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Solution to Problem 20.3. Proof. From Problem 5.14 we conclude that |x− a| < δ if and only if
−δ < x− a < δ. The latter inequalities are equivalent to a− δ < x < a+ δ. This proves the statement.

Solution to Problem 20.6. (a) In Problem 18.5 (b) we found that S1 = 75 and Sn+1 = 0.65Sn + 75.
Consider how the terms are formed:

S1 = 75
S2 = (0.65)75 + 75 = 75(1 + 0.65)
S3 = (0.65)75(1 + 0.65) + 75 = 75(1 + 0.65 + 0.652)
Sn = 75(1 + 0.65 + . . .+ 0.65n−1)

Using the formula for a geometric sum we guess that

Sn = 75(1− 0.65n)/0.35 for n ≥ 1.

Proof. We establish the claim with an inductive proof.
The case n = 1: S1 = 75(1− 0.65)/0.35 = 75, which is correct.
Let n ≥ 1 and suppose that Sn = 75(1− 0.65n)/0.35. Then

Sn+1 = 0.65Sn + 75

= 0.65
(

75
1− 0.65n

0.35

)
+ 75 (by induction hypothesis)

= 75
(

0.65− 0.65n+1

0.35
+ 1

)
= 75

(
1− 0.65n+1

0.35

)
.
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(b) We claim that limn→∞ Sn = 75/0.35.

Proof. We first show that (0.65)n → 0.

To see this, let ε > 0. We may also assume ε < 1. Let N = (ln ε)/(ln 0.65). Note that N > 0. For
n > N we have

|(0.65)n − 0| = (0.65)n

< (0.65)N

<
(
eln 0.65

)(ln ε)/(ln 0.65)

= ε

This shows that (0.65)n → 0.

Using Theorem 20.9, we now see that Sn → 75/0.35.

(c) limn→∞ sn = limn→∞(Sn − 75) = limn→∞ Sn − 75 = 75
0.35 − 75 = 975

7 .

(d) After one week the amount of phenytoin in the patient’s blood is between s14mg and S14mg. This can
be shown to be between 138.77mg and 213.77mg.

After a full month, the level is between s60 and S60; that is, between 139.29mg and 214.29mg.

(e) In the long run the patient’s phenytoin level is between limn→∞ sn and limn→∞ Sn, which is between
139.29mg and 214.29mg.

Note that there is no big difference, the phenytoin level is already stable after one week.

Solution to Problem 20.9. (a) We calculate our limit as follows:

lim
n→∞

1
3n

=
1
3

lim
n→∞

1
n

(by Theorem 20.9 (ii))

=
1
3
· 0 (by Example 20.2)

= 0.

(c) We note that the sequence (1/
√
n) is decreasing and bounded below. By Theorem 20.12 this sequence

converges. So limn→∞ (1/
√
n) = a for some real number a.

By Theorem 20.9 (iii), we have (limn→∞ (1/
√
n))2 = a2 = limn→∞ (1/n). From Example 20.2 we

conclude that a2 = 0. Hence a = 0.

For all n ∈ Z+, we have 0 < 1/
√
n+ 7 < 1/

√
n. Problem 20.8 (a) implies that limn→∞

1√
n+7

= 0.
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(d) We calculate our limit as follows:

lim
n→∞

n2 + 4
n2

= lim
n→∞

(
1 +

4
n2

)
= lim

n→∞
1 + lim

n→∞

4
n2

(by Theorem 20.9 (i))

= 1 +
(

lim
n→∞

2
n

)2

(by Theorem 20.9 (iii))

= 1 +
(

2 lim
n→∞

1
n

)2

(by Theorem 20.9 (ii))

= 1 + 2 · 0 (by Example 20.2)
= 1.

(e) Note that using Theorem 20.9 and Example 20.2 as above, we can show that limn→∞
(
2 + 1

n

)
= 2 and

limn→∞
(
1 + 2

n

)
= 1. Then

lim
n→∞

(
2n+ 1
n+ 2

)
= lim

n→∞

(
2 + 1

n

1 + 2
n

)
=

limn→∞
(
2 + 1

n

)
limn→∞

(
2 + 1

n

) (by Theorem 20.9 (iii) and (iv))

=
2
1

= 2.

(g) Note that 0 < n < n+ 7 < (n+ 7)! for all integers n ≥ 1. Hence 0 < 1
(n+7)! <

1
n for all n ∈ Z+. By

Example 20.2, limn→∞
1
n = 0. It follows from Problem 20.8 (a) that limn→∞

1
(n+7)! = 0.

(h) For this last part we leave it to you to fill in the details of the use of Theorem 20.9 and Example 20.2:

lim
n→∞

3n2 + 1
4n2 + n+ 2

= lim
n→∞

3 + 1
n2

4 + 1
n + 2

n2

=
limn→∞

(
3 + 1

n2

)
limn→∞

(
4 + 1

n + 2
n2

)
=

3
4
.

Solution to Problem 20.12. (a) From Problem 5.14 we know that for all real numbers xn we have
−|xn| ≤ xn ≤ |xn|. Adding |xn| gives the required inequality

0 ≤ |xn|+ xn ≤ 2|xn|.

(b) As pointed out in part (a), we have −|xn| ≤ xn ≤ |xn| for all n. The result of Problem 20.8 (b)
implies that xn → 0.
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(c) The answer to this question is no. Consider xn = (−1)n for n ∈ N. Then |xn| = 1 and thus |xn| → 1.
In Exercise 20.6 you showed that (xn) does not converge.

Solution to Problem 20.15. (a) Since 0 < a < 1, we have 1− a > 0 and x = (1− a)/a is a positive
real number. Then

1/(1 + x) =
1

1 + 1−a
a

=
1

a+1−a
a

= a.

(b) Note that since x > 0, we have 1 + x > 0. Bernoulli’s inequality (Problem 18.6) applies and hence
(1 + x)n ≥ 1 + nx for all n ∈ N. Hence an = 1/(1 + x)n ≤ 1/(1 + nx) for all n ∈ N.

(c) Recall that x > 0. Hence for all n ≥ 1 we have that

0 <
1

1 + nx
<

1
nx

=
(

1
x

) (
1
n

)
.

Using Example 20.2, Theorem 20.9 (ii), and Problem 20.8 (a) we conclude that 1/(1 + nx)→ 0.

(d) From Part (b) we have 0 < an ≤ 1/(1 + nx) for all n ∈ N. Part (c) and Problem 20.8 (a) imply that
an → 0.

(e) Note that we can write xn alternatively as xn = 1− (1/10)n. It now follows from Part (d) above and
the rules of Theorem 20.9, that xn → 1.

Note that this justifies the equality 0.99999 . . . = 1 and shows that the decimal representation of the
real number 1 is not unique.

Solution to Problem 20.18. We have xn+1 = xn + 9 · 10−(n+1) > xn and xn < 1 for all n ∈ Z+. Hence
(xn) is an increasing and bounded sequence. By Theorem 19.10 it converges to its supremum. In Problem
19.14 we showed that limn→∞ xn = 1. Hence sup(xn) = 1.

Solution to Problem 20.21. We leave this one to you.


