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Longest words in the hyperoctahedral group

Hyperoctahedral group: Bn

hi

Generators: s0, s1, . . . , sn−1

hi

Relations:


s2
i = 1

si sj = sj si for |i − j | ≥ 2
si si+1 si = si+1 si si+1 for i ≥ 1

s0 s1 s0 s1 = s1 s0 s1 s0.
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hi

Longest element: w0, of length `(w0) = n2

hi
hi

R(w0) = {reduced words for w0}

hi

Cyclic rotation: a1a2 · · · an2
ω7→ a2 · · · an2a1

hi

Q: What are the sizes of the orbits with respect to this action?



Example: B3

Orbit of size 9:

ω−→ 010212012
ω−→ 102120120

ω−→ 021201201
ω−→ 212012010

ω−→ 120120102
ω−→ 201201021

ω−→ 012010212
ω−→ 120102120

ω−→ 201021201
ω−→

Orbit of size 3:

ω−→ 012012012
ω−→ 120120120

ω−→ 201201201
ω−→

I 42 words fixed by 0 rotations,

I 6 words fixed by 3 rotations (example: 012012012),

I 6 words fixed by 6 rotations,

I 0 words fixed by any other number of rotations (mod 9),



Square Young tableaux

SYT (nn) = {Standard Young tableaux of shape nn}

hi

Promotion:

1 2 4
3 5 6
7 8 9

−→
2 4

3 5 6
7 8 9

jdt−→
2 4 6
3 5 9
7 8

−1−→
1 3 5
2 4 8
6 7

−→
1 3 5
2 4 8
6 7 9

So
1 2 4
3 5 6
7 8 9

ω−→
1 3 5
2 4 8
6 7 9

hi



Example: SYT (33)

Promotion orbit of size 3

ω−→
1 2 3
4 5 6
7 8 9

ω−→
1 2 5
3 4 8
6 7 9

ω−→
1 3 4
2 6 7
5 8 9

ω−→

I 42 tableaux fixed by 0 promotions,

I 6 tableaux fixed by 3 promotions,

I 6 tableaux fixed by 6 promotions,

I 0 tableaux fixed by any other number of promotions (mod 9),



Cyclic sieving phenomenon (CSP)

X a set.

hi

C = 〈ω〉 a finite cyclic group acting on X .

hi

X (q) ∈ Z(q) a polynomial in q.

hi

The triple (X ,C ,X (q)) exhibits CSP if for all d ≥ 0, the number
of elements fixed by ωd is X (ζd), where ζ is a primitive root of
unity of order |C |.



Cyclic sieving in SYT (nn)

Theorem (Rhoades)

The following triple exhibits CSP:

hi

X = SYT (nn)

hi

ω = promotion

hi

X (q) =
[n2]!q∏

(i ,j)∈(nn)

[hi ,j ]q
(the q-hook polynomial)

hi

I X (ζ0) = X (1) = 42,

I X (ζ3) = 6,

I X (ζ6) = 6,

I X (ζ i ) = 0 for i 6= 0, 3, or 6 (mod 9).



Main theorem

Major index: sum of the positions of the descents

w = 010212012

maj(w) = 2 + 4 + 6 = 12

Theorem (Petersen - S.)

The following triple exhibits CSP:

X = R(w0) (the set of reduced words for w0)

ω = cyclic rotation

X (q) = q−n(n
2)

∑
w∈R(w0)

qmaj(w)



Sketch of proof of the main theorem

I Bijection H between R(w0) and SYT (nn).
I H behaves well with respect to CSP.

I Cyclic rotation corresponds to promotion.
I Polynomials are the same.

I CSP follows from Rhoades’s theorem.

I Note: The bijection goes through an intermediate object:
double staircases.



Shifted double staircases

SYT ′(2n − 1, 2n − 3, . . . , 1) = {shifted double staircases}
Promotion:

1 2 4 6 9
3 5 8

7
−→

2 4 6 9
3 5 8

7

jdt−→
2 3 4 6 9

5 7 8 −→
1 2 3 5 8

4 6 7
9

So
1 2 4 6 9

3 5 8
7

ω−→
1 2 3 5 8

4 6 7
9



Bijection between longest reduced words
and shifted double staircases (Haiman)

1 2 4 6 9
3 5 8

7

s2

−→
1 2 4 6
3 5 8

7

s1

−→
2 4 6

1 3 5
7

s0

−→
2 4 6
1 5
3

s2

−→

2 4
1 5
3

s1

−→ · · · −→
1

s0

−→−→

Define H1

 1 2 4 6 9
3 5 8

7

 = s0s1s0s2s1s2s0s1s2. (or 010212012)



Bijection between longest reduced words
and shifted double staircases (Haiman)

1 2 4 6 9
3 5 8

7 1
2

3

s2

−→
1 2 4 6
3 5 8

7 1
3

2

s1

−→
2 4 6

1 3 5
7 3

1
2

s0

−→
2 4 6
1 5
3 -3

1
2

s2

−→

2 4
1 5
3 -3

2
1

s1

−→ · · · −→
1 1

-2
-3

s0

−→
-1

-2
-3

−→

Define H1

 1 2 4 6 9
3 5 8

7

 = s0s1s0s2s1s2s0s1s2. (or 010212012)



Bijection between shifted double staircases
and square Young tableaux

Theorem (Haiman)

The sets SYT (nn) and SYT ′(2n− 1, 2n− 3, . . . , 1) are in bijection.

Example

H2

 1 2 4
3 5 6
7 8 9

 =
1 2 4 6 9

3 5 8
7

.

Bijection:

1 2 4
• 3 5 6

7 8 9

jdt−→
• 1 2 4
3 5 6 9

7 8

jdt−→
• 1 2 4 9

3 5 6
7 8

jdt−→
1 2 4 6 9

3 5 8
7



Proof of the main theorem

SYT
H2−→ SYT ′

H1−→ R(w0)

1 2 4
3 5 6
7 8 9

7→
1 2 4 6 9

3 5 8
7

7→ 101212012

Lemma (Petersen - S.)

H1 ◦ H2 takes promotion in SYT (nn) to cyclic rotation in R(w0).

Lemma (Petersen - S.)

The q-hook polynomial in for (nn) is q−n(n
2) times the major index

generating function in R(w0).

[n2!]q∏
(i ,j)∈(nn)[hi ,j ]q

= q−n(n
2)

∑
w∈R(w0)

qmaj(w).



Questions

I Is there an explicit CSP for the set of shifted double
staircases?

I Are there similar CSP results for longest words in other
Coxeter groups?

I Rhoades’s Theorem is the type A version of a more general
conjecture regarding cominuscule posets. This has been
proved for all finite types except Bn and checked [Dilks,
Petersen, Stembridge, Yong] for Bn with n ≤ 6.
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