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Solution to Problem 18.3. We use induction on n.

For the base step of n = 1, we check that 13 = 12.

For the induction step we suppose that the formula is correct for some integer n ≥ 1. We need to show that
this implies that the formula is correct for n+ 1. So

(1 + 2 + · · ·+ n+ (n+ 1))2 = (1 + 2 + · · ·+ n)2 + 2(1 + 2 + · · ·+ n)(n+ 1) + (n+ 1)2

= 13 + 23 + · · ·+ n3 + (n+ 1)(2(1 + 2 + · · ·+ n) + (n+ 1))
(by induction hypothesis and using algebra)

= 13 + 23 + · · ·+ n3 + (n+ 1)
(

2
n(n+ 1)

2
+ (n+ 1)

)
(by the formula established in Problem 18.1)

= 13 + 23 + · · ·+ n3 + (n+ 1)2(n+ 1)
= 13 + 23 + · · ·+ n3 + (n+ 1)3.

This concludes the induction step.

By the principle of mathematical induction, we conclude that 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 for all
n ∈ Z+.

Solution to Problem 18.6. We first consider the base step n = 0. Since 1 + x > 0, we can conclude that
(1 + x)0 = 1 ≥ 1 + 0x. This establishes the base step.

For the induction step we need to show that for n ≥ 0, if (1 + x)n ≥ 1 + nx, then (1 + x)n+1 ≥ 1 + (n+ 1)x.
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Now,

(1 + x)n+1 = (1 + x)n(1 + x)
≥ (1 + nx)(1 + x) (by induction hypothesis and the fact that 1 + x > 0)
= 1 + nx+ x+ nx2

≥ 1 + (n+ 1)x (since nx2 ≥ 0).

This concludes the induction step and Bernoulli’s inequality is now established by the principle of
mathematical induction.

Solution to Problem 18.9. For the base step we let n = 0. Then 52n − 1 = 50 − 1 = 0. Since 0 is
divisible by any nonzero integer, the result holds in this case.

For the induction step, let n ≥ 0 and suppose that 8 divides 52n − 1. Then

52(n+1) − 1 = 5252n − 52 + 52 − 1
= 52(52n − 1) + 52 − 1
= 52(8k) + 24 for some k ∈ Z (by the induction hypothesis)
= 8(52k + 3), where 52k + 3 ∈ Z.

This shows that 52(n+1) − 1 is divisible by 8 and concludes the induction step.

The result follows by mathematical induction.

Solution to Problem 18.12. We will prove the inequality using induction.
The base step n = 1 is trivial: |a1 − 1| ≤ |a1 − 1|.
Now let n be an integer with n ≥ 1, and suppose that

∣∣∣(∏n
j=1 aj

)
− 1
∣∣∣ ≤∑n

j=1 |aj − 1|. Hence
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Thus ∣∣∣∣∣∣
n+1∏

j=1

aj

− 1

∣∣∣∣∣∣ ≤
n+1∑
j=1

|aj − 1|.

This concludes the induction step.
The inequality now follows from the principle of mathematical induction.

Solution to Problem 18.15. In the induction step of this “Not a proof,” we reduce the polynomial p of
positive degree to a polynomial q of positive degree that has one less linear factor than p but contains the
factors ax and a1x+ b1. This is not possible if p is of degree 2. Thus we make the implicit assumption that
degree p is at least three. This means that the induction step is not applicable to show that if the statement
holds for a degree 1 polynomial, then it also holds for a degree 2 polynomial. The induction fails at the step
from P(1) to P(2). (The argument would be correct for all higher degrees, but this is irrelevant!)

Solution to Problem 18.18. We have:

(a) h(0) = π(g(0)) = π(1, 5) = 5,

h(1) = π(g(1)) = π(f(g(0))) = π(f(1, 5)) = π(2, 52

1 ) = 52, and

h(2) = π(g(2)) = π(f(g(1))) = π(f(2, 52)) = π(3, 54/2) = 54/2.

(b) For n ∈ N we have h(n+ 1) = π(g(n+ 1)) = π(f(g(n))) = π(f(n+ 1, π(g(n)))) = π(f(n+ 1, h(n))) =
π(n+ 2, h(n)2/(n+ 1)) = h(n)2/(n+ 1).

To summarize, h is defined recursively as

h(0) = 5; and h(n+ 1) =
h(n)2

n+ 1
for n ∈ Z+.

Solution to Problem 18.21. The base step n = 2 holds since 2 is a prime number.

Suppose that for some integer n ≥ 2 and for all integers k, with 2 ≤ k ≤ n, we know that k is prime or is
the product of prime numbers.
If the integer n+ 1 is prime, then we have established the induction step. If n+ 1 is not prime, then
n+ 1 = rs, where r and s are integers satisfying 1 < r < n+ 1 and 1 < s < n+ 1. By the induction
hypothesis, r is prime or the product of primes. Likewise, s is prime or the product of primes. Using these
representations of r and s we can write n+ 1 as a product of primes. This establishes the induction step
for the remaining case.

By the second principle of mathematical induction we conclude that every integer n with n ≥ 2 is a prime
or a product of primes.

Solution to Problem 18.24. (a) We claim that Tn = n(n+ 1)/2 for n ∈ Z+.
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Proof. We use induction on n. For the base step n = 1, check that T1 = 1.

For the induction step we let n ≥ 1 and suppose that Tn = n(n+ 1)/2.

The triangular number Tn+1 is obtained from the one before by extending the left and right side of
the triangular array as shown in Figure 18.2 by one more line at the bottom. This line will
necessarily have n+ 1 new points. Hence

Tn+1 = Tn + n+ 1 = n(n+ 1)/2 + n+ 1 = (n+ 1)(n+ 2)/2.

This establishes the induction step.

The principle of mathematical induction shows that the claim holds.

(b) We leave this one to you!


