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Shellings

A simplicial complex ∆ is shellable if its facets “fit nicely together”.

Specifically, if there is an ordering σ1, . . . , σm of the facets of ∆
such that the intersection of σi with the union of preceding facets
has dimension (dim σi − 1).

link∆ σ = {τ : τ ∩ σ = ∅

link∆ σ =

but τ ∪ σ a face of ∆}
v link v

A simplicial complex ∆ is Cohen-Macaulay if Hi (∆) = 0 for
i < dim ∆, and if (recursively) every proper link is Cohen-Macaulay.
A simplicial complex ∆ is sequentially Cohen-Macaulay if the pure
i-skeleton (generated by all faces of dimension i) is
Cohen-Macaulay for every i .

Every link of a shellable complex is shellable, and a shellable
complex “is” a bouquet of high dimensional spheres, hence
Shellable =⇒ sequentially Cohen-Macaulay
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Shedding vertices and vertex decomposability

Shellability is difficult to work with directly, so we usually use some
tool to find shellings.

A shedding vertex v of a simplicial complex ∆ is such that no face
of link∆ v is a facet of ∆ \ v .

Lemma: (Wachs) If v ∈ ∆ is a shedding vertex, and ∆ \ v and
link∆ v are shellable, then ∆ is shellable.

Shelling: Shelling order of ∆ \ v followed by shelling of v ∗ link∆ v .
(So shedding vertex “sorts” facets with v after facets wo/ v .)

A complex ∆ is vertex decomposable if it is a simplex or
(recursively) has a shedding vertex v such that ∆ \ v and link∆ v
are vertex decomposable.

Vertex decomposable =⇒ Shellable =⇒ seq. Cohen-Macaulay
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Basic notions

A graph G = (V , E ) is a simple graph, with no loops or multiedges.

An independent set in G is a subset of vertices with no edges
between them.
That is, an independent set induces a totally disconnected
subgraph.

The independence complex of a graph G = (V , E ) is the simplicial
complex with:
Vertex set V and
Face set {independent sets of G}.

A complex is flag if it is the independence complex of some graph.

Approach: Examine graph theoretic properties of G and their
consequences for the independence complex.
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Basic notions – dictionary

The closed neighborhood of a vertex v is

N[v ] = {v and all its neighbors}.

Dictionary

Simplicial complexes

link∆v = {F : F ∪ v a face}

Shedding vertex: faces of link∆ v
are not maximal faces of ∆ \ v .

Vertex decomposable:
∆ a simplex or
has a shedding vertex v with
∆ \ v and link∆ v vertex
decomposable.

Graphs (Independence complex)

link: G \ N[v ]

Shedding vertex: independent
sets of G \N[v ] are not maximal
independent sets of G \ v .

Vertex decomposable:
G totally disconnected or
has a shedding vertex v with
G \ v and G \ N[v ] vertex
decomposable.
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Chordal graphs are vertex decomposable

A graph is chordal if it contains no induced cycles of
length > 3.

Equivalently, every cycle of length ≥ 4 has a “chord”.

chord

Theorem: (Francisco and Van Tuyl) If G is a chordal graph, then
the independence complex of G is sequentially Cohen-Macaulay.

Several improvements:

Theorem: (me, Dochtermann-Engström) If G is a chordal graph,
then the independence complex of G is vertex decomposable.

Theorem: (me) If G contains no induced cycles of length other
than 3 or 5, then G is vertex decomposable.

Theorem: (me) If for every independent A in a graph G the
subgraph G \ N[A] has a “simplicial vertex”, then the independence
complex of G is vertex decomposable.
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Chordal graphs are vertex decomposable – sketch

Shedding vertex v : independent sets of G \ N[v ] are not maximal
independent sets of G \ v .

Main fact: If G is chordal, then G has vertex w with N[w ] a
complete subgraph.
Such a w is called a simplicial vertex .

Lemma: If N[w ] ⊆ N[v ], then v is a shedding vertex.

Proof: Augment any independent set in G \ N[v ] by w , giving a
larger independent set in G \ v . �

Corollary: Any neighbor of a simplicial vertex is a shedding vertex.
Hence a chordal graph is vertex decomposable.

To show that every link has simplicial vertex =⇒ vertex dec.,
notice that repeated deletion of neighbors of w leaves w ∪̇G \N[w ].
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Corollary: Any neighbor of a simplicial vertex is a shedding vertex.
Hence a chordal graph is vertex decomposable.

To show that every link has simplicial vertex =⇒ vertex dec.,
notice that repeated deletion of neighbors of w leaves w ∪̇G \N[w ].
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Vertex decomposable graphs – sketch

Shedding vertex v : independent sets of G \ N[v ] are not maximal
independent sets of G \ v .

Theorem: (me) If G contains no induced cycles of length other
than 3 or 5, then G is vertex decomposable.

Sketch: A non-trivial theorem of Chvátal, Rusu, and Sritharan says
that a graph with no cycles ≥ 6 which is not the disjoint union of
complete graphs has a “3-simplicial path”. This is a path of length
3 that does not sit inside any chordless path of length 5.

v

w1

w2

−→

w2

v

w1

The middle vertex v of a 3-simplicial path is a shedding vertex:
An independent set in G \ N[v ] can be augmented by either w1 or
w2, since it can’t neighbor both of them.
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Obstructions to shellability

The cyclic graphs Cn are not shellable or sequentially
Cohen-Macaulay for n 6= 3, 5.

(Consider top skeleta.)

C6 :

56

1

2 3

4
C7:

....
47

2

3

56

1

C7 is Möbius:

3

3

6 2 5 1

1 4 7

Corollary: (me) The obstructions to shellability (minimal
non-shellable complexes) in flag complexes are exactly the
independence complexes of Cn, n 6= 3, 5.
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Graphs → Clutters

Flag complexes can be described in terms of their facets (maximal
faces), or in terms of their minimal non-faces.

The minimal non-faces of a flag complex form a graph.

In the 1st section, we related the graph theoretic properties of the
non-faces of a flag complex to shellability of the complex.

A general simplicial complex can also be described in terms of
minimal non-faces.
The non-faces can be any set system C, with the restriction that
X , Y ∈ C =⇒ X 6⊂ Y .
This is a kind of set system, called a clutter or Sperner system.

Can we relate the clutter-theoretic properties of C to shellability of
its independence complex?
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Chordal clutters

We call a vertex v of a clutter simplicial if for every two edges e1
and e2 containing v , there is an edge e3 ⊆ (e1 ∪ e2) \ v .

Example: 1) Any simplicial vertex in a graph.
2) Any vertex in a matroid (circuit clutter).
3) Any vertex contained in only one edge.

Definition: We call a clutter chordal if the non-face clutter of
every link and induced subcomplex has a simplicial vertex.

Example: 1) Chordal graphs.
2) The circuit clutter of a matroid.
3) “Acyclic” hypergraphs.

Theorem: (me) The independence complex of a chordal clutter is
shellable.
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Chordal clutters

Technique: Define shedding face and k-decomposability in
non-pure complexes,

generalizing Provan-Billera and
Björner-Wachs.

Remark: The independence complexes of chordal clutters form a
large family of shellable complexes where every induced subcomplex
and link are shellable.

This is a beginning to the general obstruction to shellability
problem.

Application: there are 21 obstructions to shellability on 6 vertices
that have every link shellable. (by GAP computation)
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