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Solution to Problem 15.3. Since f(3) = f(—3) and 3 # —3, the function f is not one-to-one.

Solution to Problem 15.6. The definition says “For each y € Y there exists (at least one) x € X such
that f(x) = y.” The not-a-definition presented in this problem has changed the order of the quantifiers.
Does it matter? In this case, it matters a lot. It says that the same x must work for all y. If this were the
definition, there would be very few surjective functions! So the function f:7Z — 7Z defined by f(z) = z
(which we surely would like to be surjective) would not qualify!.

Which functions would qualify under this definition? (This question has a nice answer.)

Solution to Problem 15.9. We are presenting the solution below, but our “devise a plan” step is not
presented. In this case you should sketch the graph of this function to see how the natural division of the
domain affects the proof of injectivity. The graph will also show you how the range of the graph helped us in
the proof of surjectivity.

We first prove that f is injective.

Let a,b € R and suppose that f(a) = f(b). There are several cases to consider.

Case 1: a,b < —2. Then f(a) = a® +2a + 4 = f(b) = b® +2b+ 4. This simplifies to a®> — b*> = —2(a — b),
which implies that (a + b)(a —b) = —=2(a —b). If a # b, then a + b = —2 which contradicts the fact that
a<—-2andb < —-2. Hence we have a = b.

Case 2: =2 < a,b < 2. Then f(a) = —2a = f(b) = —2b, which implies that a = b.

Case 3: a,b > 2. Then f(a) = —2—a = f(b) = —2 —b. This also implies that a = b.

Case 4: a < =2 and =2 < b<?2. Then f(a) =a*+2a+4=(a+1)>+3>4 and f(b) = —2b < 4. Thus
fla) = f(b) is not possible, this case cannot occur. (Note that this is the case “One of the two numbers is
less than or equal to —2 and the other is strictly between —2 and 2.)
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Case 5: a < =2 and b > 2. We again have f(a) > 4. Now f(b) = =2 —b < —4. Thus f(a) = f(b) is not
possible, and this case cannot occur. (Again, this is the case “One of the two numbers is less than or equal
to —2 and the other is at least 2.)

Case 6: =2 < a <2 andb>2. We have f(a) = —2a > —4 and g(b) = =2 — b < —4. Thus, again,

f(a) = f(b) is not possible and this case cannot occur. (Note that there are no remaining cases to consider.)
We conclude that whenever f(a) = f(b), then a =b. Thus, this function is injective.

Now we will prove that f is surjective. Let z € R and we will consider three cases.

Case 1: z> 4. We set x = —/z — 3 — 1. Note that z—3 > 1 and thus x € R and x < —2. Thus
f@)=(-vVz-3-12+2(—v2-3-1)+4=2-3+2V/2—-3+1-2y/2—3—-2+4=2. Hence

z € ran(f).

Case 2: —4 < z<4. Wesetex=—z/2. Then x €R and —2 < x < 2. Hence f(x) = —2(—z/2) = z. Thus,
z € ran(f).

Case 3: z < —4. We set v = -2 —z. Thenx € R and x > 2. Hence f(x) = -2 — (-2 —z) = z. Thus

z € ran(f).

We conclude that R C ran(f). Since the reverse inclusion is obvious, we have shown that the function is
surjective. Together with the first part of the proof this shows that f is a bijection.

Solution to Problem 15.12. We present the answers below. You should provide the details.
(a) This is a function, it is one-to-one and it is onto.
(b) This is a function. It is not one-to-one and it is not onto. (What would have to be mapped to 37)

(¢) This is always a function. If y = 0 this is neither one-to-one nor onto. If y # 0, then it is both
one-to-one and onto.

(d) This is not a function. When S = 0, the mazimum is not defined. What if S # 0%

Solution to Problem 15.15. We note that ¢ is a function.

This is not one-to-one because two different functions can map zero to the same value; that is, if we take f
defined by f(x) =0 for all x and we take g defined by g(x) = x for all x, then f # g but

¢(f) = f(0) =0=g(0) = ¢(g).

This is onto, however. Take x € R and note that the constant function f, defined by f.(y) = x for all

y € [0,1] is an element of F([0,1]). Therefore, ¢(f.) = f=(0) = x. So ¢ is onto.

Solution to Problem 15.18. By definition, f|c : C — B. Hence a domain and codomain are specified.
Now let x € C. Since C C A we also have x € A. Hence there is y € B with f(x) =y. By the definition of
restrictions, flo(z) = f(z) =y.

For the second requirement, suppose that for x € C we have y,z € B such that f|c(x) =y and f|c(z) = 2.
By the definition of restriction, we get y = f|c(z) = f(x) = flc(x) = z. Hence y = z.

This concludes the proof that the restriction of a function is a function.
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Solution to Problem 15.21. Clearly f is not a bijection (e.g. f(0) = f(v/3) =0).
We claim that f|a : A — R is a bijection.

Proof. We will first prove that f[4 : A — R is injective. Suppose that for z1, 25 € A and z; < 23 we have
fla(zy) = fla(zz). Then

3 -3z = x5 -3
(r1 — z2) (22 + T120 +23) = 3(x1 — x2)
x? + x129 + 33% = 3, since x1 # T2

We consider three cases. In the first case, 1 < 22 < —+/3. Then :r% + 120 + x% > 9. This contradicts the
last line above. In the second case V3 < 1 < x5 and we also conclude that x% + x120 + m% > 9, reaching
the same contradiction. In the last case, z; < —v/3 < /3 < x3. Then f|a(z;) = z1(z? — 3) < 0 and
fla(z2) = z2(23 — 3) > 0. We again reach a contradiction. This shows that the function is injective.

We will now show that the function f|4 is surjective using techniques from calculus. Let y € R and first
suppose that y > 0. Let a = max{3,y}. Then a > y and a > 3. Thus a?>9. Hence a2 —3>6> 1. We
conclude that f(a) = a(a® —3) > a > y. Since f is a polynomial, the function f|4 is continuous on

[\/g, al] CAand 0= f\A(\/g) <y < fla(a). By the intermediate value theorem, there is a real number ¢
with ¢ € [V/3,a] C A such that f|a(c) = y.

For the case of y < 0 we use an analogous argument: Let b = min{—3,y}. Then b <y and b < —3. Thus
b? > 9. Hence b> — 3 > 6 > 1. We conclude that f(b) = b(b?> —3) < b < y. Since f is a polynomial, it is
continuous on [b, —v/3] and f(b) < y < 0 = f(—+/3). By the intermediate value theorem, there is a real
number d with d € (b, —v/3) such that f(d) =y. Since d < —v/3 we have d € A and f|s(d) = f(d) = y.
This shows that f|4 is also surjective and hence bijective. O

Solution to Problem 15.24. (a) We claim that the function f is one-to-one if and only if ad — be # 0.
We first assume that ad — bc # 0. If z,y € dom(f) and f(x) = f(y), then

ar +b ay+b
cx+d cy+d’
(ax +b)(cy +d) = (ay+b)(cx+d),
acxy + adx + bcy +bd = acxy + ady + bex + bd,
ad(w —y) —be(w —y) = 0,
(x—y)lad—bc) = 0.

Since ad — be # 0 we conclude that x —y = 0 and thus x = y. This shows that f is one-to-one.

For the converse we assume that ad — bc = 0. Since not both of ¢ and d are zero, we first assume that
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(b)

¢#0. Then b = ad/c. Note also that cx +d # 0 for x € dom(f). We calculate

ar +b
cr+d

d
aer%
cr+d
acr+d

cex+d
a

C

flz) =

Thus f is the constant function on X = R\ {—d/c}. Since this domain has at least two elements, f
18 not one-to-one.

We now consider the remaining case of ¢ = 0. Then d # 0. Since ad — bc = 0, we get ad = 0. Thus
we conclude that a = 0. This simplifies the function to f(x) = g, In this case we have X = R. Again
we have a constant function on a domain with at least two elements. This shows that the function is
not one-to-one in this case either.

The two parts together establish the claim.

We now assume that ¢ =0 and ad — be # 0. This implies that ad # 0. Thus a # 0 and d # 0. Hence
X =R. The function will then simplify to f(x) = Sx + g. We already know from part (a) that this
function is one-to-one. It only remains to show that it is onto.

For this purpose, let z € R. We set x = (dz — b)/a. Since a # 0, we have x € R = dom(f). Now

fx) = %dza_b + % = dz_derb = z. This shows that the function is also onto. Thus f is a bijection

from R to R.




