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Inequalities for Symmetric Polynomials

Inequalities for Averages and Means

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY:

x1 + x2 + · · ·+ xn
n ≥ (x1x2 · · · xn)1/n ∀x ≥ 0.

NEWTON’S INEQUALITIES:

ek(x)
ek(1)

ek(x)
ek(1)

≥ ek−1(x)
ek−1(1)

ek+1(x)
ek+1(1)

∀x ≥ 0

MUIRHEAD’S INEQUALITIES: If |λ| = |µ|, then

mλ(x)
mλ(1)

≥ mµ(x)
mµ(1)

∀x ≥ 0 iff λ � µ (majorization).
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Inequalities for Averages and Means

Other examples: different degrees

MACLAURIN’S INEQUALITIES:( ej(x)
ej(1)

)1/j ≥ ( ek(x)
ek(1)

)1/k
if j ≤ k , x ≥ 0

SCHLÖMILCH’S (POWER SUM) INEQUALITIES:(pj(x)
n
)1/j ≤ (pk(x)

n
)1/k

if j ≤ k , x ≥ 0
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Inequalities for Averages and Means

Some results

I Muirhead-like theorems (and conjectures) for all of the
classical families.

I A single “master theorem” that includes many of these.

I Proofs based on a new (and potentially interesting) kind of
“positivity”.
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Inequalities for Averages and Means

Definitions

We consider two kinds of “averages”:

I Term averages:

F (x) =
1

f (1)
f (x),

assuming f has nonnegative integer coefficients. And also

I Means:

F(x) =

(
1

f (1)
f (x)

)1/d

where f is homogeneous of degree d .

Example:

Ek(x) =
1(n
k

)ek(x) Ek(x) = (Ek(x))1/k
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Inequalities for Averages and Means

Muirhead-like Inequalities:

ELEMENTARY: Eλ(x) ≥ Eµ(x), x ≥ 0 ⇐⇒ λ � µ.

POWER SUM: Pλ(x) ≤ Pµ(x), x ≥ 0 ⇐⇒ λ � µ.

HOMOGENEOUS: Hλ(x) ≤ Hµ(x), x ≥ 0 ⇐= λ � µ.

SCHUR: Sλ(x) ≤ Sµ(x), x ≥ 0 =⇒ λ � µ.

CONJECTURE: the last two implications are ⇐⇒.

Reference: Cuttler,Greene, Skandera
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Inequalities for Averages and Means

The Majorization Poset P7

(Governs term-average inequalities for Eλ,Pλ,Hλ, Sλ and Mλ.)
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Normalized Majorization

Majorization vs. Normalized Majorization

MAJORIZATION: λ � µ iff λ1 + · · ·λi ≤ µ1 + · · ·µi ∀i

MAJORIZATION POSET: (Pn,�) on partitions λ ` n.

NORMALIZED MAJORIZATION: λ v µ iff λ
|λ| �

µ
|µ| .

NORMALIZED MAJORIZATION POSET: Define P∗ =
⋃

n Pn.
Then (P∗,v) = quotient of (P∗,v) (a preorder) under the
relation α ∼ β if α v β and β v α.

NOTES:

I (P∗,v) is a lattice, but is not locally finite. (P≤n,v) is not a
lattice.

I (Pn,�) embeds in (P∗,v) as a sublattice and in (P≤n,v) as
a subposet.
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Normalized Majorization

P≤n ←→ partitions λ with |λ| ≤ n whose parts are relatively
prime.

Figure: (P≤6,v) with an embedding of (P6,�) shown in blue.
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Normalized Majorization

Muirhead-like Inequalities for Means

ELEMENTARY: Eλ(x) ≥ Eµ(x), x ≥ 0 ⇐⇒ λ v µ.

POWER SUM: Pλ(x) ≤ Pµ(x), x ≥ 0 ⇐⇒ λ v µ.

HOMOGENEOUS: Hλ(x) ≤ Hµ(x), x ≥ 0 ⇐= λ v µ.

CONJECTURE: the last implication is ⇐⇒.

What about inequalities for Schur means Sλ? We have no idea.

What about inequalities for monomial means Mλ? We know a lot.
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Master Theorem: Double Majorization

A “Master Theorem” for Monomial Means

THEOREM/CONJECTURE: Mλ(x) ≤Mµ(x)iff λ E µ.
where λ E µ is the double majorization order (to be defined
shortly).

Generalizes Muirhead’s inequality; allows comparison of symmetric
polynomials of different degrees.
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Master Theorem: Double Majorization

The double (normalized) majorization order

DEFINITION: λ E µ iff λ v µ and λ>w µ>,

EQUIVALENTLY: λ E µ iff λ
|λ| �

µ
|µ| and λ>

|λ| �
µ>

|µ| .

DEFINITION: DP∗ = (P∗, E )

NOTES:

I The conditions λ v µ and λ>w µ> are not equivalent.
Example: λ = {2, 2}, µ = {2, 1}.

I If λ E µ and µ E λ, then λ = µ; hence DP∗ is a partial order.

I DP∗ is self-dual and locally finite, but is not locally ranked,
and is not a lattice.

I For all n, (Pn,�) embeds isomorphically in DP∗ as a
subposet.
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Master Theorem: Double Majorization

DP≤5

Figure: Double majorization poset DP≤5 with vertical embeddings of
Pn, n = 1, 2, . . . , 5. (Governs inequalities for Mλ.)
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Master Theorem: Double Majorization

DP≤6

Figure: Double majorization poset DP≤6 with an embedding of P6

shown in blue.
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Master Theorem: Double Majorization

Much of the conjecture has been proved:

“MASTER THEOREM”: λ, µ any partitions

Mλ ≤Mµ if and only if λ E µ, i.e., λ
|λ| �

µ
|µ| and λ>

|λ| �
µ>

|µ| .

PROVED:

I The “only if” part.

I For all λ, µ with |λ| ≤ |µ|.
I For λ, µ with |λ|, |µ| ≤ 6 (DP≤6).

I For many other special cases.
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Master Theorem: Double Majorization

Interesting question

The Master Theorem/Conjecture combined with our other results
about Pλ and Eλ imply the following statement:

Mλ(x) ≤Mµ(x)⇔ Eλ>(x) ≤ Eµ>(x) and Pλ(x) ≤ Pµ(x).

Is there a non-combinatorial (e.g., algebraic) proof of this?
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Y-Positivity

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an
argument of the following type:

Assuming that F (x) and G (x) are symmetric polynomials, let F (y)
and G (y) be obtained from F (x) and G (x) by making the
substitution

xi = yi + yi+1 + · · · yn, i = 1, . . . , n.

Then F (y)− G (y) is a polynomial in y with nonnegative
coefficients. Hence F (x) ≥ G (x) for all x ≥ 0.

We call this phenomenon y-positivity – or maybe it should be
“why-positivity”. . . .
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Y-Positivity

Example: AGM Inequality

In[1]:= n = 4;

LHS = HSum@x@iD, 8i, n<D � nL^n
RHS = Product@x@iD, 8i, n<D

Out[2]=
1

256
Hx@1D + x@2D + x@3D + x@4DL4

Out[3]= x@1D x@2D x@3D x@4D

In[4]:= LHS - RHS �. Table@x@iD ® Sum@y@jD, 8j, i, n<D, 8i, n<D

Out[4]= -y@4D Hy@3D + y@4DL Hy@2D + y@3D + y@4DL Hy@1D + y@2D + y@3D + y@4DL +

1

256
Hy@1D + 2 y@2D + 3 y@3D + 4 y@4DL4

In[5]:= % �� Expand

Out[5]=
y@1D4

256
+

1

32
y@1D3 y@2D +

3

32
y@1D2 y@2D2

+

1

8
y@1D y@2D3

+

y@2D4

16
+

3

64
y@1D3 y@3D +

9

32
y@1D2 y@2D y@3D +

9

16
y@1D y@2D2 y@3D +

3

8
y@2D3 y@3D +

27

128
y@1D2 y@3D2

+

27

32
y@1D y@2D y@3D2

+

27

32
y@2D2 y@3D2

+

27

64
y@1D y@3D3

+

27

32
y@2D y@3D3

+

81 y@3D4

256
+

1

16
y@1D3 y@4D +

3

8
y@1D2 y@2D y@4D +

3

4
y@1D y@2D2 y@4D +

1

2
y@2D3 y@4D +

9

16
y@1D2 y@3D y@4D +

5

4
y@1D y@2D y@3D y@4D +

5

4
y@2D2 y@3D y@4D +

11

16
y@1D y@3D2 y@4D +

11

8
y@2D y@3D2 y@4D +

11

16
y@3D3 y@4D +

3

8
y@1D2 y@4D2

+

1

2
y@1D y@2D y@4D2

+

1

2
y@2D2 y@4D2

+

1

4
y@1D y@3D y@4D2

+

1

2
y@2D y@3D y@4D2

+

3

8
y@3D2 y@4D2
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Y-Positivity

Y-Positivity Conjecture for Schur Functions

If |λ| = |µ| and λ � µ, then

sλ(x)

sλ(1)
− sµ(x)

sµ(1)

∣∣∣∣ xi → yi + · · · yn

is a polynomial in y with nonnegative coefficients.

Proved for |λ| ≤ 9 and all n. (CG + Renggyi (Emily) Xu)
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Symmetric Functions of Degree 3

”Ultimate” Problem: Classify all homogeneous symmetric
function inequalities.
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Symmetric Functions of Degree 3

More Modest Problem: Classify all homogeneous
symmetric function inequalities of degree 3.
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Symmetric Functions of Degree 3

This has long been recognized as an important question.
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Symmetric Functions of Degree 3

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric f (x) such that f (x) ≥ 0 for all
x ≥ 0. Such f ’s will be called nonnegative.

I If f is homogeneous of degree 3 then
f (x) = αm3(x) + βm21(x) + γm111(x), where the m’s are
monomial symmetric functions.

I Suppose that f (x) has n variables. Then the correspondence
f ←→ (α, β, γ) parameterizes the set of nonnegative f ’s by a
cone in R3 with n extreme rays.

This is not obvious.

I We call it the positivity cone Pn,3. (Structure depends on n.)
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Symmetric Functions of Degree 3

Example:

For example, if n = 3, there are three extreme rays, spanned by

f1(x) = m21(x)− 6m111(x)

f2(x) = m111(x)

f3(x) = m3(x)−m21(x) + 3m111(x).

If f is cubic, nonnegative, and symmetric in variables
x = (x1, x2, x3) then f may be expressed as a nonnegative linear
combination of these three functions.
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Symmetric Functions of Degree 3

Example:

If n = 25, the cone looks like this:

cH111L

cH3L

cH21L
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Symmetric Functions of Degree 3

Main Result:
Theorem: If x = (x1, x2, . . . , xn), and f (x) is a symmetric function
of degree 3, then f (x) is nonnegative if and only if f (1n

k) ≥ 0 for
k = 1, . . . , n, where 1n

k = (1, . . . , 1, 0, . . . , 0), with k ones and
(n − k) zeros.

Example: If x = (x1, x2, x3) and
f (x) = m3(x)−m21(x) + 3m111(x), then

f (1, 0, 0) = 1

f (1, 1, 0) = 2− 2 = 0

f (1, 1, 1) = 3− 6 + 3 = 0

NOTES:

I The inequality f (x) ≥ 0 is known as Schur’s Inequality (HLP).

I The statement analogous to the above theorem for degree
d > 3 is false.
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Symmetric Functions of Degree 3

Application: A positive function that is not y-positive

Again take f (x) = m3(x)−m21(x) + 3m111(x), but with n = 5
variables.

Then f (1, 0, 0, 0, 0) = 1, f (1, 1, 0, 0, 0) = 0, f (1, 1, 1, 0, 0) = 0,
f (1, 1, 1, 1, 0) = 4, f (1, 1, 1, 1, 1) = 15. Hence, by the Theorem,
f (x) ≥ 0 for all x ≥ 0.

However, y-substitution give f (y) =

Out[12]= y@1D3
+ 2 y@1D2 y@2D + y@1D2 y@3D + y@1D y@2D y@3D + y@2D2 y@3D + 2 y@1D y@2D y@4D +

2 y@2D2 y@4D + 4 y@1D y@3D y@4D + 8 y@2D y@3D y@4D + 6 y@3D2 y@4D + 3 y@1D y@4D2
+ 6 y@2D y@4D2

+

9 y@3D y@4D2
+ 4 y@4D3

- y@1D2 y@5D + 3 y@1D y@2D y@5D + 3 y@2D2 y@5D + 8 y@1D y@3D y@5D +

16 y@2D y@3D y@5D + 12 y@3D2 y@5D + 13 y@1D y@4D y@5D + 26 y@2D y@4D y@5D + 39 y@3D y@4D y@5D +

26 y@4D2 y@5D + 9 y@1D y@5D2
+ 18 y@2D y@5D2

+ 27 y@3D y@5D2
+ 36 y@4D y@5D2

+ 15 y@5D3

which has exactly one negative coefficient, −y [1]2y [5].
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Application: A positive function that is not y-positive

Again take f (x) = m3(x)−m21(x) + 3m111(x), but with n = 5
variables.

Then f (1, 0, 0, 0, 0) = 1, f (1, 1, 0, 0, 0) = 0, f (1, 1, 1, 0, 0) = 0,
f (1, 1, 1, 1, 0) = 4, f (1, 1, 1, 1, 1) = 15. Hence, by the Theorem,
f (x) ≥ 0 for all x ≥ 0.

However, y-substitution give f (y) =

Out[12]= y@1D3
+ 2 y@1D2 y@2D + y@1D2 y@3D + y@1D y@2D y@3D + y@2D2 y@3D + 2 y@1D y@2D y@4D +

2 y@2D2 y@4D + 4 y@1D y@3D y@4D + 8 y@2D y@3D y@4D + 6 y@3D2 y@4D + 3 y@1D y@4D2
+ 6 y@2D y@4D2

+

9 y@3D y@4D2
+ 4 y@4D3

- y@1D2 y@5D + 3 y@1D y@2D y@5D + 3 y@2D2 y@5D + 8 y@1D y@3D y@5D +

16 y@2D y@3D y@5D + 12 y@3D2 y@5D + 13 y@1D y@4D y@5D + 26 y@2D y@4D y@5D + 39 y@3D y@4D y@5D +

26 y@4D2 y@5D + 9 y@1D y@5D2
+ 18 y@2D y@5D2

+ 27 y@3D y@5D2
+ 36 y@4D y@5D2

+ 15 y@5D3

which has exactly one negative coefficient, −y [1]2y [5].
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Reference:

I “Inequalities for Symmetric Functions of Degree 3”, with
Jeffrey Kroll, Jonathan Lima, Mark Skandera, and Rengyi Xu
(to appear).

Available on request, or at www.haverford.edu/math/cgreene.
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