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Ueli Daepp and Pam Gorkin

Solution to Problem 19.3. (a) We suggest (xn), where xn = n2+5
n2+4 . This sequence is bounded by 2, as

you can check. Of course, there are many other examples.

(b) Consider (yn), defined by yn = 3n− 7. This sequence has no upper bound. Since it is an increasing
sequence, xn ≥ x0 = −7 for all n ∈ N. Hence −7 is a lower bound.

(c) Consider (zn), defined by zn = 1− 1
n+1 . This sequence is strictly increasing and sup(zn) = 1.

However, zn 6= 1 for all n ∈ N.

We claim that there does not exist a strictly increasing sequence that assumes its supremum.

Suppose to the contrary that there exists a sequence (wn) that is strictly increasing and that there
exists m ∈ N such that xm = sup(wn). Then xm+1 > xm = sup(wn). This is a contradiction and the
claim is proven.

Solution to Problem 19.6. We define (xn) by

xn =
n∑

k=0

1
k!

, for n ∈ N.

Clearly, xn ∈ Q for all n ∈ N and (xn) is increasing. From calculus we recall the Taylor series of ex and
note that xn ≤ e1 for all n. Thus (xn) is increasing and bounded above, so we conclude that

sup(xn) =
∞∑

k=0

1
k!

= e.

(A rigorous proof that the number e is irrational can be found in Project 29.5.)
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Solution to Problem 19.9. Our examples motivate us to make the following claim: If sup(xn) = `, then
inf(−xn) = −`.

Proof. Since ` = sup(xn), we have ` ≥ xn for all n (in the domain of the sequence). Hence −` ≤ −xn for all
n. This shows that −` is a lower bound of (−xn).

Let u be a lower bound of (−xn). Then u ≤ −xn for all n. Hence −u ≥ xn for all n. Since ` is the
supremum of (xn), we conclude that ` ≤ −u. Hence −` ≥ u. This completes the proof of the claim.

Solution to Problem 19.12. (a) Since inf(xn) ≤ xm for all m ∈ N and inf(yn) ≤ yk for all k ∈ N, we
conclude that for all ` ∈ N we have inf(xn) + inf(yn) ≤ (x` + y`). This shows that inf(xn) + inf(yn) is
a lower bound of (xn + yn). Thus inf(xn) + inf(yn) ≤ inf(xn + yn).

(b) We can have strict inequality. Consider (xn) defined by xn = (−1)n and (yn) defined by
yn = (−1)n+1. Then xn + yn = 0 for all n ∈ N. Hence

inf(xn) + inf(yn) = −1 + (−1) = −2 < inf(xn + yn) = 0.

Solution to Problem 19.15. (a) Since (xn) is bounded above, there exists M ∈ R such that xn ≤M
for all n ∈ N. This implies that for all n ∈ N we have yn < xn+1 ≤M . Hence (yn) is also bounded
above. The completeness axiom of R implies that sup(xn) and sup(yn) both exist. We claim that
sup(xn) = sup(yn). From Problem 19.14 (b) we have that sup(xn) ≤ sup(yn). By our assumptions on
the two sequences, we have yn < xn+1 ≤ sup(xn) for all n ∈ N. Thus sup(xn) is an upper bound for
(yn). By the definition of the supremum for (yn), we have sup(yn) ≤ sup(xn). This establishes the
claim.

(b) We claim that inf(xn) and inf(yn) both exist and that inf(xn) < inf(yn).

Proof. The assumption implies that xn < xn+1 for all n ∈ N. Hence (xn) is a strictly increasing
sequence and thus inf(xn) = x0.

Since xn < yn for all n, we conclude that xn+1 < yn+1 for all n. Hence yn < xn+1 < yn+1 for all
n ∈ N. Thus (yn) is also strictly increasing and inf(yn) = y0. Using the assumption for the special
case of n = 0 we get inf(xn) = x0 < y0 = inf(yn).

Solution to Problem 19.18. (a) We check that F0 < F1 ≤ F2 < F3, since F0 = 0, F1 = 1, F2 = 1, and
F3 = 2. We will further show that for n ≥ 2, the Fibonacci sequence is strictly increasing. This will
be done using the second principle of mathematical induction (Theorem 17.6). For the base step recall
that F2 = 1, F3 = 2, F4 = 3, and F2 < F3 < F4.

For the induction step, let n ≥ 3 and suppose that for all integers m with 2 ≤ m ≤ n we have
Fm+1 > Fm. Then, using the induction hypothesis, we get Fn+2 = Fn+1 + Fn > Fn + Fn−1 = Fn+1.

By induction, the sequence is strictly increasing for all n ≥ 2 and it is increasing for all n ∈ N.
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(b) We have F6 = 8 and, as proven in part (a), Fn is a strictly increasing sequence of integers for n ≥ 6.
Thus Fn > n for n ≥ 6. (If this is not obvious, then you can prove it with induction.) That Fn is
unbounded follows from Corollary 12.11.

Solution to Problem 19.21. Experimenting with the recursive definition leads us to the following claim:
For all n ∈ N, the function is defined by f(n) = 2Fn+1 , where Fk denotes the k-th term of the Fibonacci
sequence.

Proof. We will use induction to establish the claim.
For n = 0, we have f(0) = 2 = 21 = 2F1 . For n = 1, we have f(1) = 2 = 21 = 2F2 . Thus the formula is
correct for n = 0 and n = 1.

Suppose that for some integer n ≥ 1 and for all integers k, with 0 ≤ k ≤ n, we know that f(k) = 2Fk+1 .
Then

f(n + 1) = f(n)f(n− 1) (by definition of f)
= 2Fn+12Fn (by induction hypothesis)
= 2Fn+1+Fn

= 2Fn+2 (by the definition of the Fibonacci sequence).

The claim follows from the second principle of mathematical induction.


