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Solution to Problem 17.3. (a) f((−1, 1)) = {|x| : −1 < x < 1} = [0, 1);

(b) f({−1, 1}) = {|x| : x = −1 or x = 1} = {1};

(c) f−1({1}) = {x ∈ R : |x| = 1} = {−1, 1};

(d) f−1([−1, 0)) = {x ∈ R : −1 ≤ |x| < 0} = ∅;

(e) f−1(f([0, 1])) = f−1({|x| : 0 ≤ x ≤ 1}) = f−1([0, 1]) = {x ∈ R : 0 ≤ |x| ≤ 1} = [−1, 1].

Solution to Problem 17.6. (a) χZ(Z+) = {χZ(x) : x ∈ Z+} = {1};

(b) χ−1
Z (Z+) = {x ∈ R : χZ(x) ∈ Z+} = {x ∈ R : χZ(x) = 1} = Z;

(c) χZ(χ−1
Z (Z+)) = χZ(Z) = {χZ(x) : x ∈ Z} = {1};

(d) χ−1
Z (χZ(Z+)) = χ−1

Z ({1} = {x ∈ R : χZ(x) = 1} = Z.

Solution to Problem 17.9. We compute the answer using the definition of the image of a set. Now,

f(2Z) = {f(x) : x ∈ 2Z}
= {f(2m) : m ∈ Z}
= {f(2m) : m ∈ Z and m ≤ 0} ∪ {f(2m) : m ∈ Z and m > 0}
= {−4m : m ∈ Z and m ≤ 0} ∪ {4m− 1 : m ∈ Z and m > 0}
= 4N ∪ (4Z+ − 1)
= 4N ∪ (4N + 3).
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Solution to Problem 17.12. Proof. If z ∈ f(A1 ∪A2), then there is x ∈ A1 ∪A2 such that z = f(x). If
x ∈ A1, then z = f(x) ∈ f(A1). If x 6∈ A1, then x ∈ A2. In this case z = f(x) ∈ f(A2). Thus in any case,
z = f(x) ∈ f(A1) ∪ f(A2). This shows that f(A1 ∪A2) ⊆ f(A1) ∪ f(A2).

Conversely, if z ∈ f(A1) ∪ f(A2), then z ∈ f(A1) or z ∈ f(A2). If z ∈ f(A1), then there is
x ∈ A1 ⊆ A1 ∪A2 such that z = f(x). Otherwise z ∈ f(A2) and again there is x ∈ A2 ⊆ A1 ∪A2 such that
z = f(x). Thus, we conclude that z ∈ f(A1 ∪A2). This shows that f(A1) ∪ f(A2) ⊆ f(A1 ∪A2).

Therefore f(A1 ∪A2) = f(A1) ∪ f(A2).

Solution to Problem 17.15. Proof. If x ∈ f−1(B1 ∩B2), then x ∈ X and f(x) ∈ B1 ∩B2. Thus x ∈ X
and f(x) ∈ B1. This shows that x ∈ f−1(B1). We also have x ∈ X and f(x) ∈ B2. This shows that
x ∈ f−1(B2). We conclude that x ∈ f−1(B1) ∩ f−1(B2). Hence f−1(B1 ∩B2) ⊆ f−1(B1) ∩ f−1(B2).

Conversely, if x ∈ f−1(B1) ∩ f−1(B2), then x ∈ f−1(B1) and x ∈ f−1(B2). Thus x ∈ X, f(x) ∈ B1, and
f(x) ∈ B2. This implies that f(x) ∈ B1 ∩B2. Hence x ∈ f−1(B1 ∩B2). We have shown that
f−1(B1) ∩ f−1(B2) ⊆ f−1(B1 ∩B2).

Thus f−1(B1) ∩ f−1(B2) = f−1(B1 ∩B2).

Solution to Problem 17.18. (a) Proof. If z ∈ f(f−1(B)), then there is x ∈ f−1(B) such that
z = f(x). Since x ∈ f−1(B), we conclude that x ∈ X and f(x) ∈ B. Hence z ∈ B. This proves the
set inclusion.

(b) We define f : R→ R by f(x) = ex. Then f(f−1(R)) = f(R) = R+ 6= R.

(c) We claim that if the function f : X → Y is surjective, then f(f−1(B)) = B.

Proof. If b ∈ B, then there is x ∈ X with f(x) = b because f is onto. Thus x ∈ f−1(B). This shows
that b = f(x) ∈ f(f−1(B)). Hence B ⊆ f(f−1(B)). The reverse inclusion was proven in part (a).
Therefore the two sets are equal.

(d) The example in part (b) shows that the two sets may not be equal even if the function f : X → Y is
injective.

Solution to Problem 17.21. Since partitions are only defined for nonempty sets, we may assume that
A 6= ∅. This implies that B 6= ∅.
Let b ∈ B. Since the function f is onto, there exists a ∈ A such that f(a) = b. Thus a ∈ f−1({b}). This
shows that f−1({b}) 6= ∅ for all b ∈ B.

If a ∈ A, then f(a) = b ∈ B. Thus a ∈ f−1({b}) for b = f(a). Thus a ∈
⋃

b∈B f
−1({b}). The reverse

inclusion is trivial, thus
⋃

b∈B f
−1({b}) = A.



Daepp and Gorkin, Solutions to Reading, Wrting, and Proving, Chapter 17 3

Let f−1({b}) ∩ f−1({c}) 6= ∅ for some b, c ∈ B. Hence there exists x ∈ f−1({b}) ∩ f−1({c}). Since
x ∈ f−1({b}), we have f(x) = b. Also, x ∈ f−1({c}) and thus f(x) = c. We conclude that b = c. Hence
f−1({b}) = f−1({c}).
We have thus shown that {f−1({b}) : b ∈ B} partitions A.

Solution to Problem 17.24. (a) We claim that χA1 = χA2 implies A1 = A2. If x ∈ A1, then
χA1(x) = 1. Hence χA2(x) = 1. Thus x ∈ A2. We have shown that A1 ⊆ A2. The reverse inclusion
can be handled using the same argument, and the claim is then proven.

(b) If x ∈ X, then x ∈ A1 ∩A2 or x 6∈ A1 ∩A2. In the first case, x ∈ A1 and x ∈ A2. Hence
χA1(x) = χA2(x) = 1. In this case, χA1(x) · χA2(x) = 1 · 1 = 1 = χA1∩A2(x).

In the second case x 6∈ A1 or x 6∈ A2. Thus χA1(x) = 0 or χA2(x) = 0. This implies that
χA1(x) · χA2(x) = 0 = χA1∩A2(x).

We have shown that for all x ∈ X, we have χA1(x) · χA2(x) = χA1∩A2(x). Hence χA1 · χA2 = χA1∩A2 .

(c) We break the proof into four cases: 1) x 6∈ A1 ∪A2, 2) x ∈ A1 \A2, 3) x ∈ A2 \A1, or 4)
x ∈ A1 ∩A2. Note that every element of X is in exactly one of the four cases. There are sets A1 and
A2 for which some of the cases do not occur (the corresponding sets are empty).

It is now easy to check that in all four cases χA1(x) + χA2(x)− χA1∩A2(x) = χA1∪A2(x). This proves
the formula.

(d) Using the formula from part (c) and noticing that (X \A1) ∪A1 = X, (X \A1) ∩A1 = ∅, χX = 1,
and χ∅ = 0, it is straightforward to check that χX\A1 = 1− χA1 .


