Inequalities for Symmetric Polynomials

Curtis Greene

October 24, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This talk is based on

- "Inequalities for Symmetric Means", with Allison Cuttler, Mark Skandera (to appear in European Jour. Combinatorics).
- "Inequalities for Symmetric Functions of Degree 3", with Jeffrey Kroll, Jonathan Lima, Mark Skandera, and Rengyi Xu (to appear).
- Other work in progress.

Available on request, or at www.haverford.edu/math/cgreene.

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY: $\frac{x_1 + x_2 + \dots + x_n}{n} \ge (x_1 x_2 \cdots x_n)^{1/n} \quad \forall \mathbf{x} \ge 0.$

Classical examples (e.g., Hardy-Littlewood-Polya)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

THE AGM INEQUALITY:

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge (x_1 x_2 \cdots x_n)^{1/n} \quad \forall \mathbf{x} \ge 0.$$
NEWTON'S INEQUALITIES:

$$rac{e_k(\mathbf{x})}{e_k(\mathbf{1})}rac{e_k(\mathbf{x})}{e_k(\mathbf{1})}\geq rac{e_{k-1}(\mathbf{x})}{e_{k-1}(\mathbf{1})}rac{e_{k+1}(\mathbf{x})}{e_{k+1}(\mathbf{1})}\quad orall\mathbf{x}\geq 0$$

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY:

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge (x_1 x_2 \dots x_n)^{1/n} \quad \forall \mathbf{x} \ge 0.$$
NEWTON'S INEQUALITIES:

$$\frac{e_k(\mathbf{x})}{e_k(\mathbf{1})} \frac{e_k(\mathbf{x})}{e_k(\mathbf{1})} \ge \frac{e_{k-1}(\mathbf{x})}{e_{k-1}(\mathbf{1})} \frac{e_{k+1}(\mathbf{x})}{e_{k+1}(\mathbf{1})} \quad \forall \mathbf{x} \ge 0$$
MULTIPLIES INFOLIATIES.

MUIRHEAD'S INEQUALITIES: If $|\lambda| = |\mu|$, then $m_{\lambda}(\mathbf{x}) = m_{\mu}(\mathbf{x})$

 $\frac{m_{\lambda}(\mathbf{x})}{m_{\lambda}(\mathbf{1})} \geq \frac{m_{\mu}(\mathbf{x})}{m_{\mu}(\mathbf{1})} \quad \forall \mathbf{x} \geq 0 \quad iff \, \lambda \succeq \mu \ (\textit{majorization}).$

Other examples: different degrees

MACLAURIN'S INEQUALITIES:

$$ig(rac{e_j(\mathbf{x})}{e_j(\mathbf{1})}ig)^{1/j} \geq ig(rac{e_k(\mathbf{x})}{e_k(\mathbf{1})}ig)^{1/k} \quad \textit{if} j \leq k, \, \mathbf{x} \geq 0$$

SCHLÖMILCH'S (POWER SUM) INEQUALITIES: $\left(\frac{p_j(\mathbf{x})}{n}\right)^{1/j} \le \left(\frac{p_k(\mathbf{x})}{n}\right)^{1/k}$ if $j \le k, \mathbf{x} \ge 0$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Some results

- Muirhead-like theorems (and conjectures) for all of the classical families.
- A single "master theorem" that includes many of these.
- Proofs based on a new (and potentially interesting) kind of "positivity".

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definitions

We consider two kinds of "averages":

• Term averages:

$$F(\mathbf{x}) = \frac{1}{f(\mathbf{1})}f(\mathbf{x}),$$

assuming *f* has nonnegative integer coefficients. And also *Means*:

$$\mathfrak{F}(\mathbf{x}) = \left(\frac{1}{f(\mathbf{1})}f(\mathbf{x})\right)^{1/d}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

where f is homogeneous of degree d.

Definitions

We consider two kinds of "averages":

• Term averages:

$$F(\mathbf{x}) = \frac{1}{f(\mathbf{1})}f(\mathbf{x}),$$

assuming f has nonnegative integer coefficients. And also

Means:

$$\mathfrak{F}(\mathbf{x}) = \left(\frac{1}{f(\mathbf{1})}f(\mathbf{x})\right)^{1/d}$$

where f is homogeneous of degree d.

Example:

$$E_k(\mathbf{x}) = rac{1}{\binom{n}{k}} e_k(\mathbf{x}) \qquad \mathfrak{E}_k(\mathbf{x}) = (E_k(\mathbf{x}))^{1/k}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Muirhead-like Inequalities:

ELEMENTARY: $E_{\lambda}(\mathbf{x}) \geq E_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \iff \lambda \leq \mu$. POWER SUM: $P_{\lambda}(\mathbf{x}) \leq P_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \iff \lambda \leq \mu$. HOMOGENEOUS: $H_{\lambda}(\mathbf{x}) \leq H_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \iff \lambda \leq \mu$. SCHUR: $S_{\lambda}(\mathbf{x}) \leq S_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \implies \lambda \leq \mu$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Muirhead-like Inequalities:

ELEMENTARY: $E_{\lambda}(\mathbf{x}) \geq E_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \iff \lambda \leq \mu$. POWER SUM: $P_{\lambda}(\mathbf{x}) \leq P_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \iff \lambda \leq \mu$. HOMOGENEOUS: $H_{\lambda}(\mathbf{x}) \leq H_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \iff \lambda \leq \mu$. SCHUR: $S_{\lambda}(\mathbf{x}) \leq S_{\mu}(\mathbf{x}), \ \mathbf{x} \geq 0 \implies \lambda \leq \mu$. CONJECTURE: the last two implications are \iff .

Reference: Cuttler, Greene, Skandera

The Majorization Poset \mathcal{P}_7

(Governs term-average inequalities for E_{λ} , P_{λ} , H_{λ} , S_{λ} and M_{λ} .)

Majorization vs. Normalized Majorization

MAJORIZATION: $\lambda \leq \mu$ iff $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i \forall i$

MAJORIZATION POSET: (\mathcal{P}_n, \preceq) on partitions $\lambda \vdash n$.

NORMALIZED MAJORIZATION: $\lambda \sqsubseteq \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$.

NORMALIZED MAJORIZATION POSET: Define $\mathcal{P}_* = \bigcup_n \mathcal{P}_n$. Then $(\overline{\mathcal{P}}_*, \sqsubseteq)$ = quotient of $(\mathcal{P}_*, \sqsubseteq)$ (a preorder) under the relation $\alpha \sim \beta$ if $\alpha \sqsubseteq \beta$ and $\beta \sqsubseteq \alpha$.

Majorization vs. Normalized Majorization

MAJORIZATION: $\lambda \preceq \mu$ iff $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i \forall i$

MAJORIZATION POSET: (\mathcal{P}_n, \preceq) on partitions $\lambda \vdash n$.

NORMALIZED MAJORIZATION: $\lambda \sqsubseteq \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$.

NORMALIZED MAJORIZATION POSET: Define $\mathcal{P}_* = \bigcup_n \mathcal{P}_n$. Then $(\overline{\mathcal{P}}_*, \sqsubseteq)$ = quotient of $(\mathcal{P}_*, \sqsubseteq)$ (a preorder) under the relation $\alpha \sim \beta$ if $\alpha \sqsubseteq \beta$ and $\beta \sqsubseteq \alpha$.

NOTES:

- ▶ $(\overline{\mathcal{P}}_*, \sqsubseteq)$ is a lattice, but is not locally finite. $(\overline{\mathcal{P}}_{\leq n}, \sqsubseteq)$ is not a lattice.
- (\mathcal{P}_n, \preceq) embeds in $(\overline{\mathcal{P}}_*, \sqsubseteq)$ as a sublattice and in $(\overline{\mathcal{P}}_{\leq n}, \sqsubseteq)$ as a subposet.

 $\overline{\mathcal{P}}_{\leq n} \longleftrightarrow$ partitions λ with $|\lambda| \leq n$ whose parts are relatively prime.

Figure: $(\overline{\mathcal{P}}_{\leq 6}, \sqsubseteq)$ with an embedding of (\mathcal{P}_6, \preceq) shown in blue.

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONJECTURE: the last implication is \iff .

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONJECTURE: the last implication is \iff .

What about inequalities for Schur means \mathfrak{S}_{λ} ?

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$

CONJECTURE: the last implication is \iff .

What about inequalities for Schur means \mathfrak{S}_{λ} ? We have no idea.

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$

CONJECTURE: the last implication is \iff .

What about inequalities for Schur means \mathfrak{S}_{λ} ? We have no idea. What about inequalities for monomial means \mathfrak{M}_{λ} ?

ELEMENTARY: $\mathfrak{E}_{\lambda}(\mathbf{x}) \geq \mathfrak{E}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ POWER SUM: $\mathfrak{P}_{\lambda}(\mathbf{x}) \leq \mathfrak{P}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$ HOMOGENEOUS: $\mathfrak{H}_{\lambda}(\mathbf{x}) \leq \mathfrak{H}_{\mu}(\mathbf{x}), \ \mathbf{x} \geq \mathbf{0} \iff \lambda \sqsubseteq \mu.$

CONJECTURE: the last implication is \iff .

What about inequalities for Schur means \mathfrak{S}_{λ} ? We have no idea. What about inequalities for monomial means \mathfrak{M}_{λ} ? We know a lot.

A "Master Theorem" for Monomial Means

THEOREM/CONJECTURE: $\mathfrak{M}_{\lambda}(\mathbf{x}) \leq \mathfrak{M}_{\mu}(\mathbf{x})$ iff $\lambda \leq \mu$. where $\lambda \leq \mu$ is the *double majorization order* (to be defined shortly).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A "Master Theorem" for Monomial Means

THEOREM/CONJECTURE: $\mathfrak{M}_{\lambda}(\mathbf{x}) \leq \mathfrak{M}_{\mu}(\mathbf{x}) \text{ iff } \lambda \leq \mu$. where $\lambda \leq \mu$ is the *double majorization order* (to be defined shortly).

Generalizes Muirhead's inequality; allows comparison of symmetric polynomials of different degrees.

The double (normalized) majorization order DEFINITION: $\lambda \trianglelefteq \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$, EQUIVALENTLY: $\lambda \trianglelefteq \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$. DEFINITION: $\mathcal{DP}_* = (\mathcal{P}_*, \trianglelefteq)$

The double (normalized) majorization order DEFINITION: $\lambda \trianglelefteq \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$, EQUIVALENTLY: $\lambda \trianglelefteq \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$. DEFINITION: $\mathcal{DP}_* = (\mathcal{P}_*, \trianglelefteq)$

NOTES:

- The conditions λ ⊑ μ and λ^T ⊒ μ^T are not equivalent. Example: λ = {2, 2}, μ = {2, 1}.
- If $\lambda \leq \mu$ and $\mu \leq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_* is a partial order.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ DP_{*} is self-dual and locally finite, but is not locally ranked, and is not a lattice.
- For all n, (P_n, ≤) embeds isomorphically in DP_{*} as a subposet.

Master Theorem: Double Majorization

 $\mathcal{DP}_{\leq 5}$

Figure: Double majorization poset $\mathcal{DP}_{\leq 5}$ with vertical embeddings of \mathcal{P}_n , n = 1, 2, ..., 5. (Governs inequalities for \mathfrak{M}_{λ} .)

Master Theorem: Double Majorization

 $\mathcal{DP}_{\leq 6}$

Figure: Double majorization poset $\mathcal{DP}_{\leq 6}$ with an embedding of \mathcal{P}_6 shown in blue.

Much of the conjecture has been proved:

"MASTER THEOREM": λ, μ any partitions $\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \leq \mu$, i.e., $\frac{\lambda}{|\lambda|} \leq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{T}}{|\lambda|} \succeq \frac{\mu^{T}}{|\mu|}$. PROVED:

- The "only if" part.
- For all λ, μ with $|\lambda| \leq |\mu|$.
- For λ, μ with $|\lambda|, |\mu| \leq 6 \ (\mathcal{DP}_{\leq 6})$.
- For many other special cases.

Interesting question

The Master Theorem/Conjecture combined with our other results about \mathfrak{P}_{λ} and \mathfrak{E}_{λ} imply the following statement:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Interesting question

The Master Theorem/Conjecture combined with our other results about \mathfrak{P}_{λ} and \mathfrak{E}_{λ} imply the following statement:

Is there a non-combinatorial (e.g., algebraic) proof of this?

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an argument of the following type:

Assuming that $F(\mathbf{x})$ and $G(\mathbf{x})$ are symmetric polynomials, let $F(\mathbf{y})$ and $G(\mathbf{y})$ be obtained from $F(\mathbf{x})$ and $G(\mathbf{x})$ by making the substitution

$$x_i = y_i + y_{i+1} + \cdots + y_n, \quad i = 1, \ldots, n.$$

Then $F(\mathbf{y}) - G(\mathbf{y})$ is a polynomial in \mathbf{y} with nonnegative coefficients. Hence $F(\mathbf{x}) \ge G(\mathbf{x})$ for all $\mathbf{x} \ge 0$.

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an argument of the following type:

Assuming that $F(\mathbf{x})$ and $G(\mathbf{x})$ are symmetric polynomials, let $F(\mathbf{y})$ and $G(\mathbf{y})$ be obtained from $F(\mathbf{x})$ and $G(\mathbf{x})$ by making the substitution

$$x_i = y_i + y_{i+1} + \cdots + y_n, \quad i = 1, \ldots, n.$$

Then $F(\mathbf{y}) - G(\mathbf{y})$ is a polynomial in \mathbf{y} with nonnegative coefficients. Hence $F(\mathbf{x}) \ge G(\mathbf{x})$ for all $\mathbf{x} \ge 0$.

We call this phenomenon y-positivity

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an argument of the following type:

Assuming that $F(\mathbf{x})$ and $G(\mathbf{x})$ are symmetric polynomials, let $F(\mathbf{y})$ and $G(\mathbf{y})$ be obtained from $F(\mathbf{x})$ and $G(\mathbf{x})$ by making the substitution

$$x_i = y_i + y_{i+1} + \cdots + y_n, \quad i = 1, \ldots, n.$$

Then $F(\mathbf{y}) - G(\mathbf{y})$ is a polynomial in \mathbf{y} with nonnegative coefficients. Hence $F(\mathbf{x}) \ge G(\mathbf{x})$ for all $\mathbf{x} \ge 0$.

We call this phenomenon y-positivity – or maybe it should be "why-positivity"....

Example: AGM Inequality

[[]= n = 4; LHS = (Sun[x[i], {i, n}] / n) ^n RHS = Product[x[i], {(i, n]}] Ou[2]= 1 256 (x[1] + x[2] + x[3] + x[4])⁴ Ou[2]= x[1] x[2] x[3] x[4] [[d]= LHS - RHS /. Table[x[i] → Sun[y[j], {j, i, n}], {i, n}] Ou[4]= -y[4] (y[3] + y[4]) (y[2] + y[3] + y[4]) (y[1] + y[2] + y[3] + y[4]) + 1 256 (y[1] + 2 y[2] + 3 y[3] + 4 y[4])⁴

In[5]:= % // Expand

$$\begin{split} & \frac{y\left(1\right)^{4}}{256} + \frac{1}{32} y\left(1\right)^{3} y\left(2\right) + \frac{3}{32} y\left(1\right)^{2} y\left(2\right)^{2} + \frac{1}{8} y\left(1\right) y\left(2\right)^{3} + \frac{y\left(2\right)^{4}}{16} + \frac{3}{64} y\left(1\right)^{3} y\left(3\right) + \frac{9}{32} y\left(1\right)^{2} y\left(2\right) y\left(3\right) + \frac{9}{16} y\left(1\right) y\left(2\right)^{2} y\left(3\right) + \frac{3}{8} y\left(2\right)^{3} y\left(3\right) + \frac{27}{128} y\left(1\right)^{2} y\left(3\right)^{2} + \frac{27}{32} y\left(1\right) y\left(2\right) y\left(3\right)^{2} + \frac{27}{32} y\left(2\right)^{2} y\left(3\right)^{2} + \frac{27}{32} y\left(2\right)^{2} y\left(3\right)^{2} + \frac{27}{32} y\left(2\right)^{2} y\left(3\right)^{3} + \frac{81 y\left(3\right)^{4}}{256} + \frac{1}{16} y\left(1\right)^{3} y\left(4\right) + \frac{3}{8} y\left(1\right)^{2} y\left(2\right) y\left(4\right) + \frac{3}{4} y\left(1\right) y\left(2\right)^{2} y\left(3\right) y\left(4\right) + \frac{1}{2} y\left(2\right)^{3} y\left(4\right) + \frac{9}{16} y\left(1\right)^{2} y\left(3\right) y\left(4\right) + \frac{5}{4} y\left(1\right) y\left(2\right) y\left(3\right) y\left(4\right) + \frac{5}{4} y\left(2\right)^{2} y\left(3\right) y\left(4\right) + \frac{1}{16} y\left(2\right)^{3} y\left(4\right) + \frac{1}{16} y\left(2\right)^{3} y\left(4\right) + \frac{1}{16} y\left(2\right)^{3} y\left(4\right) + \frac{3}{4} y\left(1\right)^{2} y\left(4\right)^{2} + \frac{1}{4} y\left(2\right)^{2} y\left(4\right)^{2} + \frac{1}{4} y\left(1\right) y\left(3\right)^{2} y\left(4\right)^{2} + \frac{1}{4} y\left(2\right)^{3} y\left(4\right)^{2} + \frac{1}{16} y\left(2\right)^{3} y\left(4\right)^{2} + \frac{3}{8} y\left(2\right)^{2} y\left(4\right)^{2} + \frac{1}{2} y\left(2\right)^{2} y\left(4\right)^{2} + \frac{1}{2} y\left(2\right)^{2} y\left(4\right)^{2} + \frac{1}{4} y\left(2\right)^{3} y\left(4\right)^{2} + \frac{1}{2} y\left(2\right)^{3} y\left(4\right)^{2} + \frac{3}{8} y\left(3\right)^{2} y\left(4\right)^{2$$

Y-Positivity Conjecture for Schur Functions

If
$$|\lambda| = |\mu|$$
 and $\lambda \succeq \mu$, then
$$\frac{s_{\lambda}(\mathbf{x})}{s_{\lambda}(\mathbf{1})} - \frac{s_{\mu}(\mathbf{x})}{s_{\mu}(\mathbf{1})} | x_i \to y_i + \cdots + y_n|$$

is a polynomial in **y** with nonnegative coefficients.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Y-Positivity Conjecture for Schur Functions

If
$$|\lambda| = |\mu|$$
 and $\lambda \succeq \mu$, then
$$\frac{s_{\lambda}(\mathbf{x})}{s_{\lambda}(\mathbf{1})} - \frac{s_{\mu}(\mathbf{x})}{s_{\mu}(\mathbf{1})} \mid x_i \to y_i + \cdots y_n$$

is a polynomial in \mathbf{y} with nonnegative coefficients.

Proved for $|\lambda| \leq 9$ and all *n*. (CG + Renggyi (Emily) Xu)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

"Ultimate" Problem: Classify *all* homogeneous symmetric function inequalities.

More Modest Problem: Classify all homogeneous symmetric function inequalities of degree 3.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This has long been recognized as an important question.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric $f(\mathbf{x})$ such that $f(\mathbf{x}) \ge 0$ for all $\mathbf{x} \ge 0$. Such f's will be called *nonnegative*.

- If f is homogeneous of degree 3 then f(x) = αm₃(x) + βm₂₁(x) + γm₁₁₁(x), where the m's are monomial symmetric functions.
- Suppose that f(x) has n variables. Then the correspondence f ↔ (α, β, γ) parameterizes the set of nonnegative f's by a cone in ℝ³ with n extreme rays.

(日) (同) (三) (三) (三) (○) (○)

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric $f(\mathbf{x})$ such that $f(\mathbf{x}) \ge 0$ for all $\mathbf{x} \ge 0$. Such f's will be called *nonnegative*.

- If f is homogeneous of degree 3 then f(x) = αm₃(x) + βm₂₁(x) + γm₁₁₁(x), where the m's are monomial symmetric functions.
- Suppose that f(x) has n variables. Then the correspondence f → (α, β, γ) parameterizes the set of nonnegative f's by a cone in ℝ³ with n extreme rays. This is not obvious.

(日) (同) (三) (三) (三) (○) (○)

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric $f(\mathbf{x})$ such that $f(\mathbf{x}) \ge 0$ for all $\mathbf{x} \ge 0$. Such f's will be called *nonnegative*.

- If f is homogeneous of degree 3 then f(x) = αm₃(x) + βm₂₁(x) + γm₁₁₁(x), where the m's are monomial symmetric functions.
- Suppose that f(x) has n variables. Then the correspondence f → (α, β, γ) parameterizes the set of nonnegative f's by a cone in ℝ³ with n extreme rays. This is not obvious.
- We call it the *positivity cone* $P_{n,3}$. (Structure depends on *n*.)

Example:

For example, if n = 3, there are three extreme rays, spanned by

$$\begin{aligned} f_1(\mathbf{x}) &= m_{21}(\mathbf{x}) - 6m_{111}(\mathbf{x}) \\ f_2(\mathbf{x}) &= m_{111}(\mathbf{x}) \\ f_3(\mathbf{x}) &= m_3(\mathbf{x}) - m_{21}(\mathbf{x}) + 3m_{111}(\mathbf{x}) \end{aligned}$$

If f is cubic, nonnegative, and symmetric in variables $\mathbf{x} = (x_1, x_2, x_3)$ then f may be expressed as a nonnegative linear combination of these three functions.

Example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Main Result:

Theorem: If $\mathbf{x} = (x_1, x_2, ..., x_n)$, and $f(\mathbf{x})$ is a symmetric function of degree 3, then $f(\mathbf{x})$ is nonnegative if and only if $f(\mathbf{1}_k^n) \ge 0$ for k = 1, ..., n, where $\mathbf{1}_k^n = (1, ..., 1, 0, ..., 0)$, with k ones and (n - k) zeros.

Main Result:

Theorem: If $\mathbf{x} = (x_1, x_2, ..., x_n)$, and $f(\mathbf{x})$ is a symmetric function of degree 3, then $f(\mathbf{x})$ is nonnegative if and only if $f(\mathbf{1}_k^n) \ge 0$ for k = 1, ..., n, where $\mathbf{1}_k^n = (1, ..., 1, 0, ..., 0)$, with k ones and (n - k) zeros. **Example:** If $\mathbf{x} = (x_1, x_2, x_3)$ and $f(\mathbf{x}) = m_3(\mathbf{x}) - m_{21}(\mathbf{x}) + 3m_{111}(\mathbf{x})$, then f(1, 0, 0) = 1f(1, 1, 0) = 2 - 2 = 0

$$f(1,1,1) = 3-6+3=0$$

Main Result:

Theorem: If $\mathbf{x} = (x_1, x_2, \dots, x_n)$, and $f(\mathbf{x})$ is a symmetric function of degree 3, then $f(\mathbf{x})$ is nonnegative if and only if $f(\mathbf{1}_{k}^{n}) \geq 0$ for k = 1, ..., n, where $\mathbf{1}_{k}^{n} = (1, ..., 1, 0, ..., 0)$, with k ones and (n-k) zeros. **Example:** If $\mathbf{x} = (x_1, x_2, x_3)$ and $f(\mathbf{x}) = m_3(\mathbf{x}) - m_{21}(\mathbf{x}) + 3m_{111}(\mathbf{x})$, then f(1,0,0) = 1f(1,1,0) = 2-2=0f(1,1,1) = 3-6+3=0

NOTES:

- The inequality $f(\mathbf{x}) \ge 0$ is known as *Schur's Inequality* (HLP).
- The statement analogous to the above theorem for degree d > 3 is false.

Application: A positive function that is not y-positive

Again take $f(x) = m_3(x) - m_{21}(x) + 3m_{111}(x)$, but with n = 5 variables.

Then f(1,0,0,0,0) = 1, f(1,1,0,0,0) = 0, f(1,1,1,0,0) = 0, f(1,1,1,1,0) = 4, f(1,1,1,1,1) = 15. Hence, by the Theorem, $f(\mathbf{x}) \ge 0$ for all $\mathbf{x} \ge 0$.

Application: A positive function that is not y-positive

Again take $f(x) = m_3(x) - m_{21}(x) + 3m_{111}(x)$, but with n = 5 variables.

Then f(1,0,0,0,0) = 1, f(1,1,0,0,0) = 0, f(1,1,1,0,0) = 0, f(1,1,1,1,0) = 4, f(1,1,1,1,1) = 15. Hence, by the Theorem, $f(\mathbf{x}) \ge 0$ for all $\mathbf{x} \ge 0$.

However, y-substitution give $f(\mathbf{y}) =$

```
 \begin{array}{l} \text{Oul(12)=} & y\left(1\right)^3 + 2\,y\left(1\right)^2\,y\left(2\right) + y\left(1\right)^2\,y\left(3\right) + y\left(1\right)\,y\left(2\right)\,y\left(3\right) + y\left(2\right)^2\,y\left(3\right) + 2\,y\left(1\right)\,y\left(2\right)\,y\left(4\right) + 2\,y\left(2\right)^2\,y\left(4\right) + 4\,y\left(1\right)\,y\left(3\right)\,y\left(4\right) + 8\,y\left(2\right)\,y\left(3\right)\,y\left(4\right) + 4\,y\left(2\right)\,y\left(3\right)\,y\left(4\right) + 8\,y\left(2\right)\,y\left(3\right)\,y\left(4\right) + 2\,y\left(2\right)^2\,y\left(5\right) + 3\,y\left(1\right)^2\,y\left(5\right) + 3\,y\left(2\right)^2\,y\left(5\right) + 3\,y\left(1\right)\,y\left(3\right)\,y\left(5\right) + 16\,y\left(2\right)\,y\left(3\right)\,y\left(5\right) + 12\,y\left(3\right)^2\,y\left(5\right) + 12\,y\left(3\right)^2\,y\left(5\right) + 12\,y\left(3\right)^2\,y\left(5\right) + 12\,y\left(3\right)^2\,y\left(5\right) + 12\,y\left(3\right)^2\,y\left(5\right) + 26\,y\left(2\right)\,y\left(4\right)\,y\left(5\right) + 39\,y\left(3\right)\,y\left(4\right)\,y\left(5\right) + 26\,y\left(4\right)^2\,y\left(5\right) + 9\,y\left(1\right)\,y\left(5\right)^2 + 18\,y\left(2\right)\,y\left(5\right)^2 + 23\,y\left(3\right)\,y\left(5\right)^2 + 15\,y\left(5\right)^3 \end{array}.
```

which has exactly one negative coefficient, $-y[1]^2y[5]$.

Reference:

 "Inequalities for Symmetric Functions of Degree 3", with Jeffrey Kroll, Jonathan Lima, Mark Skandera, and Rengyi Xu (to appear).

Available on request, or at www.haverford.edu/math/cgreene.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Acknowledgments

Students who helped build two Mathematica packages that were used extensively: symfun.m: Julien Colvin, Ben Fineman, Renggyi (Emily) Xu

posets.m: Eugenie Hunsicker, John Dollhopf, Sam Hsiao, Erica Greene

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <