Inequalities for Symmetric Polynomials

Curtis Greene

October 24, 2009

This talk is based on

- "Inequalities for Symmetric Means", with Allison Cuttler, Mark Skandera (to appear in European Jour. Combinatorics).
- "Inequalities for Symmetric Functions of Degree 3", with Jeffrey Kroll, Jonathan Lima, Mark Skandera, and Rengyi Xu (to appear).
- Other work in progress.

Available on request, or at www.haverford.edu/math/cgreene.

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY:

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \quad \forall \mathbf{x} \geq 0 .
$$

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY:

$\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \quad \forall \mathbf{x} \geq 0$.
NEWTON'S INEQUALITIES:

$$
\frac{e_{k}(\mathbf{x})}{e_{k}(\mathbf{1})} \frac{e_{k}(\mathbf{x})}{e_{k}(\mathbf{1})} \geq \frac{e_{k-1}(\mathbf{x})}{e_{k-1}(\mathbf{1})} \frac{e_{k+1}(\mathbf{x})}{e_{k+1}(\mathbf{1})} \quad \forall \mathbf{x} \geq 0
$$

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY:
$\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \quad \forall \mathbf{x} \geq 0$.
NEWTON'S INEQUALITIES:
$\frac{e_{k}(\mathbf{x})}{e_{k}(\mathbf{1})} \frac{e_{k}(\mathbf{x})}{e_{k}(\mathbf{1})} \geq \frac{e_{k-1}(\mathbf{x})}{e_{k-1}(\mathbf{1})} \frac{e_{k+1}(\mathbf{x})}{e_{k+1}(\mathbf{1})} \quad \forall \mathbf{x} \geq 0$
MUIRHEAD'S INEQUALITIES: If $|\lambda|=|\mu|$, then

$$
\frac{m_{\lambda}(\mathbf{x})}{m_{\lambda}(\mathbf{1})} \geq \frac{m_{\mu}(\mathbf{x})}{m_{\mu}(\mathbf{1})} \quad \forall \mathbf{x} \geq 0 \quad \text { iff } \lambda \succeq \mu \quad \text { (majorization) } .
$$

Other examples: different degrees

MACLAURIN'S INEQUALITIES:
$\left(\frac{e_{j}(\mathbf{x})}{e_{j}(\mathbf{1})}\right)^{1 / j} \geq\left(\frac{e_{k}(\mathbf{x})}{e_{k}(\mathbf{1})}\right)^{1 / k} \quad$ if $j \leq k, \mathbf{x} \geq 0$

SCHLÖMILCH'S (POWER SUM) INEQUALITIES:
$\left(\frac{p_{j}(\mathbf{x})}{n}\right)^{1 / j} \leq\left(\frac{p_{k}(\mathbf{x})}{n}\right)^{1 / k} \quad$ if $j \leq k, \mathbf{x} \geq 0$

Some results

- Muirhead-like theorems (and conjectures) for all of the classical families.
- A single "master theorem" that includes many of these.
- Proofs based on a new (and potentially interesting) kind of "positivity".

Definitions

We consider two kinds of "averages":

- Term averages:

$$
F(\mathbf{x})=\frac{1}{f(\mathbf{1})} f(\mathbf{x})
$$

assuming f has nonnegative integer coefficients. And also

- Means:

$$
\mathfrak{F}(\mathbf{x})=\left(\frac{1}{f(\mathbf{1})} f(\mathbf{x})\right)^{1 / d}
$$

where f is homogeneous of degree d.

Definitions

We consider two kinds of "averages":

- Term averages:

$$
F(\mathbf{x})=\frac{1}{f(\mathbf{1})} f(\mathbf{x})
$$

assuming f has nonnegative integer coefficients. And also

- Means:

$$
\mathfrak{F}(\mathbf{x})=\left(\frac{1}{f(\mathbf{1})} f(\mathbf{x})\right)^{1 / d}
$$

where f is homogeneous of degree d.
Example:

$$
E_{k}(\mathbf{x})=\frac{1}{\binom{n}{k}} e_{k}(\mathbf{x}) \quad \mathfrak{E}_{k}(\mathbf{x})=\left(E_{k}(\mathbf{x})\right)^{1 / k}
$$

Muirhead-like Inequalities:

ELEMENTARY: $E_{\lambda}(\mathbf{x}) \geq E_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftrightarrow \lambda \preceq \mu$.
POWER SUM: $P_{\lambda}(\mathbf{x}) \leq P_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \quad \Longleftrightarrow \quad \lambda \preceq \mu$.
HOMOGENEOUS: $H_{\lambda}(\mathbf{x}) \leq H_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftarrow \lambda \preceq \mu$.
SCHUR: $S_{\lambda}(\mathbf{x}) \leq S_{\mu}(\mathbf{x}), \quad \mathbf{x} \geq 0 \Longrightarrow \lambda \preceq \mu$.

Muirhead-like Inequalities:

ELEMENTARY: $E_{\lambda}(\mathbf{x}) \geq E_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftrightarrow \lambda \preceq \mu$.
POWER SUM: $P_{\lambda}(\mathbf{x}) \leq P_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftrightarrow \lambda \preceq \mu$.
HOMOGENEOUS: $H_{\lambda}(\mathbf{x}) \leq H_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftarrow \lambda \preceq \mu$.
SCHUR: $S_{\lambda}(\mathbf{x}) \leq S_{\mu}(\mathbf{x}), \quad \mathbf{x} \geq 0 \quad \Longrightarrow \quad \lambda \preceq \mu$.
CONJECTURE: the last two implications are \Longleftrightarrow.
Reference: Cuttler,Greene, Skandera

The Majorization Poset \mathcal{P}_{7}

(Governs term-average inequalities for $E_{\lambda}, P_{\lambda}, H_{\lambda}, S_{\lambda}$ and M_{λ}.)

Majorization vs. Normalized Majorization MAJORIZATION: $\lambda \preceq \mu$ iff $\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \forall i$ MAJORIZATION POSET: $\left(\mathcal{P}_{n}, \preceq\right)$ on partitions $\lambda \vdash n$. NORMALIZED MAJORIZATION: $\lambda \sqsubseteq \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$. NORMALIZED MAJORIZATION POSET: Define $\mathcal{P}_{*}=\bigcup_{n} \mathcal{P}_{n}$. Then $\left(\overline{\mathcal{P}}_{*}, \sqsubseteq\right)=$ quotient of $\left(\mathcal{P}_{*}, \sqsubseteq\right)$ (a preorder) under the relation $\alpha \sim \beta$ if $\alpha \sqsubseteq \beta$ and $\beta \sqsubseteq \alpha$.

Majorization vs. Normalized Majorization

MAJORIZATION: $\lambda \preceq \mu$ iff $\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \forall i$
MAJORIZATION POSET: $\left(\mathcal{P}_{n}, \preceq\right)$ on partitions $\lambda \vdash n$.
NORMALIZED MAJORIZATION: $\lambda \sqsubseteq \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$.
NORMALIZED MAJORIZATION POSET: Define $\mathcal{P}_{*}=\bigcup_{n} \mathcal{P}_{n}$.
Then $\left(\overline{\mathcal{P}}_{*}, \sqsubseteq\right)=$ quotient of $\left(\mathcal{P}_{*}, \sqsubseteq\right)$ (a preorder) under the relation $\alpha \sim \beta$ if $\alpha \sqsubseteq \beta$ and $\beta \sqsubseteq \alpha$.
NOTES:

- $\left(\overline{\mathcal{P}}_{*}, \sqsubseteq\right)$ is a lattice, but is not locally finite. $\left(\overline{\mathcal{P}}_{\leq n}, \sqsubseteq\right)$ is not a lattice.
- $\left(\mathcal{P}_{n}, \preceq\right)$ embeds in $\left(\overline{\mathcal{P}}_{*}, \sqsubseteq\right)$ as a sublattice and in $\left(\overline{\mathcal{P}}_{\leq n}, \sqsubseteq\right)$ as a subposet.
$\overline{\mathcal{P}}_{\leq n} \longleftrightarrow$ partitions λ with $|\lambda| \leq n$ whose parts are relatively prime.

Figure: $\left(\overline{\mathcal{P}}_{\leq 6}, \sqsubseteq\right)$ with an embedding of $\left(\mathcal{P}_{6}, \preceq\right)$ shown in blue.

Muirhead-like Inequalities for Means

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \quad \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftarrow \lambda \sqsubseteq \mu$.

CONJECTURE: the last implication is

Muirhead-like Inequalities for Means

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \quad \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftarrow \lambda \sqsubseteq \mu$.

CONJECTURE: the last implication is \Longleftrightarrow.

What about inequalities for Schur means \mathfrak{S}_{λ} ?

Muirhead-like Inequalities for Means

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \quad \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \quad \Longleftrightarrow \quad \lambda \sqsubseteq \mu$.
HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftarrow \lambda \sqsubseteq \mu$.

CONJECTURE: the last implication is
What about inequalities for Schur means \mathfrak{S}_{λ} ? We have no idea.

Muirhead-like Inequalities for Means

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \quad \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftarrow \lambda \sqsubseteq \mu$.

CONJECTURE: the last implication is \Longleftrightarrow.

What about inequalities for Schur means \mathfrak{S}_{λ} ? We have no idea.
What about inequalities for monomial means \mathfrak{M}_{λ} ?

Muirhead-like Inequalities for Means

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \quad \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftrightarrow \lambda \sqsubseteq \mu$.
HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \mathbf{x} \geq 0 \Longleftarrow \lambda \sqsubseteq \mu$.

CONJECTURE: the last implication is \Longleftrightarrow.

What about inequalities for Schur means \mathfrak{S}_{λ} ? We have no idea.
What about inequalities for monomial means \mathfrak{M}_{λ} ? We know a lot.

A "Master Theorem" for Monomial Means

THEOREM/CONJECTURE: $\mathfrak{M}_{\lambda}(\mathbf{x}) \leq \mathfrak{M}_{\mu}(\mathbf{x})$ iff $\lambda \unlhd \mu$. where $\lambda \unlhd \mu$ is the double majorization order (to be defined shortly).

A "Master Theorem" for Monomial Means

THEOREM/CONJECTURE: $\mathfrak{M}_{\lambda}(\mathbf{x}) \leq \mathfrak{M}_{\mu}(\mathbf{x})$ iff $\lambda \unlhd \mu$. where $\lambda \unlhd \mu$ is the double majorization order (to be defined shortly).

Generalizes Muirhead's inequality; allows comparison of symmetric polynomials of different degrees.

The double (normalized) majorization order

DEFINITION: $\lambda \unlhd \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$,
EQUIVALENTLY: $\lambda \unlhd \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$.
DEFINITION: $\mathcal{D P}_{*}=\left(\mathcal{P}_{*}, \unlhd\right)$

The double (normalized) majorization order

DEFINITION: $\lambda \unlhd \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$,
EQUIVALENTLY: $\lambda \unlhd \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$.
DEFINITION: $\mathcal{D P}_{*}=\left(\mathcal{P}_{*}, \unlhd\right)$
NOTES:

- The conditions $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$ are not equivalent. Example: $\lambda=\{2,2\}, \mu=\{2,1\}$.
- If $\lambda \unlhd \mu$ and $\mu \unlhd \lambda$, then $\lambda=\mu$; hence $\mathcal{D P}_{*}$ is a partial order.
- $\mathcal{D} \mathcal{P}_{*}$ is self-dual and locally finite, but is not locally ranked, and is not a lattice.
- For all $n,\left(\mathcal{P}_{n}, \preceq\right)$ embeds isomorphically in $\mathcal{D} \mathcal{P}_{*}$ as a subposet.

$\mathcal{D} \mathcal{P}_{\leq 5}$

Figure: Double majorization poset $\mathcal{D P}_{\leq 5}$ with vertical embeddings of $\mathcal{P}_{n}, n=1,2, \ldots, 5$. (Governs inequalities for \mathfrak{M}_{λ}.)
$\mathcal{D} \mathcal{P}_{\leq 6}$

Figure: Double majorization poset $\mathcal{D P}_{\leq 6}$ with an embedding of \mathcal{P}_{6} shown in blue.

Much of the conjecture has been proved:

"MASTER THEOREM" $: \lambda, \mu$ any partitions
$\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \unlhd \mu$, i.e., $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$.
PROVED:

- The "only if" part.
- For all λ, μ with $|\lambda| \leq|\mu|$.
- For λ, μ with $|\lambda|,|\mu| \leq 6\left(\mathcal{D} \mathcal{P}_{\leq 6}\right)$.
- For many other special cases.

Interesting question

The Master Theorem/Conjecture combined with our other results about \mathfrak{P}_{λ} and \mathfrak{E}_{λ} imply the following statement:

$$
\mathfrak{M}_{\lambda}(\mathbf{x}) \leq \mathfrak{M}_{\mu}(\mathbf{x}) \Leftrightarrow \mathfrak{E}_{\lambda^{\top}(\mathbf{x})} \leq \mathfrak{E}_{\mu^{\top}(\mathbf{x})} \text { and } \mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x})
$$

Interesting question

The Master Theorem/Conjecture combined with our other results about \mathfrak{P}_{λ} and \mathfrak{E}_{λ} imply the following statement:

$$
\mathfrak{M}_{\lambda}(\mathbf{x}) \leq \mathfrak{M}_{\mu}(\mathbf{x}) \Leftrightarrow \mathfrak{E}_{\lambda^{\top}(\mathbf{x})} \leq \mathfrak{E}_{\mu^{\top}(\mathbf{x})} \text { and } \mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x})
$$

Is there a non-combinatorial (e.g., algebraic) proof of this?

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an argument of the following type:

Assuming that $F(\mathbf{x})$ and $G(\mathbf{x})$ are symmetric polynomials, let $F(\mathbf{y})$ and $G(\mathbf{y})$ be obtained from $F(\mathbf{x})$ and $G(\mathbf{x})$ by making the substitution

$$
x_{i}=y_{i}+y_{i+1}+\cdots y_{n}, \quad i=1, \ldots, n
$$

Then $F(\mathbf{y})-G(\mathbf{y})$ is a polynomial in \mathbf{y} with nonnegative coefficients. Hence $F(\mathbf{x}) \geq G(\mathbf{x})$ for all $\mathbf{x} \geq 0$.

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an argument of the following type:

Assuming that $F(\mathbf{x})$ and $G(\mathbf{x})$ are symmetric polynomials, let $F(\mathbf{y})$ and $G(\mathbf{y})$ be obtained from $F(\mathbf{x})$ and $G(\mathbf{x})$ by making the substitution

$$
x_{i}=y_{i}+y_{i+1}+\cdots y_{n}, \quad i=1, \ldots, n
$$

Then $F(\mathbf{y})-G(\mathbf{y})$ is a polynomial in \mathbf{y} with nonnegative coefficients. Hence $F(\mathbf{x}) \geq G(\mathbf{x})$ for all $\mathbf{x} \geq 0$.
We call this phenomenon y-positivity

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an argument of the following type:

Assuming that $F(\mathbf{x})$ and $G(\mathbf{x})$ are symmetric polynomials, let $F(\mathbf{y})$ and $G(\mathbf{y})$ be obtained from $F(\mathbf{x})$ and $G(\mathbf{x})$ by making the substitution

$$
x_{i}=y_{i}+y_{i+1}+\cdots y_{n}, \quad i=1, \ldots, n
$$

Then $F(\mathbf{y})-G(\mathbf{y})$ is a polynomial in \mathbf{y} with nonnegative coefficients. Hence $F(\mathbf{x}) \geq G(\mathbf{x})$ for all $\mathbf{x} \geq 0$.

We call this phenomenon y-positivity - or maybe it should be "why-positivity". ...

Example: AGM Inequality

```
ln[1]:= n = 4;
    LHS = (Sum[x[i], {i, n}]/n)^n
    RHS = Product [x[i], {i, n}]
Out[[] = \frac{1}{256}}(x[1]+x[2]+x[3]+x[4])4
Out[3]= x[1] x[2] x[3] x[4]
In[4]:= LHS - RHS /. Table [x[i] }->\mathrm{ Sum[y[j], {j, i, n}], {i, n}]
Out[4]= - y[4] (y[3] +y[4])(y[2]+y[3] +y[4])(y[1]+y[2]+y[3]+y[4])+
    \frac{1}{256}}(y[1]+2y[2]+3y[3]+4y[4]\mp@subsup{)}{}{4
ln[5]:= % // Expand
Out[5]=}=\frac{y[1\mp@subsup{]}{}{4}}{256}+\frac{1}{32}y[1\mp@subsup{]}{}{3}y[2]+\frac{3}{32}y[1\mp@subsup{]}{}{2}y[2\mp@subsup{]}{}{2}+\frac{1}{8}y[1]y[2\mp@subsup{]}{}{3}+\frac{y[2\mp@subsup{]}{}{4}}{16}+\frac{3}{64}y[1\mp@subsup{]}{}{3}y[3]+\frac{9}{32}y[1\mp@subsup{]}{}{2}y[2]y[3]
    9
    \frac{27}{64}y[1]y[3\mp@subsup{]}{}{3}+\frac{27}{32}y[2]y[3\mp@subsup{]}{}{3}+\frac{81y[3\mp@subsup{]}{}{4}}{256}+\frac{1}{16}y[1\mp@subsup{]}{}{3}y[4]+\frac{3}{8}y[1\mp@subsup{]}{}{2}y[2]y[4]+
    \frac{3}{4}y[1]y[2\mp@subsup{]}{}{2}y[4]+\frac{1}{2}y[2\mp@subsup{]}{}{3}y[4]+\frac{9}{16}y[1\mp@subsup{]}{}{2}y[3]y[4]+\frac{5}{4}y[1]y[2]y[3]y[4]+
    \frac{5}{4}y[2\mp@subsup{]}{}{2}y[3]y[4]+\frac{11}{16}y[1]y[3\mp@subsup{]}{}{2}y[4]+\frac{11}{8}y[2]y[3\mp@subsup{]}{}{2}y[4]+\frac{11}{16}y[3\mp@subsup{]}{}{3}y[4]+\frac{3}{8}y[1\mp@subsup{]}{}{2}y[4\mp@subsup{]}{}{2}+
    \frac{1}{2}}\textrm{y}[1]y[2]y[4\mp@subsup{]}{}{2}+\frac{1}{2}y[2\mp@subsup{]}{}{2}y[4\mp@subsup{]}{}{2}+\frac{1}{4}y[1]y[3]y[4\mp@subsup{]}{}{2}+\frac{1}{2}y[2]y[3]y[4\mp@subsup{]}{}{2}+\frac{3}{8}y[3\mp@subsup{]}{}{2}y[4\mp@subsup{]}{}{2
```


Y-Positivity Conjecture for Schur Functions

If $|\lambda|=|\mu|$ and $\lambda \succeq \mu$, then

$$
\left.\frac{s_{\lambda}(\mathbf{x})}{s_{\lambda}(\mathbf{1})}-\frac{s_{\mu}(\mathbf{x})}{s_{\mu}(\mathbf{1})} \right\rvert\, x_{i} \rightarrow y_{i}+\cdots y_{n}
$$

is a polynomial in \mathbf{y} with nonnegative coefficients.

Y-Positivity Conjecture for Schur Functions

If $|\lambda|=|\mu|$ and $\lambda \succeq \mu$, then

$$
\left.\frac{s_{\lambda}(\mathbf{x})}{s_{\lambda}(\mathbf{1})}-\frac{s_{\mu}(\mathbf{x})}{s_{\mu}(\mathbf{1})} \right\rvert\, x_{i} \rightarrow y_{i}+\cdots y_{n}
$$

is a polynomial in \mathbf{y} with nonnegative coefficients.
Proved for $|\lambda| \leq 9$ and all n. (CG + Renggyi (Emily) Xu)

" Ultimate" Problem: Classify all homogeneous symmetric function inequalities.

More Modest Problem: Classify all homogeneous symmetric function inequalities of degree 3 .

This has long been recognized as an important question.

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric $f(\mathbf{x})$ such that $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \geq 0$. Such f 's will be called nonnegative.

- If f is homogeneous of degree 3 then $f(\mathbf{x})=\alpha m_{3}(\mathbf{x})+\beta m_{21}(\mathbf{x})+\gamma m_{111}(\mathbf{x})$, where the m 's are monomial symmetric functions.
- Suppose that $f(\mathbf{x})$ has n variables. Then the correspondence $f \longleftrightarrow(\alpha, \beta, \gamma)$ parameterizes the set of nonnegative f 's by a cone in \mathbb{R}^{3} with n extreme rays.

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric $f(\mathbf{x})$ such that $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \geq 0$. Such f 's will be called nonnegative.

- If f is homogeneous of degree 3 then $f(\mathbf{x})=\alpha m_{3}(\mathbf{x})+\beta m_{21}(\mathbf{x})+\gamma m_{111}(\mathbf{x})$, where the m 's are monomial symmetric functions.
- Suppose that $f(\mathbf{x})$ has n variables. Then the correspondence $f \longleftrightarrow(\alpha, \beta, \gamma)$ parameterizes the set of nonnegative f 's by a cone in \mathbb{R}^{3} with n extreme rays. This is not obvious.

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric $f(\mathbf{x})$ such that $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \geq 0$. Such f 's will be called nonnegative.

- If f is homogeneous of degree 3 then $f(\mathbf{x})=\alpha m_{3}(\mathbf{x})+\beta m_{21}(\mathbf{x})+\gamma m_{111}(\mathbf{x})$, where the m 's are monomial symmetric functions.
- Suppose that $f(\mathbf{x})$ has n variables. Then the correspondence $f \longleftrightarrow(\alpha, \beta, \gamma)$ parameterizes the set of nonnegative f 's by a cone in \mathbb{R}^{3} with n extreme rays. This is not obvious.
- We call it the positivity cone $P_{n, 3}$. (Structure depends on n.)

Example:

For example, if $n=3$, there are three extreme rays, spanned by

$$
\begin{aligned}
f_{1}(\mathbf{x}) & =m_{21}(\mathbf{x})-6 m_{111}(\mathbf{x}) \\
f_{2}(\mathbf{x}) & =m_{111}(\mathbf{x}) \\
f_{3}(\mathbf{x}) & =m_{3}(\mathbf{x})-m_{21}(\mathbf{x})+3 m_{111}(\mathbf{x})
\end{aligned}
$$

If f is cubic, nonnegative, and symmetric in variables $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ then f may be expressed as a nonnegative linear combination of these three functions.

Example:

If $n=25$, the cone looks like this:

Main Result:

Theorem: If $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $f(\mathbf{x})$ is a symmetric function of degree 3 , then $f(\mathbf{x})$ is nonnegative if and only if $f\left(\mathbf{1}_{k}^{n}\right) \geq 0$ for $k=1, \ldots, n$, where $\mathbf{1}_{k}^{n}=(1, \ldots, 1,0, \ldots, 0)$, with k ones and ($n-k$) zeros.

Main Result:

Theorem: If $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $f(\mathbf{x})$ is a symmetric function of degree 3 , then $f(\mathbf{x})$ is nonnegative if and only if $f\left(\mathbf{1}_{k}^{n}\right) \geq 0$ for $k=1, \ldots, n$, where $\mathbf{1}_{k}^{n}=(1, \ldots, 1,0, \ldots, 0)$, with k ones and ($n-k$) zeros.
Example: If $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $f(\mathbf{x})=m_{3}(\mathbf{x})-m_{21}(\mathbf{x})+3 m_{111}(\mathbf{x})$, then

$$
\begin{aligned}
& f(1,0,0)=1 \\
& f(1,1,0)=2-2=0 \\
& f(1,1,1)=3-6+3=0
\end{aligned}
$$

Main Result:

Theorem: If $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $f(\mathbf{x})$ is a symmetric function of degree 3 , then $f(\mathbf{x})$ is nonnegative if and only if $f\left(\mathbf{1}_{k}^{n}\right) \geq 0$ for $k=1, \ldots, n$, where $\mathbf{1}_{k}^{n}=(1, \ldots, 1,0, \ldots, 0)$, with k ones and ($n-k$) zeros.
Example: If $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and
$f(\mathbf{x})=m_{3}(\mathbf{x})-m_{21}(\mathbf{x})+3 m_{111}(\mathbf{x})$, then

$$
\begin{aligned}
& f(1,0,0)=1 \\
& f(1,1,0)=2-2=0 \\
& f(1,1,1)=3-6+3=0
\end{aligned}
$$

NOTES:

- The inequality $f(\mathbf{x}) \geq 0$ is known as Schur's Inequality (HLP).
- The statement analogous to the above theorem for degree $d>3$ is false.

Application: A positive function that is not y-positive

Again take $f(\mathbf{x})=m_{3}(\mathbf{x})-m_{21}(\mathbf{x})+3 m_{111}(\mathbf{x})$, but with $n=5$ variables.

Then $f(1,0,0,0,0)=1, f(1,1,0,0,0)=0, f(1,1,1,0,0)=0$, $f(1,1,1,1,0)=4, f(1,1,1,1,1)=15$. Hence, by the Theorem, $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \geq 0$.

Application: A positive function that is not y-positive

Again take $f(\mathbf{x})=m_{3}(\mathbf{x})-m_{21}(\mathbf{x})+3 m_{111}(\mathbf{x})$, but with $n=5$ variables.

Then $f(1,0,0,0,0)=1, f(1,1,0,0,0)=0, f(1,1,1,0,0)=0$, $f(1,1,1,1,0)=4, f(1,1,1,1,1)=15$. Hence, by the Theorem, $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \geq 0$.

However, \mathbf{y}-substitution give $f(\mathbf{y})=$

```
\(\mathrm{Out}[12]=\mathrm{y}[1]^{3}+2 \mathrm{y}[1]^{2} \mathrm{y}[2]+\mathrm{y}[1]^{2} \mathrm{y}[3]+\mathrm{y}[1] \mathrm{y}[2] \mathrm{y}[3]+\mathrm{y}[2]^{2} \mathrm{y}[3]+2 \mathrm{y}[1] \mathrm{y}[2] \mathrm{y}[4]+\)
    \(2 \mathrm{y}[2]^{2} \mathrm{y}[4]+4 \mathrm{y}[1] \mathrm{y}[3] \mathrm{y}[4]+8 \mathrm{y}[2] \mathrm{y}[3] \mathrm{y}[4]+6 \mathrm{y}[3]^{2} \mathrm{y}[4]+3 \mathrm{y}[1] \mathrm{y}[4]^{2}+6 \mathrm{y}[2] \mathrm{y}[4]^{2}+\)
    \(9 \mathrm{y}[3] \mathrm{y}[4]^{2}+4 \mathrm{y}[4]^{3}-\mathrm{y}[1]^{2} \mathrm{y}[5]+3 \mathrm{y}[1] \mathrm{y}[2] \mathrm{y}[5]+3 \mathrm{y}[2]^{2} \mathrm{y}[5]+8 \mathrm{y}[1] \mathrm{y}[3] \mathrm{y}[5]+\)
    \(16 \mathrm{y}[2] \mathrm{y}[3] \mathrm{y}[5]+12 \mathrm{y}[3]^{2} \mathrm{y}[5]+13 \mathrm{y}[1] \mathrm{y}[4] \mathrm{y}[5]+26 \mathrm{y}[2] \mathrm{y}[4] \mathrm{y}[5]+39 \mathrm{y}[3] \mathrm{y}[4] \mathrm{y}[5]+\)
    \(26 \mathrm{y}[4]^{2} \mathrm{y}[5]+9 \mathrm{y}[1] \mathrm{y}[5]^{2}+18 \mathrm{y}[2] \mathrm{y}[5]^{2}+27 \mathrm{y}[3] \mathrm{y}[5]^{2}+36 \mathrm{y}[4] \mathrm{y}[5]^{2}+15 \mathrm{y}[5]^{3}\)
```

which has exactly one negative coefficient, $-y[1]^{2} y[5]$.

Reference:

- "Inequalities for Symmetric Functions of Degree 3", with Jeffrey Kroll, Jonathan Lima, Mark Skandera, and Rengyi Xu (to appear).

Available on request, or at www.haverford.edu/math/cgreene.

Acknowledgments

Students who helped build two Mathematica packages that were used extensively:
symfun.m: Julien Colvin, Ben Fineman, Renggyi (Emily) Xu posets.m: Eugenie Hunsicker, John Dollhopf, Sam Hsiao, Erica Greene

