, Theorem
21.11 would imply that X is finite. This is a contradiction and shows that X \A is infinite.

(d) Theorem 21.11 shows that A ∪B is finite.

(e) We define g : A→ f(A) by g(x) = f(x). This is a well-defined function that is one-to-one and
surjective. Hence f(A) ≈ A. Thus f(A) is finite.

Solution to Problem 22.15. If X = ∅ then |X| = 0 and P(X) = {∅}. Hence |P(X)| = 1 = 20 and the
formula holds.

Now consider the case when X 6= ∅, so n ≥ 1. We define the set of all sequences of length n with terms
either 0 or 1: Y = {(xm) : xm ∈ {0, 1} for 1 ≤ m ≤ n}. For each sequence we have exactly two choices at
each of the n places. Thus, there are 2n different sequences. This implies that |Y | = 2n. We enumerate the
elements of X and write X = {a1, . . . , an} Now define f : Y −→ P(X) by
f((xm)) = {aj ∈ X : for all j with xj = 1}. This is a well-defined function that can be shown to be
bijective, hence |P(X)| = |Y | = 2n.

Solution to Problem 22.18. (a) If B = ∅, then |B| = 0 ≤ |A| for any finite set A. So assume now
that B 6= ∅. Then A 6= ∅. Then there exist positive integers m and n and bijective functions
f : {1, . . . ,m} → B and g : {1, . . . , n} → A. We denote by h the inclusion h : B → A, defined by
h(x) = x. We consider the composition g−1 ◦ h ◦ f : {1, . . . ,m} → {1, . . . , n}. Since each function is
injective, so is the composition. The pigeonhole principle implies that m ≤ n. Thus
|B| = m ≤ n = |A|.

(b) If B is strictly contained in A, then there exists a ∈ A with a 6∈ B. Thus B ⊆ A \ {a}. Using the
results of part (a) and Problem 22.17 we get

|B| ≤ |A \ {a}| = |A| − 1 < |A|.

Hence |B| < |A|.

(c) Suppose to the contrary that B 6= A. By part (b) of this problem we conclude that |B| < |A|. This
contradicts the assumption that |A| ≤ |B|. Hence we must have A = B.

Solution to Problem 22.21. Note that f(A) ⊆ A and thus |f(A)| ≤ |A| as shown in Problem 22.18 (a).

Assume that f is injective. Then |A| = |f(A)|. The contrapositive statement of Problem 22.18 shows that
A = f(A). Hence f is surjective.

Conversely, assume that f is surjective. Then f(A) = A. Suppose to the contrary that f is not injective.
Then there are a, b ∈ A, a 6= b, and f(a) = f(b). We define g : A \ {a} → A by g(x) = f(x) (the restriction
of f to A \ {a}). By Problem 22.20 we conclude that |A| = |f(A)| = |g(A \ {a})| ≤ |A \ {a}|. Using the
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result of Problem 22.17, we conclude that |A| ≤ |A \ {a}| = |A| − 1. This is a contradiction, hence f is
injective.

This is not true if the set A is infinite. Check that f : R→ R defined by f(x) = ex is injective but not
surjective. On the other hand, the function g : R→ R defined by g(x) = x(x− 1)(x− 2) is surjective but
not injective.


