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Abstract

To every partially ordered set (poset), one can associate a generating function, known

as the P -partition generating function. We find necessary conditions and sufficient

conditions for two posets to have the same P -partition generating function. We define

the notion of a jump sequence for a labeled poset and show that having equal jump

sequences is a necessary condition for generating function equality. We also develop

multiple ways of modifying posets that preserve generating function equality. Finally,

we are able to give a complete classification of equalities among partially ordered sets

with exactly two linear extensions.
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Chapter 1

Introduction

Combinatorics is concerned with the study of finite sets. Two primary topics in

combinatorics are ordered sets and generating functions. The focus of this thesis lies

at the intersection of these topics. ‘

Many mathematically important sets have a natural order associated with them.

For example, the positive integers have the usual order 1 ≤ 2 ≤ 3. A more interesting

example is the set of subsets of the positive integers ordered by containment, e.g.

{} ⊆ {1} ⊆ {1, 2}. Note that in this example not every pair of elements can be

compared. To illustrate, neither {1} is contained in {2} nor {2} contained in {1}.

We call this order a partial order since some pairs of elements are incomparable. The

study of general partially ordered sets (posets) is one of the main branches of modern

algebraic combinatorics.

Additionally, combinatorialists are often concerned with counting the number of

elements in a particular finite set. Sometimes it is possible to derive an exact formula

for the number of elements in a set. For example, the number of k-element subsets of
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{1, 2, . . . , n} is known to be
(
n
k

)
= n!

k!(n−k)! . However, it is often the case that it is more

feasible or more useful to construct a polynomial or power series that encodes this

counting information. To illustrate, in the polynomial (1 + x)n, the coefficient of xk

equals the number of k-element subsets of {1, 2, . . . , n}. A more interesting example

is a power series that encodes the number of partitions of n, where a partition of n is

a weakly decreasing sequence of positive integers whose sum is n. For example, the

partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1). We denote the number

of unique partitions of n by p(n). While no elementary formula for p(n) exists, the

generating function
∑∞

n=0 p(n)xn can be shown to be the expression
∑∞

n=0 p(n)xn =∏∞
i=1

1
1−xi . Polynomials or power series that encode counting information are known

as generating functions.

Related to the set of partitions is the set of compositions of n, where a composition

of n is a way of writing n as a sum of unordered positive integers. For example, (1, 3, 2)

is a composition of 6 but not a partition of 6, while (3, 2, 1) is both a composition

and partition of 6. In his 1971 Ph.D. thesis, Richard Stanley introduced P -partitions

as a way to unify and interpolate between the ideas of partitions and compositions

[7]. The “P” in P -partition denotes a partially ordered set. Each poset has an

associated P -partition generating function, and these generating functions generalize

many different combinatorial objects. Arguably the most important special case of

P -partition generating functions are the skew Schur functions; classifying equalities

among skew Schur functions is a topic of current research [6; 5; 1; 3]. This thesis is

motivated by trying to examine the open question of skew Schur function equality in

the more general P -partition generating function setting. The main goal of this thesis

is to find necessary conditions and sufficient conditions for two partially ordered sets
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to have the same P -partition generating function.

The paper is structured as follows. In Chapter 2 we provide the necessary back-

ground on partially ordered sets, P -partitions, quasisymmetric functions, and P -

partition generating functions. Chapter 3 collects initial results about P -partition

generating function equality. In Chapter 4, we give some necessary conditions on the

partially ordered sets for their generating functions to be equal. Given a P -partition

generating function equality, we can modify the equivalent partially ordered sets in

certain ways that preserve generating function equality; these sufficient conditions for

equality are the subject of Chapter 5. In Chapter 6, we give a complete classification

of equalities among partially ordered sets having exactly two linear extensions. Fi-

nally, in Chapter 7, we summarize our work and discuss avenues for further research.
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Chapter 2

Mathematical Background

We first introduce the mathematical background and notation necessary to present

our results. Further information about these subjects can be found in [8; 9].

2.1 Posets

Given a collection of comparable objects, it is natural to try to associate an order

with them. We formalize this idea of ordering a collection of comparable objects with

the notion of a partially ordered set (poset). Posets, and orderings in general, play

a large role in combinatorics as they generalize many different combinatorial objects,

as we will see in the case of P -partitions. We will be using posets to define generating

functions whose equalities we examine.

Before defining a poset, let us help build the reader’s intuition by introducing

some example posets.

(a) The positive integers ordered by ≤ form a poset, i.e. 1 ≤ 2 ≤ 3 ≤ . . ..
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(b) Subsets of {a, b} ordered by containment form a poset. For example, {} ⊆

{a} ⊆ {a, b}. Note that not every pair of subsets in comparable, since {a} is

not contained in {b} and {b} is not contained in {a}.

(c) A set of integers ordered by divisibility forms a poset. For example, 1 divides 3,

3 divides 6, and 6 divides 30. Note that while 3 ≤ 10 in the usual order on the

positive integers, 3 does not divide 10 and is therefore 3 is not “less than” 10

in this poset.

We now give the formal definition of a poset. A poset is a set P equipped with a

binary relation, usually denoted≤, that has the following properties for all x, y, z ∈ P :

• x ≤ x, i.e. the relation is reflexive;

• if x ≤ y and y ≤ x, then x = y, i.e. the relation is antisymmetric;

• if x ≤ y and y ≤ z, then x ≤ z, i.e. the relation is transitive.

We will use ≤P to denote the relation on P to avoid confusion. If no subscript on

the relation is given, we mean the usual ≤ ordering on the integers. If x ≤P y and

x 6= y, we can write x <P y. If there are no incomparable elements in the poset, we

call the ordered set a total order.

A valuable tool for visualizing posets is the Hasse diagram of a poset. Firstly,

we say an element y of the poset covers x if x <P y and there is no z such that

x <P z <P y. For example 2 covers 1 in the positive integers ordered by ≤, but 3

does not cover 1. Now, a Hasse diagram of a poset is a diagram where each element

of the poset is a node and a line is drawn from x up to y if y covers x (we do not

consider reflexive relations in the Hasse diagram). The Hasse diagram of the previous

example posets can be seen in Figure 2.1.
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3

2

1

{a}

{a,b}

{b}

{}

1

2 3 5

6 1510

30

(c)(b)(a)

Figure 2.1: Three Hasse diagrams of various posets. The Hasse diagram
(a) is the positive integers order by ≤, (b) is subsets of {a, b} ordered by
containment, and (c) is a subset of the integers ordered by divisibility. Note
that in both (b) and (c) not every pair of elements is comparable.

We define an antichain to be a subset of P where every pair of elements in the

subset is incomparable, while we define a chain to be a subset of P where every pair

of elements in the subset is comparable. In Figure 2.1(c), we can see that {2, 3, 5} is

an antichain, while {1, 10, 30} is a chain.

We now generalize the notion of posets to labeled posets. A labeling of a poset

P is a bijection ω : P → {1, . . . , n}. A poset with an associated labeling, denoted

(P, ω), is a labeled poset. Note that with this definition of labeled poset, we restrict

our study to finite posets.

For a labeled poset (P, ω), if y covers x and ω(x) < ω(y), then we call the relation

x ≤P y weak and will denote such relations in a Hasse diagram with a single line. On

the other hand, if y covers x and ω(x) > ω(y), then we call the relation x ≤P y strong

and will denote such relations in a Hasse diagram with a double line. If a labeled

poset consists only of weak relations, then we will say the labeled poset is naturally

labeled.
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An example of a labeled poset can be seen in Figure 2.2. Note that we will often

omit the labeling from Hasse diagrams and only note strong and weak relations; the

reason for this will be made clear in Section 2.2. We consider two labeled posets

(P, ω) and (Q, τ) to be equal if there is a bijection from P to Q that preserves the

order relation and the strong and weak relations.

  

1 3

2

4

Figure 2.2: The Hasse diagram of a sample labeled poset with and with-
out its associated labeling. This labeled poset has one strong relation and
is therefore not naturally labeled.

2.2 P -partition Generating Functions

P -partitions are labelings of the elements of a poset that respect the order of the

poset. They were introduced by Stanley as a way to interpolate between partitions

and compositions of a number [7]. We will use them to define a generating function

on labeled posets.

For a labeled poset (P, ω), a (P, ω)-partition is a map σ from P to the positive

integers satisfying the following two conditions:

• If x ≤P y, then σ(x) ≤ σ(y), i.e. σ is order-preserving.

• If x ≤P y and ω(x) > ω(y), then σ(x) < σ(y), i.e. the strong relations must be

respected by σ.
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Some example P -partitions of the labeled poset in Figure 2.2 can be seen in

Figure 2.3. Note that we will denote the labeling of a poset with integers inside the

nodes of the Hasse diagram (as in Figure 2.2), while a P -partition will be denoted

with integers outside the nodes of the Hasse diagram (as in Figure 2.3).

  

1 1

2

2

2 1

3

4

2 1

2

2

Figure 2.3: Example P -partitions of a labeled poset.

We can now see how P -partitions interpolate between partitions and compositions.

P -partitions of a total order with n elements correspond to partitions with n parts,

while P -partitions on an antichain with n elements correspond to compositions with

n parts. An example of this for three element antichain and the three element total

order can be seen in Figure 2.4. Essentially, the total order enforces the requirement

that a partition is a weakly decreasing sequence.

  

2 1 4

1

2

4

(b)(a)

Figure 2.4: A P -partition of the three element antichain (a), which cor-
responds to the composition (2, 1, 4). The P -partition of the three element
total order (b) corresponds to the partition (4, 2, 1).

We now define the main object of our study, P -partition generating functions.
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Definition 2.1. The P -partition generating function for a labeled poset (P, ω) is

denoted K(P,ω)(x1, x2, . . .) and is given by

K(P,ω)(x1, x2, . . .) =
∑

(P,ω)−partition σ

x
|σ−1(1)|
1 x

|σ−1(2)|
2 . . . , (2.1)

where the sum is over all (P, ω)-partitions σ.

K(P,ω)(x1, x2, . . .) is a generating function for (P, ω)-partitions, where the number

of (P, ω)-partitions σ such that |σ−1(1)| = i1, |σ−1(2)| = i2, . . . is given by the coeffi-

cient of the monomial xi11 x
i2
2 . . . in K(P,ω)(x1, x2, . . .). Even though K(P,ω)(x1, x2, . . .)

is a generating function for (P, ω)-partitions, we will refer to it as the P -partition

generating function.

Note that K(P,ω)(x1, x2, . . .) is a formal power series in an infinite number of vari-

ables. We will restrict ourselves to n variables when necessary by denoting the gen-

erating function as K(P,ω)(x1, x2, . . . , xn). A sample calculation of K(P,ω)(x1, x2, x3)

for a labeled poset can be seen in Figure 2.5. When working in an infinite number of

variables, we will abbreviate K(P,ω)(x1, x2, . . .) by K(P,ω)(x).

Note that (P, ω)-partitions only rely on the assignment of strong and weak rela-

tions given by ω. This allows us to use the notation KP (x1, x2, . . .) unambiguously

when P is naturally labeled, since all labelings of P that are natural give rise to

the same generating function. Furthermore, when discussing P -partition generating

function equality, we can unambiguously only designate strong and weak relations in

a Hasse diagram without specifying the labeling that gives rise to those strong and

weak relations.

We can now describe the main goal of this work.
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1 1

2

1 1

3

2 2

3

2 1

2

3 1

3

3 2

3

2 1

3

1 2

3

Figure 2.5: All P -partitions of a sample poset, restricting to the codomain
{1, 2, 3}. Note that nodes on the Hasse diagrams are labeled by the P-
partition σ and not the underlying labeling ω. Reading off P -partitions
from left to right and top to bottom, we can see that, for the above poset,
K(P,ω)(x1, x2, x3) = x21x2 + x21x3 + x22x3 + x1x

2
2 + x1x

2
3 + x2x

2
3 + 2x1x2x3.

Goal: To determine some necessary and some sufficient conditions on the labeled

posets (P, ω) and (Q, τ) for K(P,ω)(x) to equal K(Q,τ)(x). Our aim is to make these

conditions as complete as possible.

A nontrivial example case of when two labeled posets have equal P -partition

generating functions can be seen in Figure 2.6.

  

~

Figure 2.6: Two labeled posets that have the same P -partition generating
function.
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2.3 Quasisymmetric Functions

As we will see, P -partition generating functions are in a class of functions known as

quasisymmetric functions. In this chapter we will develop the theory of quasisym-

metric functions, first by starting with symmetric functions. This theory includes a

result that will allow us to efficiently calculate K(P,ω)(x) for any given (P, ω).

The theory of symmetric functions takes the idea of symmetry and applies it to

polynomials. Symmetric functions are polynomials that are unchanged under permu-

tation of their variables. For example, consider the polynomial 2x1x2 + 3x51 + 3x52.

If we permute the variables of this polynomial, we switch the x1’s and x2’s to get

the polynomial 2x2x1 + 3x52 + 3x51, which is in fact equal to the original polynomial.

Hence, 2x1x2 + 3x51 + 3x52 is a symmetric function in x1, x2. As another example, we

can see that 3x1 + 2x2 is not a symmetric function, since 3x1 + 2x2 6= 3x2 + 2x1.

Symmetric functions are important objects in algebraic combinatorics and appear in

many diverse areas of mathematics.

Our generating functions of interest will be quasisymmetric functions, of which

symmetric functions are a subset. To define quasisymmetric functions, we first note

that a polynomial is symmetric if, for any sequence of powers a1, . . . , an, the coeffi-

cient of xa1i1 x
a2
i2
. . . xanin is equal to the coefficient of xa1j1 x

a2
j2
. . . xanjn for all distinct-element

sequences i1, i2, . . . , in and j1, j2, . . . , jn. Using our example from before of the sym-

metric function 2x2x1 + 3x51 + 3x52, we can see that the coefficients of x51 and x52 are

both 3. Quasisymmetric functions are polynomials where the coefficient of xa1i1 . . . x
an
in

is equal to the coefficient of xa1j1 . . . x
an
jn

whenever i1 < . . . < in and j1 < . . . < jn. This

condition is a weakening of the symmetric function condition, hence every symmet-

ric function is quasisymmetric, but not every quasisymmetric function is symmetric.
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To illustrate, the polynomial 4x71x
5
2 + 4x71x

5
3 + 4x72x

5
3 is a quasisymmetric function

in x1, x2, x3 since the coefficients of x71x
5
2, x

7
1x

5
3, x

7
2x

5
3 are all equal to 4, but not a

symmetric function as switching x1 and x2 gives us a new polynomial.

We are now able to show that P -partition generating functions are quasisymmetric

functions.

Proposition 2.2. For any labeled poset (P, ω), we have that K(P,ω)(x) is quasisym-

metric.

Proof. Let a1, . . . , ak, i1 < . . . < ik, and j1 < . . . < jk be given. Note that (P, ω)-

partitions that give rise to the xa1i1 . . . x
ak
ik

monomial in Equation (2.1) bijectively

correspond to (P, ω)-partitions that give rise to xa1j1 . . . x
ak
jk

; this correspondence is

given by replacing corresponding ir with jr in the (P, ω)-partition for all 1 ≤ r ≤ k,

and this correspondence preserves the conditions of a (P, ω)-partition.

The algebra of quasisymmetric functions has two natural bases. The first basis

is the monomial quasisymmetric function basis {Mα}, indexed by compositions α =

(α1, α2, . . . , αk) where α is considered to be a composition of
∑
αi. A monomial

quasisymmetric function is given by

Mα =
∑

1≤i1<i2<...<ik

xα1
i1
xα2
i2
. . . xαk

ik
.

For example, in three variables we have M(1,2) = x1x
2
2 + x1x

2
3 + x2x

2
3.

Before defining the second basis, we first note that a composition β is a refinement

of a composition α if α can be obtained from β by adding together adjacent parts of

the composition β. If β is a refinement of α, we denote this by α � β. For example,

(3, 2) � (2, 1, 1, 1), but (1, 4) 6� (2, 1, 1, 1).
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Another basis for the quasisymmetric functions is the fundamental quasisymmetric

function basis {Lα}. A fundamental quasisymmetric function is given by

Lα =
∑
β�α

Mβ.

For example, we have L(3) = M(3) +M(2,1) +M(1,2) +M(1,1,1).

We now make note of an important, non-trivial relation between the labeled poset

(P, ω) and the expansion of K(P,ω)(x) in the fundamental quasisymmetric functions.

Before presenting this result, we must first introduce some new ideas. Firstly, the

descent set of a permutation α ∈ Sn, denoted des(α), is des(α) = {i : α(i) > α(i+1)},

where α(i) is the ith number in the permutation. For example, for (3, 1, 2, 5, 4, 6) ∈ S6,

we have des(3, 1, 2, 5, 4, 6) = {1, 4}. Now, the descent composition of a permutation

α ∈ Sn, denoted co(α), is co(α) = (d1, d2 − d1, . . . , dk − dk−1, n − dk), where d1 <

d2 < . . . < dk are the elements of des(α). Continuing with our example, we have

co(3, 1, 2, 5, 4, 6) = (1, 3, 2).

We must now also introduce the idea of linear extensions of a labeled poset. A

linear extension of a labeled poset (P, ω) is a permutation of the labels ω(P ) that

respects the relations in P . The set of all linear extensions of (P, ω) is denoted L(P, ω).

The calculation of L(P, ω) for a sample labeled poset can be seen in Figure 2.7.

  

31

2

Figure 2.7: The Hasse diagram of a labeled poset (P, ω), where ω(P ) is
apparent on the diagram. We can see that L(P, ω) = {(1, 3, 2), (3, 1, 2)}.

With the above definitions, we can now state the following theorem, due to Gessel
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and Stanley.

Theorem 2.3 ([2; 9]). Let (P, ω) be a labeled poset. Then we have

K(P,ω)(x) =
∑

α∈L(P,ω)

Lco(α). (2.2)

It is important to note that since the fundamental quasisymmetric functions form

a basis for quasisymmetric functions, we can make the crucial observation that P -

partition generating functions are equal if and only if the multisets of the descent

compositions of the linear extensions of their corresponding labeled posets are equal.

A calculation that shows K(P,ω)(x) = K(Q,τ)(x) for sample posets (P, ω) and (Q, τ)

can be seen in Figure 2.8. Note that we will denote Hasse diagrams that correspond to

labeled posets that have the same P -partition generating function by the equivalence

relation ∼. Note that when computing K(P,ω)(x), we will often take advantage of

Theorem 2.3, as generally a labeled poset will have significantly fewer linear extensions

than P -partitions.

  

31

2

3

1

2

3
(P, !) =  = (Q, ¿)

~
Figure 2.8: The Hasse diagrams of a labeled posets (P, ω) and
(Q, τ). We can see that L(P, ω) = {(1, 3, 2), (3, 1, 2)}, so K(P,ω)(x) =
Lco(1,3,2) + Lco(3,1,2) = L(2,1) + L(1,2). We can also see that L(Q, τ) =
{(2, 1, 3), (2, 3, 1)}, so K(Q,τ)(x) = Lco(2,1,3) + Lco(2,3,1) = L(1,2) + L(2,1),
which is equal to K(P,ω).

We will switch between the expansions of K(P,ω)(x) given by Equation (2.1) and

Equation (2.2) as convenient.

An important subclass of P -partition generating functions are the skew Schur
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functions, which are symmetric functions that arise from a generalization of the Schur

basis for symmetric functions. While we don’t give the necessary definitions here,

we note that classifying equalities among skew Schur functions is a topic of current

research [1; 6; 5; 3], and we hope to shed light on this question by studying it in the

more general P -partition generating function setting. We refer the interested reader

to [9, Ch. 7] for an introduction to skew Schur functions.
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Chapter 3

Initial Results

In this chapter we will collect some basic results about P -partition generating func-

tions. These results follow almost immediately from the definition of K(P,ω), and are

already known or are generalizations of basic facts about skew Schur functions.

Proposition 3.1. If K(P,ω)(x) = K(Q,τ)(x), then |P | = |Q|.

Proof. Follows immediately from Equation (2.1) since the degrees of monomials in

the sum must match.

Proposition 3.2. If K(P,ω)(x) = K(Q,τ)(x), then |L(P, ω)| = |L(Q, τ)|.

Proof. Follows immediately from Equation (2.2) and the fact that fundamental qua-

sisymmetric functions form a basis for quasisymmetric functions.

Proposition 3.3. Suppose that (P, ω) is naturally labeled and K(P,ω) = K(Q,τ). Then

(Q, τ) is naturally labeled.

Proof. The proof follows from the observation that L|P | appears with nonzero co-

efficient in the Equation (2.2) expansion of K(P,ω) if and only if (P, ω) is naturally



CHAPTER 3. INITIAL RESULTS 17

labeled, which we now show. We can see that L|P | is in the fundamental quasisymmet-

ric function expansion of K(P,ω) if and only if (1, 2, . . . , |P |) ∈ L(P, ω). The previous

statement is equivalent to saying there does not exist x, y ∈ P such that x ≤P y and

ω(x) > ω(y), which is the case if and only if (P, ω) is naturally labeled.

We let the disjoint union of posets (P, ω) and (Q, τ), denoted (P +Q,ω + τ), be

the set P ∪ Q with the relation given by x ≤P+Q y if x, y ∈ P and x ≤P y, or if

x, y ∈ Q and x ≤Q y, where the labeling ω+ τ is defined by (ω+ τ)|P (x) = ω(x) and

(ω + τ)|Q(x) = τ(x) + |P |.

An example of a disjoint union poset can be seen in Figure 3.1.

  

1 3

2

4

2

3

2

1(P, !) =  (Q, ¿) = 

1 3

2

4

2

7

6

5(P+Q, !+¿) = 

Figure 3.1: (P +Q,ω + τ) for sample labeled posets (P, ω) and (Q, τ).

Proposition 3.4. If (P, ω) and (Q, τ) are labeled posets, then K(P+Q,ω+τ)(x) =

K(P,ω)(x)K(Q,τ)(x).

Proof. After writing K(P,ω)(x) and K(Q,τ)(x) as in Equation (2.1), consider the prod-

uct K(P,ω)(x)K(Q,τ)(x) expanded as a sum of monomials. Each monomial is the prod-

uct of a monomial coming from a (P, ω)-partition with a monomial coming from a

(Q, τ)-partition. Thus each monomial in K(P,ω)(x)K(Q,τ)(x) corresponds to a unique



CHAPTER 3. INITIAL RESULTS 18

(P +Q,ω+ τ)-partition, and we see that every (P +Q,ω+ τ)-partition arises in this

way. Thus, we conclude K(P+Q,ω+τ)(x) = K(P,ω)(x)K(Q,τ)(x).

Given a labeled poset (P, ω), we can perform some natural involutions on the

poset [4]. We can “reverse” the poset, i.e. reversing the direction of all relations while

leaving strong relations strong and weak relations weak. This corresponds to rotating

the Hasse diagram 180 degrees. We will denote the rotated poset (P, ω)∗.

Additionally, we can switch the weak and strong relations, i.e. let ω(x) become

|P |+1−ω(x). We will denote this operation by (P, ω). An example of these operations

can be seen in the commutative diagram Figure 3.2.

  

(P, !) 

(P, !)*  (P , !)* 

(P, !) 

Figure 3.2: (P, ω), (P, ω), (P, ω)∗, and ((P, ω))∗ for a sample poset.

The following result is clear.

Proposition 3.5. The operations (P, ω) and (P, ω)∗ are involutions, that is, ((P, ω)) =

(P, ω) and ((P, ω)∗)∗ = (P, ω). Furthermore, the operations commute, that is, ((P, ω))∗ =

(P, ω)∗.
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We can see what these involutions do to the fundamental quasisymmetric function

expansion given by Equation (2.2) by reasoning what the involutions do to the descent

sets of linear extensions.

Proposition 3.6. The descent sets of the linear extensions of (P, ω) are the comple-

ments of the descent sets of the linear extensions of (P, ω).

Proof. By definition the labeling τ : P → {1, . . . , |P |} given by τ(x) = |P |+ 1−ω(x)

is such that (P, ω) = (P, τ). We can see that ω(x) > ω(y) if and only if τ(x) < τ(y).

Hence, every linear extension α ∈ L(P, ω) has a corresponding linear extension α ∈

L(P, τ), where there is a descent in the ith position in α if and only if there is no

descent in the ith position in α.

Similar logic as Proposition 3.6 gives the following result.

Proposition 3.7. The descent compositions of the linear extensions of (P, ω)∗ are

the reverse of the descent compositions of the linear extensions of (P, ω).

Combining Proposition 3.6 and Proposition 3.7, we see the following.

Proposition 3.8. For labeled posets (P, ω) and (Q, τ), the following are equivalent:

• K(P,ω) = K(Q,τ)

• K(P,ω)∗ = K(Q,τ)∗

• K(P,ω) = K(Q,τ)

• K(P,ω)∗ = K(Q,τ)∗

Proof. This follows from Proposition 3.6, Proposition 3.7, and the observation that

K(P,ω) = K(Q,τ) if and only if the multisets of the descent compositions of the L(P, ω)

and L(Q, τ) are equal, which is a direct consequence of Equation (2.2).
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Chapter 4

Necessary Conditions for Equality

Necessary conditions are conditions on labeled posets that must hold for their cor-

responding P -partition generating functions to be equal. Practically, they allow us

to determine that K(P,ω)(x) 6= K(Q,τ)(x) by seeing that a necessary condition on the

labeled posets does not hold. Ideally, checking the necessary condition should be

much simpler than calculating the labeled posets’ generating functions.

We first define the notion of jump sequences, which will give us a necessary con-

dition for P -partition generating function equality.

Definition 4.1. Let the jump of an element be the maximum number of strong rela-

tions in a saturated chain from the element down to a minimal element. The jump

sequence of a labeled poset, denoted jump(P, ω), is jump(P, ω) = (j0, . . . , jk), where ji

equals the number of elements with jump i and k is the maximal jump of an element

in P .

For an example of the jump sequence of a labeled poset, see Figure 4.1.

Before proving that a necessary condition for P -partition generating function
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(4, 1, 1)  

Figure 4.1: The jump sequence of a sample labeled poset.

equality is equal jump sequences, we note that the lexicographic order on monomials

is given by first comparing the exponents of x1 in the monomials. The monomial

with the lower exponent on x1 is considered greater. If the exponents on x1 are equal,

then the exponents of x2 are compared, and so on. For example, in the lexicographic

order, x21x2x
4
3x4 is less than x21x2x

2
3x

3
4.

Proposition 4.2. If K(P,ω) = K(Q,τ), then we have jump(P, ω) = jump(Q, τ).

Proof. Consider a greedy (P, ω)-partition σg such that σg(x) is minimal for all x ∈

P . Then jump(P, ω) = (|σ−1g (1)|, . . . , |σ−1g (|P |)|), which corresponds directly to

x
|σ−1

g (1)|
1 . . . x

|σ−1
g (|P |)|

n , the lexicographically minimal monomial in the Equation (2.1)

expansion K(P,ω)(x). If jump(P, ω) 6= jump(Q, τ), then K(P,ω) 6= K(Q,τ) as their Equa-

tion (2.1) expansions will contain different lexicographically minimal monomials.

See Figure 4.2 for an application of Proposition 4.2. We now note a corollary of

Proposition 4.2.

Corollary 4.3. If P and Q are naturally labeled posets and KP (x) = KQ(x), then

P and Q have the same number of minimal elements, and P and Q have the same

number of maximal elements.
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(2, 2, 1)         =         (2, 3) 

~

Figure 4.2: Two labeled posets that cannot have the same P -partition
generating function because they have different jump sequences.

Proof. By Proposition 3.8 we have KP (x) = KQ(x). We can see that the first entry

in jump(P ) = jump(Q) corresponds to the number of minimal elements of P and Q.

Also, by Proposition 3.8 we have KP ∗(x) = KQ∗(x). We can see that the first

entry in jump(P ∗) = jump(Q∗) corresponds to the number of maximal elements of P

and Q.

Note that Corollary 4.3 is not true for labeled posets in general; see Figure 2.8 for an

example.

The following is also a direct corollary of Proposition 4.2.

Corollary 4.4. If P and Q are naturally labeled posets and KP (x) = KQ(x), then P

and Q have the same maximal chain length.

Proof. By Proposition 3.8 we have KP (x) = KQ(x). We can see that the length of

the composition jump(P ) = jump(Q) corresponds to the maximal size chain in P and

Q.

We now define the notion of an antichain sequence to give a conjecture for naturally

labeled posets.

Definition 4.5. Let the antichain sequence of a poset, denoted anti(P ), be the finite

sequence (a1, . . . , an), where ai is the number of antichains in P of size i.
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Conjecture 4.6. If P and Q are naturally labeled posets and KP (x) = KQ(x), then

anti(P ) = anti(Q).

  

(7, 11, 3)       =        (7, 11, 3) 

~

Figure 4.3: Two naturally labeled posets that have the same P -partition
generating function and also the same antichain sequence.

Conjecture 4.6 suggests a constructive proof where, given the P -partition gener-

ating function, we determine the antichain sequence by utilizing the expansion given

by Equation (2.2). In trying to create such a proof, the hardest examples occur when

the original poset is actually the disjoint union of two different posets.
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Chapter 5

Sufficient Conditions for Equality

Sufficient conditions for P -partition generating function equality give us ways of pro-

ducing new equalities. Most of the results in this section will take the following form:

if K(P,ω)(x) = K(Q,τ)(x), then K(P̂ ,ω̂)(x) = K(Q̂,τ̂)(x), where (P̂ , ω̂) and (Q̂, τ̂) are

modifications of (P, ω) and (Q, τ) respectively.

5.1 Removing from Known Equalities

We now describe cases where we can take a P -partition generating equality and make

both posets simpler while maintaining equality. Our first result involves removing all

jump 0 elements from both labeled posets (see Chapter 4 for the definition of a jump

sequence).

Proposition 5.1. If K(P,ω)(x) = K(Q,τ)(x), then, letting (P̂ , ω̂) and (Q̂, τ̂) be the la-

beled posets (P, ω) and (Q, τ) with their jump 0 elements removed, we have K(P̂ ,ω̂)(x) =

K(Q̂,τ̂)(x).
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Proof. Consider all (P, ω)-partition σP such that |σ−1P (1)| is maximal. These (P, ω)-

partitions bijectively correspond to monomials in the Equation (2.1) expansion of

K(P,ω)(x), where the exponent of the x1 term is equal to the number of elements

with jump 0 in (P, ω). By Proposition 4.2, the number of elements with jump 0 in

(P, ω) is equal to the number of elements with jump 0 in (Q, τ). In turn, this gives a

bijection between monomials in K(Q,τ)(x) where the exponent of the x1 term is equal

to the number of elements with jump 0 and (Q, τ)-partitions σQ such that |σ−1Q (1)| is

maximal.

(P, ω)-partitions σP where |σ−1P (1)| is maximal correspond bijectively to (P̂ , ω̂)-

partitions σ̂P ; the correspondence is described by taking σ̂P (x) = σP (x) − 1. Fur-

thermore, if σP and σQ correspond to the same monomial xi11 x
i2
2 . . . x

ik
k in K(P,ω)(x) =

K(Q,τ)(x), then σ̂P and σ̂Q will correspond to the same monomial xi21 x
i3
2 . . . x

ik
k−1 in

K(P̂ ,ω̂)(x) and K(Q̂,τ̂)(x). Hence K(P̂ ,ω̂)(x) = K(Q̂,τ̂)(x).

An example of Proposition 5.1 can be seen in Figure 5.1.

  

~

~
Figure 5.1: Removing jump 0 elements (in red) preserves P -partition
generating function equality.

By induction, we get the following corollary of Proposition 5.1.

Corollary 5.2. If K(P,ω)(x) = K(Q,τ)(x), then, letting (P̂ , ω̂) and (Q̂, τ̂) be the labeled
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posets (P, ω) and (Q, τ) with their jump i elements removed for all i < n for some

positive integer n, we have K(P̂ ,ω̂)(x) = K(Q̂,τ̂)(x).

We now note a consequence of Proposition 5.1 for naturally labeled posets.

Corollary 5.3. Let P̂ and Q̂ be the naturally labeled posets P and Q with their

minimal elements removed. If KP (x) = KQ(x), then we have KP̂ (x) = KQ̂(x).

Proof. By Proposition 3.8 we have KP (x) = KQ(x). The minimal elements of P and

Q correspond to the jump 0 elements of P and Q. By Proposition 5.1, if we let P̂ and

P̂ be the posets P and Q with their jump 0 elements removed (which corresponds to

removing the minimal elements of P and Q), we have K
P̂

(x) = K
P̂

(x). Since P̂ = P̂ ,

by Proposition 3.8 we see that KP̂ (x) = KQ̂(x).

An example of Corollary 5.3 can be seen in Figure 5.2.

  

~

~
Figure 5.2: Removing the minimal elements (in red) of naturally labeled
posets preserves P -partition generating function equality.

Returning to the generally labeled case, if two labeled posets have equal P -

partition generating functions and both posets have unique minimal elements, then

we can remove those minimal elements and preserve equality. This result will be

important in Chapter 6.
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Proposition 5.4. If K(P,ω)(x) = K(Q,τ)(x) and both P and Q have unique minimal

elements, then, letting (P̂ , ω̂) and (Q̂, τ̂) be the labeled posets (P, ω) and (Q, τ) with

their unique minimal elements removed, we have K(P̂ ,ω̂)(x) = K(Q̂,τ̂)(x).

Proof. This proof is similar to the proof of Proposition 5.1, except we consider the

(P, ω)-partitions σP where |σ−1P (1)| = 1. This is because if |σ−1P (1)| = 1, then it

must be the case that σP of the unique minimal element is 1. By letting σ̂P (x) =

σP (x)− 1, (P, ω)-partitions and (Q, τ)-partitions that correspond to the same mono-

mial in K(P,ω)(x) = K(Q,τ)(x) descend to (P̂ , ω̂)-partitions and (Q̂, τ̂)-partitions that

correspond to the same monomial in K(P̂ ,ω̂)(x) = K(Q̂,τ̂)(x).

Note that by utilizing Proposition 3.8, Proposition 5.4 allows us to remove unique

maximal elements as well.

5.2 Adding to Known Equalities

We now develop ways of adding additional elements to labeled posets that preserves

P -partition generating equality. Proposition 5.4 suggests a way of adding minimal

elements to posets whose generating functions are known to be equal.

Proposition 5.5. Suppose that K(P,ω)(x) = K(Q,τ)(x). Let m be the number of

weak relation minimal elements we wish to add, and let m be the number of strong

relation minimal elements we wish to add. Let (P̂ , ω̂) and (Q̂, τ̂) be the labeled posets

(P, ω) and (Q, τ) with the minimal elements M and M added; that is, letting M =

{1, . . . ,m} and M = {|P | + m + 1, . . . , |P | + m + m}, then P̂ = P ∪M ∪M with
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x ≤P̂ y for all x ∈ M ∪M and y ∈ P , where ω̂|M(x) = x, ω̂|P (x) = ω(x) + m, and

ω̂|M(x) = x (See Figure 5.3). Then, we have K(P̂ ,ω̂)(x) = K(Q̂,τ̂)(x).

  

(Q, ¿) = 

~
(P, !)  

...  ... 
M         M         

(Q, ¿)  

...  ... 
M         M         

Figure 5.3: The setup for the proof of Proposition 5.5.

Proof. Consider linear extensions of (P̂ , ω̂). Since the elements in M and M come

before P in P̂ , every linear extension of (P̂ , ω̂) is of the form (L(M + M),L(P ));

i.e. every linear extension of (P̂ , ω̂) must start with all the elements in M ∪M . Let

(α1, α2) ∈ L(P̂ , ω̂), where α1 ∈ L(M +M) and α2 ∈ L(P, ω). Since K(P,ω)(x) =

K(Q,τ)(x), by Equation (2.2) there exists β2 ∈ L(Q, τ) such that co(α2) = co(β2).

Note that (α1, β2) ∈ L(Q̂, τ̂).

We want to show that co(α1, α2) = co(α1, β2), as this would prove K(P̂ ,ω̂)(x) =

K(Q̂,τ̂)(x) by Equation (2.2). We know that co(α1) = co(α1) and co(α2) = co(β2).

Either α1 ends in an element from M or M . If α1 ends in an element from M , then

co(α1, α2) = co(α1, β2) with no descent between α1 and both α2 and β2. Otherwise α1

ends in an element from M and then co(α1, α2) = co(α1, β2) with a descent between

α1 and both α2 and β2.

For an example of Proposition 5.5, see Figure 5.4.
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~

~

Figure 5.4: Adding one weak relation minimal element and one strong
relation minimal element to a known equality.

We can generalize Proposition 5.5 so that, instead of considering adding antichains

as minimal elements, we can add on arbitrary posets. The proof of the following

result is similar to the proof of Proposition 5.5, although it would require much more

meticulous notation.

Proposition 5.6. Suppose K(P,ω)(x) = K(P ′ ,ω′ )(x), K(Q,τ)(x) = K(Q′ ,τ ′ )(x), and

K(R,φ)(x) = K(R′ ,φ′ )(x). Then, the labeled posets in Figure 5.5 have the same P -

partition generating function.

We now note the following special relation among P -partition generating functions

that involves different ways of joining two posets.

Proposition 5.7. For labeled posets (P, ω) and (Q, τ), if P has a unique minimal el-

ement p and Q a unique maximal element q, then, using the notation from Figure 5.6,

we have KA(x) = KB(x) +KC(x).

Proof. We use the notation in Figure 5.6. Consider an A-partition σ that corresponds

to a monomial in the Equation (2.1) expansion of KA(x). It is the case that either

σ(p) ≤ σ(q) or σ(p) > σ(q), but not both.
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(Q, ¿) = 

~

(P       ', ! ')  

(Q   ', ¿  ')   (R      ', Á ')  

(P     , !)  

(Q   , ¿)   (R   , Á)  

Figure 5.5: Structure of labeled posets with the same P -generating func-
tion as mentioned in Proposition 5.6. It is understood that, for example,
q ≤ p in the left labeled poset for all q ∈ Q and p ∈ P , and that the poset
is labeled is such so that these are strong relations.

If σ(p) ≤ σ(q), then σ is a B-partition and therefore the same corresponding

monomial appears in KB(x). Otherwise, if σ(p) > σ(q), then σ is a C-partition

and therefore the same corresponding monomial appears in KC(x). We can also see

that every B-partition and every C-partition arise in this way from an A-partition.

Hence, since every monomial in KA(x) is in KB(x) or KC(x) but not both, we have

KA(x) = KB(x) +KC(x), as desired.

Corollary 5.8. Suppose K(P,ω)(x) = K(P ′ ,ω′ )(x) and K(Q,τ)(x) = K(Q′ ,τ ′ )(x). Then,

using the notation in Figure 5.6, KB(x) with (P, ω) and (Q, τ) is equal to KB(x) with

(P
′
, ω
′
) and (Q

′
, τ
′
).

Proof. From Proposition 5.7, we can conclude that, in Figure 5.6, KB(x) = KA(x)−

KC(x). We can see KA(x) remains equal under switching (P, ω) and (Q, τ) with

(P
′
, ω
′
) and (Q

′
, τ
′
) by Proposition 3.4. We can also see that KC(x) remains equal

under switching (P, ω) and (Q, τ) with (P
′
, ω
′
) and (Q

′
, τ
′
) by Proposition 5.6. Hence,

since KB(x) = KA(x)−KC(x), KB(x) also remains equal under switching (P, ω) and
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+ (P     , !)   (Q   , ¿)  

p  

q  

(P     , !)   (Q   , ¿)  

p  

q  

(P     , !)  

p  

(Q   , ¿)  

q  

A     

=
  

B      
=

  
C     

=
  

Figure 5.6: Structure of labeled posets A, B, and C as mentioned in
Proposition 5.7.

(Q, τ) with (P
′
, ω
′
) and (Q

′
, τ
′
), as desired.
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Chapter 6

Posets with Two Linear Extensions

We know that from Proposition 3.2 that if two labeled posets satisfy K(P,ω)(x) =

K(Q,τ)(x), then they have the same number of linear extensions. First, suppose that

(P, ω) and (Q, τ) have just one linear extension each. In this case, (P, ω) and (Q, τ)

must each be a total order, so K(P,ω)(x) = K(Q,τ)(x) = Lα, with α determined by the

strong and weak relations in the total order. It follows that (P, ω) = (Q, τ). Therefore,

if we fix the number of linear extensions of (P, ω) = (Q, τ), the first interesting case

occurs when both labeled posets have two linear extensions.

In this chapter we give a complete classification of P -partition generating function

equalities among labeled posets having exactly two linear extensions. It turns out that

all equalities among labeled posets with two linear extensions can be derived from

the equality of the three element labeled posets in Figure 6.1, which happens to

correspond to a skew Schur function equality. The main result from this chapter is

the following:

Theorem 6.1. Suppose that K(P,ω)(x) = K(Q,τ)(x) and |L(P, ω)| = |L(Q, τ)| = 2.
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~
Figure 6.1: Two labeled posets with the same P -partition generating
function, from which all equalities among labeled posets with two linear
extensions can be derived.

Then either (P, ω) = (Q, τ) or (P, ω) and (Q, τ) can be constructed from the equality

in Figure 6.1 by repeatedly applying the following operations, all which preserve P -

partition generating function equality by Proposition 5.5:

• Add one minimal element to both labeled posets using a weak relation.

• Add one minimal element to both labeled posets using a strong relation.

• Add one maximal element to both labeled posets using a weak relation.

• Add one maximal element to both labeled posets using a strong relation.

Intuitively, Theorem 6.1 implies all nontrivial equalities are obtained from the

equality in Figure 6.1 by adding the same chains to the top and the same chains

to the bottom of each poset. An example consequence of this result can be seen in

Figure 6.2.

Before proving Theorem 6.1, we will need to describe the structure of posets with

two linear extensions.

Lemma 6.2. If |L(P )| = 2, then P has exactly one antichain of size 2 and no

antichains of greater size.

Proof. If P has an antichain of size greater than 2, then |L(P )| ≥ 6, a contradiction.

If P has two or more antichains of size 2, then |L(P )| ≥ 3, a contradiction. If P
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~

Figure 6.2: Two labeled posets with two linear extensions that have
the same P -partition generating function. The underlying equality in Fig-
ure 6.1 can be seen in red.

has no antichains of size 2 or greater, then P is a total order and |L(P )| = 1, a

contradiction. The result follows.

Lemma 6.3. If |L(P )| = 2, then the unlabeled structure of P is as in Figure 6.3,

where {a, b} is the single antichain of size greater than one and the subsposets Q and

R are (possibly empty) total orders.

Proof. From Lemma 6.2 we know that P has exactly one antichain of size 2, which

we shall label {a, b}. Consider x ∈ P\{a, b}. If x and a are incomparable in P or

if x and b are incomparable, then either {x, a} or {x, b} is an antichain, which is a

contradiction. If b ≤P x ≤P a or a ≤P x ≤P b, then by transitivity either b ≤P a or

a ≤P b, a contradiction to {a, b} being an antichain. Hence, for all x ∈ P\{a, b}, we

have x ≤P a and x ≤P b, or we have a ≤P x and b ≤P x.

Let Q = {x ∈ P : a ≤P x and b ≤P x}. There can be no antichains of length 2 or

greater in Q. Hence Q is a total order, as desired. The same holds for R = {x ∈ P :

x ≤P a and x ≤P b}.

Lemma 6.3 describes the complete structure of posets with two linear extensions.
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1

2 3 5

6 15
10

30

(c)
R

Q

a b

Figure 6.3: The general Hasse diagram for a poset with two linear exten-
sions. In this figure a and b denote poset elements, rather than labels or
the images of the elements under a P -partition.

We will need one more result before proving Theorem 6.1.

Lemma 6.4. Suppose that K(P,ω)(x) = K(Q,τ)(x), |L(P, ω)| = |L(Q, τ)| = 2, and

|P | = |Q| ≥ 4. Then either P and Q both have unique minimal elements or both have

unique maximal elements.

Proof. Assume not. Then by Lemma 6.3, it is necessarily the case that we have, up

to switching P and Q, the unlabeled poset structures shown in Figure 6.4.

Using the notation in Figure 6.4, since |Q| ≥ 4, we can conclude that aQ <Q bQ.

Without loss of generality we may assume that ω(aP ) < ω(bP ).

Consider the descent compositions of the linear extensions of (P, ω), particularly

the first two entries of the descent composition. We have L(P, ω) = {(ω(aP ), ω(bP ), . . .),

(ω(bP ), ω(aP ), . . .)}. Hence one linear extension of (P, ω) has a descent in the first

position, while the other does not.

We compare this to the first two entries of the descent compositions of the linear
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P    = =  Q

~
a
P

b
P

P    = =  Q

~
a
P

b
P

R
Q

a
Q

b
Q

Figure 6.4: Unlabeled poset structure after assuming the negation of
Lemma 6.4. In this figure aP , bP , aQ, and bQ denote poset elements,
rather than labels or the images of the elements under a P -partition.

extensions of (Q, τ). We have L(Q, τ) = {(τ(aQ), τ(bQ), . . .), (τ(aQ), τ(bQ), . . .)}.

Either τ(bQ) < τ(aQ) or τ(aQ) < τ(bQ), so either both linear extensions of (Q, τ) have

a descent in the first position, or both do not. Since one linear extension of (P, ω) has

a descent in the first and the other does not, the multisets of the descent compositions

of the linear extensions of the labeled posets (P, ω) and (Q, τ) are different. Hence,

by a consequence of Equation (2.2), K(P,ω)(x) 6= K(Q,τ)(x), a contradiction.

We now prove the main result of this chapter, Theorem 6.1.

Proof of Theorem 6.1. We proceed by induction on n = |P | = |Q|. If n ≤ 3, then the

result holds by enumerating all labeled posets and checking equalities among them.

The only nontrivial equality is the one in Figure 6.1.

If n ≥ 4, then by Lemma 6.4, either P and Q both have unique minimal elements

or unique maximal elements. By Proposition 5.4, we can remove both minimal or

maximal elements from P and Q to obtain the labeled posets (P̂ , ω̂) and (Q̂, τ̂) that

have equal P -partition generating functions. This removal can be reversed while

preserving equality by Proposition 5.5. Thus, K(P,ω)(x) = K(Q,τ)(x) if and only if

K(P̂ ,ω̂)(x) = K(Q̂,τ̂)(x), which gives us the required induction step.
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Chapter 7

Conclusion and Future Work

Our goal was to determine some necessary and some sufficient conditions on the la-

beled posets (P, ω) and (Q, τ) for K(P,ω)(x) to equal K(Q,τ)(x). We developed neces-

sary conditions for equality in Chapter 4, which included creating the notion of jump

sequences and a conjecture about antichain sequences for naturally labeled posets.

Chapter 5 was spent developing sufficient conditions, where we were able to modify

the posets in known equalities to show new equalities. We were also able to give a

complete classification of equalities for posets with two linear extensions in Chapter 6.

Still, these results are far from a complete understanding of the equality of P -

partition generating functions. An ambitious goal would be to completely classify

all P -partition generating function equalities. However, this goal is currently out

of reach. Since equalities among skew Schur functions have yet to be completely

classified [6], it is not surprising that the more general problem of classifying equalities

among P -partition generating functions remains open.

We are still left with many unanswered questions when it comes to the equality of
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P -partition generating functions. Arguably one of the most important is the following:

Question: Can K(P,ω)(x) = K(Q,τ)(x)K(R,φ)(x) for some connected labeled poset

(P, ω)?

For skew Schur functions, the answer is no, and allows one to only consider con-

nected skew shapes when trying to describe equalities among skew Schur functions [6].

A resolution of the above question for P -partition generating functions is a critical

part of understanding P -partition generating function equalities.

One could build on the result in Chapter 6 by trying to completely classify equal-

ities among labeled posets with three (or more) linear extensions. However, this

approach has its limits, since some equalities have no obvious explanation. The ex-

ample equalities in Figure 7.1 seem to be particularly anomalous.

  

~

~
Figure 7.1: Unexplained P -partition generating function equalities.

One of our original motivations was the hope that knowledge developed about the

equality of P -partition generating functions might give new insight on skew Schur

functions. Unfortunately none of our results about P -partition generating function

equality imply new results about skew Schur functions. Hence, completely describ-

ing equalities in both the P -partition generating function and skew Schur functions

domains is still an open problem.
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