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A Note to Student Users. Check with your instructor before using these solutions. If you are expected
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Ueli Daepp and Pam Gorkin

Solution to Problem 12.3. (a) Let E = (1, 4). If x ∈ (1, 4), then x < 4. Therefore 4 is an upper
bound. To see that 4 is the least upper bound, suppose that we have an upper bound r of E that is less
than 4. Clearly 1 < r. Let s = (4 + r)/2. Since s is the average of r and 4, we see that 1 < s < 4 and
r < s. Therefore s ∈ (1, 4) and s > r, so r is not an upper bound. Thus, 4 is the least upper bound.

(b) Since 1.01 ∈ (1, 4) and 1.01 < 1.1, we see that 1.1 is not a lower bound.

Solution to Problem 12.6. Let S = {1− 1/n : n ∈ Z+}. First, we note that 1− 1/n ≤ 1 for every
n ∈ Z+ and therefore 1 is an upper bound.
We check that 1 is the least upper bound of S. Note that if r is an upper bound of the set with r < 1, then
1− r > 0. Therefore, there exists a positive integer m with 1− r > 1/m. So 1− 1/m > r. Since 1− 1/m is
in our set (this is very important!) and 1− 1/m > r, we see that r cannot be an upper bound. Therefore 1
is the least upper bound.
If you don’t know why it is essential to check that 1− 1/m is in the set S, we suggest you work Problem
12.1.

Solution to Problem 12.9. We have assumed that S 6= ∅, so let s ∈ S. Then inf S ≤ s ≤ sup S, as
desired. If S = {s}, then inf S = s = sup S. (Since S is a finite set, the infimum is the minimum and the
supremum is the maximum of the set.) If S is a nonempty subset of R with more than one element,
however, it is not possible (as you should check) for inf S = sup S.

Solution to Problem 12.12. (a) Let U be an upper bound of S. Then x + U ∈ R and x + s ≤ x + U
for all s ∈ S. Therefore, x + U is an upper bound of x + S and the set is bounded above.

(b) If we take U to be the least upper bound of S it is, in particular, an upper bound of S. From our work
above, we see that x + U is an upper bound of x + S. Since sup(x + S) is the least upper bound of
x + S, we conclude that sup(x + S) ≤ x + U = x + sup S.
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(c) Again we take U = sup S. Let v < x + U . We must show that v is not an upper bound for x + S.
Consider v − x. Then U is the least upper bound of S and v − x < U , so we see that v − x cannot be
an upper bound of S! Therefore, there exists s ∈ S such that v − x < s. Consequently, v < x + s and
v is not an upper bound of x + S. This implies that there is no upper bound of x + S smaller than
x + U , so sup(x + S) ≥ x + sup S.

Using this and part (b) of this problem, we have x + U = x + sup S is the least upper bound of x + S;
that is, x + sup S = sup(x + S).

Solution to Problem 12.15. First we show that 2 is an upper bound. Let x ∈ (0, 2). Then 0 < x < 2, so
2 is clearly an upper bound. Suppose to the contrary that 2 is not the supremum. Then there exists an
upper bound u with u < 2. Since 1 ∈ (0, 1) ∩Q we have 1 ≤ u. By Theorem 12.12, there is a rational
number a with u < a < 2. Then 1 ≤ u < 2 and a ∈ (0, 2) ∩Q.

Hence we have shown that u is not an upper bound of (0, 2) ∩Q and we conclude that 2 must be the
supremum.

A very similar proof shows that 0 is the infimum of the set (0, 2) ∩Q.

Solution to Problem 12.18. By the well-ordering principle of the natural numbers, we know that every
nonempty subset of the natural numbers has a minimum. Let E be a nonempty bounded subset of the
natural numbers and let M be an integer bound on E. Therefore, the set F = {(M − x : x ∈ E} is also a
nonempty subset of the natural numbers. By the well-ordering principle, F has a minimum, which we
denote by m. Therefore, m ∈ F and M − x ≥ m for all x ∈ E. Note that m = M − x0 for some x0 ∈ E.
We claim that x0 is the desired maximum.
Since x0 is in E, we need only show that it is greater than or equal to every element in E. So let y ∈ E.
Then M − y ∈ F and consequently M − x0 = m ≤M − y. Therefore, −x0 ≤ −y or x0 ≥ y, as desired.

Solution to Problem 12.21. Let M ∈ Z+ be chosen with M > |a|. (Note that we have proved, in the
corollary to the Archimedean theorem, the existence of such an integer.) Consider a′ = a + M and
b′ = b + M . Then 0 < a′ < b′. By the theorem, we know that there exists r ∈ Q with a′ < r < b′. Therefore
a < r −M < b and r −M is rational.


