Reading, Writing, and Proving (Second Edition)
 Ulrich Daepp and Pamela Gorkin
 Springer Verlag, 2011

 Solutions to Chapter 17: Images and Inverse Images

 Solutions to Chapter 17: Images and Inverse Images}

(c)2011, Ulrich Daepp and Pamela Gorkin

A Note to Student Users. Check with your instructor before using these solutions. If you are expected to work without any help, do not use them. If your instructor allows you to find help here, then we give you permission to use our solutions provided you credit us properly.
If you discover errors in these solutions or feel you have a better solution, please write to us at udaepp@bucknell.edu or pgorkin@bucknell.edu. We hope that you have fun with these problems. Ueli Daepp and Pam Gorkin

Solution to Problem 17.3. (a) $f((-1,1))=\{|x|:-1<x<1\}=[0,1)$;
(b) $f(\{-1,1\})=\{|x|: x=-1$ or $x=1\}=\{1\}$;
(c) $f^{-1}(\{1\})=\{x \in \mathbb{R}:|x|=1\}=\{-1,1\}$;
(d) $f^{-1}([-1,0))=\{x \in \mathbb{R}:-1 \leq|x|<0\}=\emptyset$;
(e) $f^{-1}(f([0,1]))=f^{-1}(\{|x|: 0 \leq x \leq 1\})=f^{-1}([0,1])=\{x \in \mathbb{R}: 0 \leq|x| \leq 1\}=[-1,1]$.

Solution to Problem 17.6. (a) $\chi_{\mathbb{Z}}\left(\mathbb{Z}^{+}\right)=\left\{\chi_{\mathbb{Z}}(x): x \in \mathbb{Z}^{+}\right\}=\{1\}$;
(b) $\chi_{\mathbb{Z}}^{-1}\left(\mathbb{Z}^{+}\right)=\left\{x \in \mathbb{R}: \chi_{\mathbb{Z}}(x) \in \mathbb{Z}^{+}\right\}=\left\{x \in \mathbb{R}: \chi_{\mathbb{Z}}(x)=1\right\}=\mathbb{Z} ;$
(c) $\chi_{\mathbb{Z}}\left(\chi_{\mathbb{Z}}^{-1}\left(\mathbb{Z}^{+}\right)\right)=\chi_{\mathbb{Z}}(\mathbb{Z})=\left\{\chi_{\mathbb{Z}}(x): x \in \mathbb{Z}\right\}=\{1\}$;
(d) $\chi_{\mathbb{Z}}^{-1}\left(\chi_{\mathbb{Z}}\left(\mathbb{Z}^{+}\right)\right)=\chi_{\mathbb{Z}}^{-1}\left(\{1\}=\left\{x \in \mathbb{R}: \chi_{\mathbb{Z}}(x)=1\right\}=\mathbb{Z}\right.$.

Solution to Problem 17.9. We compute the answer using the definition of the image of a set. Now,

$$
\begin{aligned}
f(2 \mathbb{Z}) & =\{f(x): x \in 2 \mathbb{Z}\} \\
& =\{f(2 m): m \in \mathbb{Z}\} \\
& =\{f(2 m): m \in \mathbb{Z} \text { and } m \leq 0\} \cup\{f(2 m): m \in \mathbb{Z} \text { and } m>0\} \\
& =\{-4 m: m \in \mathbb{Z} \text { and } m \leq 0\} \cup\{4 m-1: m \in \mathbb{Z} \text { and } m>0\} \\
& =4 \mathbb{N} \cup\left(4 \mathbb{Z}^{+}-1\right) \\
& =4 \mathbb{N} \cup(4 \mathbb{N}+3)
\end{aligned}
$$

Solution to Problem 17.12. Proof. If $z \in f\left(A_{1} \cup A_{2}\right)$, then there is $x \in A_{1} \cup A_{2}$ such that $z=f(x)$. If $x \in A_{1}$, then $z=f(x) \in f\left(A_{1}\right)$. If $x \notin A_{1}$, then $x \in A_{2}$. In this case $z=f(x) \in f\left(A_{2}\right)$. Thus in any case, $z=f(x) \in f\left(A_{1}\right) \cup f\left(A_{2}\right)$. This shows that $f\left(A_{1} \cup A_{2}\right) \subseteq f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
Conversely, if $z \in f\left(A_{1}\right) \cup f\left(A_{2}\right)$, then $z \in f\left(A_{1}\right)$ or $z \in f\left(A_{2}\right)$. If $z \in f\left(A_{1}\right)$, then there is $x \in A_{1} \subseteq A_{1} \cup A_{2}$ such that $z=f(x)$. Otherwise $z \in f\left(A_{2}\right)$ and again there is $x \in A_{2} \subseteq A_{1} \cup A_{2}$ such that $z=f(x)$. Thus, we conclude that $z \in f\left(A_{1} \cup A_{2}\right)$. This shows that $f\left(A_{1}\right) \cup f\left(A_{2}\right) \subseteq f\left(A_{1} \cup A_{2}\right)$.
Therefore $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$.

Solution to Problem 17.15. Proof. If $x \in f^{-1}\left(B_{1} \cap B_{2}\right)$, then $x \in X$ and $f(x) \in B_{1} \cap B_{2}$. Thus $x \in X$ and $f(x) \in B_{1}$. This shows that $x \in f^{-1}\left(B_{1}\right)$. We also have $x \in X$ and $f(x) \in B_{2}$. This shows that $x \in f^{-1}\left(B_{2}\right)$. We conclude that $x \in f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$. Hence $f^{-1}\left(B_{1} \cap B_{2}\right) \subseteq f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$. Conversely, if $x \in f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$, then $x \in f^{-1}\left(B_{1}\right)$ and $x \in f^{-1}\left(B_{2}\right)$. Thus $x \in X, f(x) \in B_{1}$, and $f(x) \in B_{2}$. This implies that $f(x) \in B_{1} \cap B_{2}$. Hence $x \in f^{-1}\left(B_{1} \cap B_{2}\right)$. We have shown that $f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right) \subseteq f^{-1}\left(B_{1} \cap B_{2}\right)$.
Thus $f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)=f^{-1}\left(B_{1} \cap B_{2}\right)$.

Solution to Problem 17.18. (a) Proof. If $z \in f\left(f^{-1}(B)\right)$, then there is $x \in f^{-1}(B)$ such that $z=f(x)$. Since $x \in f^{-1}(B)$, we conclude that $x \in X$ and $f(x) \in B$. Hence $z \in B$. This proves the set inclusion.
(b) We define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=e^{x}$. Then $f\left(f^{-1}(\mathbb{R})\right)=f(\mathbb{R})=\mathbb{R}^{+} \neq \mathbb{R}$.
(c) We claim that if the function $f: X \rightarrow Y$ is surjective, then $f\left(f^{-1}(B)\right)=B$.

Proof. If $b \in B$, then there is $x \in X$ with $f(x)=b$ because f is onto. Thus $x \in f^{-1}(B)$. This shows that $b=f(x) \in f\left(f^{-1}(B)\right)$. Hence $B \subseteq f\left(f^{-1}(B)\right)$. The reverse inclusion was proven in part (a). Therefore the two sets are equal.
(d) The example in part (b) shows that the two sets may not be equal even if the function $f: X \rightarrow Y$ is injective.

Solution to Problem 17.21. Since partitions are only defined for nonempty sets, we may assume that $A \neq \emptyset$. This implies that $B \neq \emptyset$.
Let $b \in B$. Since the function f is onto, there exists $a \in A$ such that $f(a)=b$. Thus $a \in f^{-1}(\{b\})$. This shows that $f^{-1}(\{b\}) \neq \emptyset$ for all $b \in B$.
If $a \in A$, then $f(a)=b \in B$. Thus $a \in f^{-1}(\{b\})$ for $b=f(a)$. Thus $a \in \bigcup_{b \in B} f^{-1}(\{b\})$. The reverse inclusion is trivial, thus $\bigcup_{b \in B} f^{-1}(\{b\})=A$.

Let $f^{-1}(\{b\}) \cap f^{-1}(\{c\}) \neq \emptyset$ for some $b, c \in B$. Hence there exists $x \in f^{-1}(\{b\}) \cap f^{-1}(\{c\})$. Since $x \in f^{-1}(\{b\})$, we have $f(x)=b$. Also, $x \in f^{-1}(\{c\})$ and thus $f(x)=c$. We conclude that $b=c$. Hence $f^{-1}(\{b\})=f^{-1}(\{c\})$.
We have thus shown that $\left\{f^{-1}(\{b\}): b \in B\right\}$ partitions A.

Solution to Problem 17.24. (a) We claim that $\chi_{A_{1}}=\chi_{A_{2}}$ implies $A_{1}=A_{2}$. If $x \in A_{1}$, then $\chi_{A_{1}}(x)=1$. Hence $\chi_{A_{2}}(x)=1$. Thus $x \in A_{2}$. We have shown that $A_{1} \subseteq A_{2}$. The reverse inclusion can be handled using the same argument, and the claim is then proven.
(b) If $x \in X$, then $x \in A_{1} \cap A_{2}$ or $x \notin A_{1} \cap A_{2}$. In the first case, $x \in A_{1}$ and $x \in A_{2}$. Hence $\chi_{A_{1}}(x)=\chi_{A_{2}}(x)=1$. In this case, $\chi_{A_{1}}(x) \cdot \chi_{A_{2}}(x)=1 \cdot 1=1=\chi_{A_{1} \cap A_{2}}(x)$.
In the second case $x \notin A_{1}$ or $x \notin A_{2}$. Thus $\chi_{A_{1}}(x)=0$ or $\chi_{A_{2}}(x)=0$. This implies that $\chi_{A_{1}}(x) \cdot \chi_{A_{2}}(x)=0=\chi_{A_{1} \cap A_{2}}(x)$.

We have shown that for all $x \in X$, we have $\chi_{A_{1}}(x) \cdot \chi_{A_{2}}(x)=\chi_{A_{1} \cap A_{2}}(x)$. Hence $\chi_{A_{1}} \cdot \chi_{A_{2}}=\chi_{A_{1} \cap A_{2}}$.
(c) We break the proof into four cases: 1) $x \notin A_{1} \cup A_{2}$, 2) $x \in A_{1} \backslash A_{2}$, 3) $x \in A_{2} \backslash A_{1}$, or 4)
$x \in A_{1} \cap A_{2}$. Note that every element of X is in exactly one of the four cases. There are sets A_{1} and A_{2} for which some of the cases do not occur (the corresponding sets are empty).

It is now easy to check that in all four cases $\chi_{A_{1}}(x)+\chi_{A_{2}}(x)-\chi_{A_{1} \cap A_{2}}(x)=\chi_{A_{1} \cup A_{2}}(x)$. This proves the formula.
(d) Using the formula from part (c) and noticing that $\left(X \backslash A_{1}\right) \cup A_{1}=X,\left(X \backslash A_{1}\right) \cap A_{1}=\emptyset, \chi_{X}=1$, and $\chi_{\emptyset}=0$, it is straightforward to check that $\chi_{X \backslash A_{1}}=1-\chi_{A_{1}}$.

