Cyclic sieving for longest reduced words in the hyperoctahedral group

Luis Serrano University of Michigan

Joint work with Kyle Petersen (DePaul University)

AMS Meeting, Penn State October 24, 2009

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Longest words in the hyperoctahedral group

Hyperoctahedral group: B_n

Generators: $s_0, s_1, \ldots, s_{n-1}$

Relations:
$$\begin{cases} s_i^2 = 1 \\ s_i s_j = s_j s_i \text{ for } |i-j| \ge 2 \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \text{ for } i \ge 1 \\ s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0. \end{cases}$$

Longest element: w_0 , of length $\ell(w_0) = n^2$

 $R(w_0) = \{$ reduced words for $w_0 \}$

Cyclic rotation: $a_1a_2\cdots a_{n^2} \stackrel{\omega}{\mapsto} a_2\cdots a_{n^2}a_1$

Q: What are the sizes of the orbits with respect to this action?

Example: B₃

Orbit of size 9:

 $\stackrel{\omega}{\longrightarrow} \mathbf{0}10212012 \stackrel{\omega}{\longrightarrow} 10212012\mathbf{0} \stackrel{\omega}{\longrightarrow} 021201201 \stackrel{\omega}{\longrightarrow} 212012010$ $\stackrel{\omega}{\longrightarrow} 120120102 \stackrel{\omega}{\longrightarrow} 201201021 \stackrel{\omega}{\longrightarrow} 012010212 \stackrel{\omega}{\longrightarrow} 120102120$ $\stackrel{\omega}{\longrightarrow} 201021201 \stackrel{\omega}{\longrightarrow}$

Orbit of size 3:

 $\stackrel{\omega}{\longrightarrow} \boldsymbol{0}12012012 \stackrel{\omega}{\longrightarrow} 12012012 \boldsymbol{0} \stackrel{\omega}{\longrightarrow} 201201201 \stackrel{\omega}{\longrightarrow}$

- 42 words fixed by 0 rotations,
- ▶ 6 words fixed by 3 rotations (example: 012012012),
- 6 words fixed by 6 rotations,
- 0 words fixed by any other number of rotations (mod 9),

Square Young tableaux

 $SYT(n^n) = \{ \text{Standard Young tableaux of shape } n^n \}$

8 9

Promotion:

6

9

Example: $SYT(3^3)$

Promotion orbit of size 3

	1	2	3		1	2	5]	1	3	4	
$\xrightarrow{\omega}$	4	5	6	$\xrightarrow{\omega}$	3	4	8	$ \xrightarrow{\omega} $	2	6	7	$\xrightarrow{\omega}$
	7	8	9		6	7	9		5	8	9	

- 42 tableaux fixed by 0 promotions,
- 6 tableaux fixed by 3 promotions,
- ▶ 6 tableaux fixed by 6 promotions,
- 0 tableaux fixed by any other number of promotions (mod 9),

Cyclic sieving phenomenon (CSP)

X a set.

 $\mathcal{C}=\langle\omega
angle$ a finite cyclic group acting on X.

 $X(q) \in \mathbb{Z}(q)$ a polynomial in q.

The triple (X, C, X(q)) exhibits CSP if for all $d \ge 0$, the number of elements fixed by ω^d is $X(\zeta^d)$, where ζ is a primitive root of unity of order |C|.

Cyclic sieving in $SYT(n^n)$

Theorem (Rhoades)

The following triple exhibits CSP: $X = SYT(n^{n})$ $\omega = promotion$ $X(q) = \frac{[n^{2}]!_{q}}{\prod_{(i,j)\in(n^{n})} [h_{i,j}]_{q}} (the q-hook polynomial)$

Main theorem

Major index: sum of the positions of the descents

w = 010212012

$$maj(w) = 2 + 4 + 6 = 12$$

Theorem (Petersen - S.) The following triple exhibits CSP:

 $X = R(w_0)$ (the set of reduced words for w_0)

 $\omega = {\it cyclic \ rotation}$

$$X(q) = q^{-n\binom{n}{2}}\sum_{w\in R(w_0)}q^{{\operatorname{\mathsf{maj}}}(w)}$$

Sketch of proof of the main theorem

- Bijection H between $R(w_0)$ and $SYT(n^n)$.
- *H* behaves well with respect to CSP.
 - Cyclic rotation corresponds to promotion.
 - Polynomials are the same.
- CSP follows from Rhoades's theorem.
- Note: The bijection goes through an intermediate object: double staircases.

Shifted double staircases

 $SYT'(2n-1, 2n-3, ..., 1) = \{\text{shifted double staircases}\}$ Promotion:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bijection between longest reduced words and shifted double staircases (Haiman)

Bijection between longest reduced words and shifted double staircases (Haiman)

Bijection between shifted double staircases and square Young tableaux

Theorem (Haiman) The sets $SYT(n^n)$ and SYT'(2n-1, 2n-3, ..., 1) are in bijection.

Example

$$H_2\left(\begin{array}{rrrr}1&2&4\\3&5&6\\\hline7&8&9\end{array}\right) = \begin{array}{rrrr}1&2&4&6&9\\&3&5&8\\\hline7&&7\end{array}$$

Bijection:

▲□ > ▲□ > ▲目 > ▲目 > ■ のへの

Proof of the main theorem

Lemma (Petersen - S.)

 $H_1 \circ H_2$ takes promotion in $SYT(n^n)$ to cyclic rotation in $R(w_0)$.

Lemma (Petersen - S.)

The q-hook polynomial in for (n^n) is $q^{-n\binom{n}{2}}$ times the major index generating function in $R(w_0)$.

$$\frac{[n^2!]_q}{\prod_{(i,j)\in(n^n)}[h_{i,j}]_q} = q^{-n\binom{n}{2}} \sum_{w\in R(w_0)} q^{\operatorname{maj}(w)}.$$

Questions

- Is there an explicit CSP for the set of shifted double staircases?
- Are there similar CSP results for longest words in other Coxeter groups?
- ► Rhoades's Theorem is the type A version of a more general conjecture regarding cominuscule posets. This has been proved for all finite types except B_n and checked [Dilks, Petersen, Stembridge, Yong] for B_n with n ≤ 6.

Thank you

T. Kyle Petersen and Luis Serrano, *Cyclic sieving for longest reduced words in the hyperoctahedral group.* arXiv: 0905.2650.