# Probabilistic Proofs of Hooklength Formulas 

Bruce Sagan<br>Department of Mathematics<br>Michigan State University<br>East Lansing, MI 48824-1027<br>sagan@math.msu.edu<br>www.math.msu.edu/~sagan

October 24, 2009

A hooklength formula involving trees

A probabilistic proof

Generalizations and open questions

## Outline

A hooklength formula involving trees

## A probabilistic proof

Generalizations and open questions

Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set.

Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set. An increasing labeling of $T$ is a bijection $L: T \rightarrow\{1,2, \ldots, n\}$ such that if vertex $v$ has a child $w$ then $L(v)<L(w)$.

Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set. An increasing labeling of $T$ is a bijection $L: T \rightarrow\{1,2, \ldots, n\}$ such that if vertex $v$ has a child $w$ then $L(v)<L(w)$. Let

$$
f^{T}=\text { number of increasing labelings of } T .
$$

Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set. An increasing labeling of $T$ is a bijection $L: T \rightarrow\{1,2, \ldots, n\}$ such that if vertex $v$ has a child $w$ then $L(v)<L(w)$. Let

$$
f^{T}=\text { number of increasing labelings of } T .
$$



Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set. An increasing labeling of $T$ is a bijection $L: T \rightarrow\{1,2, \ldots, n\}$ such that if vertex $v$ has a child $w$ then $L(v)<L(w)$. Let

$$
f^{T}=\text { number of increasing labelings of } T .
$$



Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set. An increasing labeling of $T$ is a bijection $L: T \rightarrow\{1,2, \ldots, n\}$ such that if vertex $v$ has a child $w$ then $L(v)<L(w)$. Let

$$
f^{T}=\text { number of increasing labelings of } T .
$$



The hooklength of a vertex $v$ is
$h_{v}=$ number of descendents of $v$ (including $v$ ).

Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set. An increasing labeling of $T$ is a bijection $L: T \rightarrow\{1,2, \ldots, n\}$ such that if vertex $v$ has a child $w$ then $L(v)<L(w)$. Let

$$
f^{T}=\text { number of increasing labelings of } T .
$$



The hooklength of a vertex $v$ is

$$
h_{v}=\text { number of descendents of } v \text { (including } v \text { ). }
$$

Theorem (Hooklength Formula)
If $T$ has $n$ vertices, then

$$
f^{T}=\frac{n!}{\prod_{v \in T} h_{v}}
$$

Let $T$ be a rooted tree with $n$ distinguishable vertices. We also use $T$ for its vertex set. An increasing labeling of $T$ is a bijection $L: T \rightarrow\{1,2, \ldots, n\}$ such that if vertex $v$ has a child $w$ then $L(v)<L(w)$. Let

$$
f^{T}=\text { number of increasing labelings of } T .
$$



The hooklength of a vertex $v$ is

$$
h_{v}=\text { number of descendents of } v \text { (including } v \text { ). }
$$

Theorem (Hooklength Formula)
If $T$ has $n$ vertices, then

$$
f^{T}=\frac{n!}{\prod_{v \in T} h_{v}}
$$

## History.

1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall),

## History.

1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall), 1.2 shifted Young tableaux (Knuth), and

## History.

1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
1.2 shifted Young tableaux (Knuth), and
1.3 d-complete posets (Proctor).

## History.

1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
1.2 shifted Young tableaux (Knuth), and
1.3 d -complete posets (Proctor).
2. Probabilistic proofs of these formulas were given by
2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),

## History.

1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
1.2 shifted Young tableaux (Knuth), and
1.3 d -complete posets (Proctor).
2. Probabilistic proofs of these formulas were given by
2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
2.2 S (shifted tableaux),

## History.

1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
1.2 shifted Young tableaux (Knuth), and
1.3 d-complete posets (Proctor).
2. Probabilistic proofs of these formulas were given by
2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
2.2 S (shifted tableaux),
2.3 S-Yeh (trees),

## History.

1. There are also hooklength formulas for
1.1 ordinary Young tableaux (Frame-Robinson-Thrall),
1.2 shifted Young tableaux (Knuth), and
1.3 d-complete posets (Proctor).
2. Probabilistic proofs of these formulas were given by
2.1 Greene-Nijenhuis-Wilf (ordinary tableaux),
2.2 S (shifted tableaux),
2.3 S-Yeh (trees),
2.4 Okamura ( $d$-complete).

Let

$$
\mathcal{B}(n)=\text { set of binary trees, } T, \text { on } n \text { vertices. }
$$

Let

$$
\mathcal{B}(n)=\text { set of binary trees, } T \text {, on } n \text { vertices. }
$$

Let

$$
\mathcal{L}(n)=\text { set of all increasing labelings, } L \text {, of trees in } \mathcal{B}(n) .
$$

## Let

$$
\mathcal{B}(n)=\text { set of binary trees, } T \text {, on } n \text { vertices. }
$$

Let

$$
\mathcal{L}(n)=\text { set of all increasing labelings, } L \text {, of trees in } \mathcal{B}(n) \text {. }
$$

## Ex. <br> $\mathcal{B}(3)$



## Let

$$
\mathcal{B}(n)=\text { set of binary trees, } T \text {, on } n \text { vertices. }
$$

Let

$$
\mathcal{L}(n)=\text { set of all increasing labelings, } L \text {, of trees in } \mathcal{B}(n) \text {. }
$$



Let

$$
\mathcal{B}(n)=\text { set of binary trees, } T \text {, on } n \text { vertices. }
$$

Let
$\mathcal{L}(n)=$ set of all increasing labelings, $L$, of trees in $\mathcal{B}(n)$.


Theorem (Han, 2008)
For any $n \geq 0$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{h_{v} 2^{h_{v}-1}}=\frac{1}{n!}
$$

Let

$$
\mathcal{B}(n)=\text { set of binary trees, } T \text {, on } n \text { vertices. }
$$

Let
$\mathcal{L}(n)=$ set of all increasing labelings, $L$, of trees in $\mathcal{B}(n)$.


Theorem (Han, 2008)
For any $n \geq 0$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{h_{v} 2^{h_{v}-1}}=\frac{1}{n!}
$$

Notes.

1. The hooklengths appear as exponents.

Let

$$
\mathcal{B}(n)=\text { set of binary trees, } T \text {, on } n \text { vertices. }
$$

Let
$\mathcal{L}(n)=$ set of all increasing labelings, $L$, of trees in $\mathcal{B}(n)$.


Theorem (Han, 2008)
For any $n \geq 0$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{h_{v} 2^{h_{v}-1}}=\frac{1}{n!}
$$

Notes.

1. The hooklengths appear as exponents.
2. Han's proof is algebraic. Our proof is probabilistic.

## Outline

## A hooklength formula involving trees

A probabilistic proof

## Generalizations and open questions

Theorem (Han, 2008)
For any $n \geq 0$,

Theorem (Han, 2008)
For any $n \geq 0$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{h_{v} 2^{h_{v}-1}}=\frac{1}{n!} .
$$

Proof Multiplying the above equation by $n$ ! and using the Hooklength Formula, it suffices to show

$$
\sum_{T \in \mathcal{B}(n)} f^{T} \prod_{v \in T} \frac{1}{2^{h_{v}-1}}=1 .
$$

Theorem (Han, 2008)
For any $n \geq 0$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{V \in T} \frac{1}{h_{v} 2^{h_{v}-1}}=\frac{1}{n!} .
$$

Proof Multiplying the above equation by $n$ ! and using the Hooklength Formula, it suffices to show

$$
\sum_{T \in \mathcal{B}(n)} f^{T} \prod_{v \in T} \frac{1}{2^{h_{v}-1}}=1 .
$$

So it suffices to find an algorithm generating each $L \in \mathcal{L}(n)$ such that
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and

Theorem (Han, 2008)
For any $n \geq 0$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{V \in T} \frac{1}{h_{v} 2^{h_{v}-1}}=\frac{1}{n!} .
$$

Proof Multiplying the above equation by $n$ ! and using the Hooklength Formula, it suffices to show

$$
\sum_{T \in \mathcal{B}(n)} f^{T} \prod_{v \in T} \frac{1}{2^{h_{v}-1}}=1 .
$$

So it suffices to find an algorithm generating each $L \in \mathcal{L}(n)$ such that
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :
$d_{w}=$ length of the unique root-to- $w$ path.
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to- } w \text { path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1.
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :
$d_{w}=$ length of the unique root-to- $w$ path.

Algorithm. (a) Let $L$ consist of a root labeled 1.
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to- } w \text { path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1.
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to- } w \text { path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1.
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :
$d_{w}=$ length of the unique root-to-w path.

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$
L: 1
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to-w path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$
L: 1
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to-w path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$
L: $\quad \stackrel{1}{\frac{1}{2}} 0^{\circ}{ }^{\circ}{ }^{\circ} \circ \frac{1}{2}$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to-w path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$

prob $L=1$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to-w path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$

$\operatorname{prob} L=1$
$\frac{1}{2}$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to- } w \text { path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$

$\frac{1}{2}$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to- } w \text { path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$

$\operatorname{prob} L=1$
$\frac{1}{2}$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to- } w \text { path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$

prob $L=1$

(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to- } w \text { path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$

$\operatorname{prob} L=1$

(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$, and
(II) $\sum_{L \in \mathcal{L}(n)} \operatorname{prob} L=1$.

For $w \in T$, consider the depth of $w$ :

$$
d_{w}=\text { length of the unique root-to-w path. }
$$

Algorithm. (a) Let $L$ consist of a root labeled 1 .
(b) While $|L|<n$, pick a leaf $w$ to be added to $L$ with label
$|L|+1$ and prob $w=1 / 2^{d_{w}}$.
(c) Output $L$.

Ex. $n=3$

$\operatorname{prob} L=1$

$\frac{1}{2^{2}}=$

(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$.
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$.

Proof Let $w$ be the node labeled $n$ in $L$ and let $L^{\prime}=L-w$.

(I) prob $L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$.

Proof Let $w$ be the node labeled $n$ in $L$ and let $L^{\prime}=L-w$.


The hooklengths in $L$ and $L^{\prime}$ are related by

$$
h_{v}= \begin{cases}h_{v}^{\prime}+1 & \text { if } v \text { is on the unique root-to- } w \text { path } P \\ h_{v}^{\prime} & \text { else. }\end{cases}
$$

(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$.

Proof Let $w$ be the node labeled $n$ in $L$ and let $L^{\prime}=L-w$.


The hooklengths in $L$ and $L^{\prime}$ are related by

$$
h_{v}= \begin{cases}h_{v}^{\prime}+1 & \text { if } v \text { is on the unique root-to- } w \text { path } P \\ h_{v}^{\prime} & \text { else }\end{cases}
$$

Note that there are $d_{w}$ vertices on $P \cap L^{\prime}$.
(I) prob $L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$.

Proof Let $w$ be the node labeled $n$ in $L$ and let $L^{\prime}=L-w$.


The hooklengths in $L$ and $L^{\prime}$ are related by

$$
h_{v}= \begin{cases}h_{v}^{\prime}+1 & \text { if } v \text { is on the unique root-to- } w \text { path } P \\ h_{v}^{\prime} & \text { else. }\end{cases}
$$

Note that there are $d_{w}$ vertices on $P \cap L^{\prime}$. So
$\operatorname{prob} L=\operatorname{prob} w \cdot \operatorname{prob} L^{\prime}$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$.

Proof Let $w$ be the node labeled $n$ in $L$ and let $L^{\prime}=L-w$.


The hooklengths in $L$ and $L^{\prime}$ are related by

$$
h_{v}= \begin{cases}h_{v}^{\prime}+1 & \text { if } v \text { is on the unique root-to- } w \text { path } P \\ h_{v}^{\prime} & \text { else }\end{cases}
$$

Note that there are $d_{w}$ vertices on $P \cap L^{\prime}$. So
$\operatorname{prob} L=\operatorname{prob} w \cdot \operatorname{prob} L^{\prime}=\frac{1}{2^{d_{w}}} \prod_{v \in L^{\prime}} \frac{1}{2^{h_{v}^{\prime}-1}}$
(I) $\operatorname{prob} L=\prod_{v \in T} 1 / 2^{h_{v}-1}$ if $L$ labels $T$.

Proof Let $w$ be the node labeled $n$ in $L$ and let $L^{\prime}=L-w$.


The hooklengths in $L$ and $L^{\prime}$ are related by

$$
h_{v}= \begin{cases}h_{v}^{\prime}+1 & \text { if } v \text { is on the unique root-to- } w \text { path } P \\ h_{v}^{\prime} & \text { else }\end{cases}
$$

Note that there are $d_{w}$ vertices on $P \cap L^{\prime}$. So
$\operatorname{prob} L=\operatorname{prob} w \cdot \operatorname{prob} L^{\prime}=\frac{1}{2^{d_{w}}} \prod_{v \in L^{\prime}} \frac{1}{2^{h_{v}^{\prime}-1}}=\prod_{v \in L} \frac{1}{2^{h_{v}-1}}$.

## Outline

## A hooklength formula involving trees

## A probabilistic proof

Generalizations and open questions
(a) Yang generalized Han's formula to weighted ordered trees and a similar probabilistic proof works.
(a) Yang generalized Han's formula to weighted ordered trees and a similar probabilistic proof works. Let
$\mathcal{O}(n)=$ set of ordered trees on $n$ vertices.
(a) Yang generalized Han's formula to weighted ordered trees and a similar probabilistic proof works. Let
$\mathcal{O}(n)=$ set of ordered trees on $n$ vertices.
If $m$ is a variable and $c_{V}$ is the number of children of $v$ in $T$, let

$$
\mathrm{wt}(T)=\prod_{v \in T}\binom{m}{c_{v}}
$$

(a) Yang generalized Han's formula to weighted ordered trees and a similar probabilistic proof works. Let

$$
\mathcal{O}(n)=\text { set of ordered trees on } n \text { vertices. }
$$

If $m$ is a variable and $c_{v}$ is the number of children of $v$ in $T$, let

$$
\mathrm{wt}(T)=\prod_{v \in T}\binom{m}{c_{v}} .
$$

Theorem (Yang, 2008)
For any $n$

$$
\sum_{T \in \mathcal{O}(n)} \operatorname{wt}(T) \prod_{v \in T} \frac{1}{h_{v} m^{h_{v}-1}}=\frac{1}{n!} .
$$

(a) Yang generalized Han's formula to weighted ordered trees and a similar probabilistic proof works. Let

$$
\mathcal{O}(n)=\text { set of ordered trees on } n \text { vertices. }
$$

If $m$ is a variable and $c_{v}$ is the number of children of $v$ in $T$, let

$$
\mathrm{wt}(T)=\prod_{v \in T}\binom{m}{c_{v}} .
$$

Theorem (Yang, 2008)
For any $n$

$$
\sum_{T \in \mathcal{O}(n)} \operatorname{wt}(T) \prod_{v \in T} \frac{1}{h_{v} m^{h_{v}-1}}=\frac{1}{n!} .
$$



Note that if $m=2$ then

$$
\binom{m}{c_{v}}=\binom{2}{c_{v}}=\text { \# of ways to make the children of } v \text { binary. }
$$

(a) Yang generalized Han's formula to weighted ordered trees and a similar probabilistic proof works. Let

$$
\mathcal{O}(n)=\text { set of ordered trees on } n \text { vertices. }
$$

If $m$ is a variable and $c_{v}$ is the number of children of $v$ in $T$, let

$$
\mathrm{wt}(T)=\prod_{v \in T}\binom{m}{c_{v}} .
$$

Theorem (Yang, 2008)
For any $n$

$$
\sum_{T \in \mathcal{O}(n)} \operatorname{wt}(T) \prod_{v \in T} \frac{1}{h_{v} m^{h_{v}-1}}=\frac{1}{n!} .
$$

Note that if $m=2$ then

$$
\binom{m}{c_{v}}=\binom{2}{c_{v}}=\text { \# of ways to make the children of } v \text { binary. }
$$

So wt $(T)$ becomes the number of ways to make $T$ binary and Yang's result implies Han's.
(b) One can also generalize Han's formula and the probabilitic proof by considering $n$-vertex subtrees of a given infinite tree.
(b) One can also generalize Han's formula and the probabilitic proof by considering $n$-vertex subtrees of a given infinite tree.
(c) With Carla Savage, we are considering probabilistic proofs of $q$-hooklength formulas of Björner and Wachs and $q, t$-analogues of Novelli and Thibon.
(b) One can also generalize Han's formula and the probabilitic proof by considering $n$-vertex subtrees of a given infinite tree. (c) With Carla Savage, we are considering probabilistic proofs of $q$-hooklength formulas of Björner and Wachs and $q, t$-analogues of Novelli and Thibon.
(d) Han also proved the following result.

Theorem (Han, 2008)
For any $n$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{\left(2 h_{v}+1\right) 2^{2 h_{v}-1}}=\frac{1}{(2 n+1)!}
$$

(b) One can also generalize Han's formula and the probabilitic proof by considering $n$-vertex subtrees of a given infinite tree.
(c) With Carla Savage, we are considering probabilistic proofs of $q$-hooklength formulas of Björner and Wachs and $q, t$-analogues of Novelli and Thibon.
(d) Han also proved the following result.

Theorem (Han, 2008)
For any $n$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{\left(2 h_{v}+1\right) 2^{2 h_{v}-1}}=\frac{1}{(2 n+1)!}
$$

Is there a probabilistic proof?
(b) One can also generalize Han's formula and the probabilitic proof by considering $n$-vertex subtrees of a given infinite tree.
(c) With Carla Savage, we are considering probabilistic proofs of $q$-hooklength formulas of Björner and Wachs and $q, t$-analogues of Novelli and Thibon.
(d) Han also proved the following result.

Theorem (Han, 2008)
For any $n$,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{\left(2 h_{v}+1\right) 2^{2 h_{v}-1}}=\frac{1}{(2 n+1)!} .
$$

Is there a probabilistic proof? Note that if $\hat{T}$ is the completion of $T$, i.e., $T$ with all possible leaves added, then

$$
f^{\tau}=\frac{(2 n+1)!}{\prod_{v \in T}\left(2 h_{v}+1\right)} .
$$

(b) One can also generalize Han's formula and the probabilitic proof by considering $n$-vertex subtrees of a given infinite tree.
(c) With Carla Savage, we are considering probabilistic proofs of $q$-hooklength formulas of Björner and Wachs and $q, t$-analogues of Novelli and Thibon.
(d) Han also proved the following result.

Theorem (Han, 2008)
For any n,

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{\left(2 h_{v}+1\right) 2^{2 h_{v}-1}}=\frac{1}{(2 n+1)!} .
$$

Is there a probabilistic proof? Note that if $\hat{T}$ is the completion of $T$, i.e., $T$ with all possible leaves added, then

$$
f^{\mathcal{T}}=\frac{(2 n+1)!}{\prod_{v \in T}\left(2 h_{v}+1\right)} .
$$

(e) What is the analogue for tableaux of Han's formulas?

