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L Co-authors

This talk is based on

» ‘“Inequalities for Symmetric Means", with Allison Cuttler,
Mark Skandera (to appear in European Jour. Combinatorics).

> ‘“Inequalities for Symmetric Functions of Degree 3", with
Jeffrey Kroll, Jonathan Lima, Mark Skandera, and Rengyi Xu
(to appear).

» Other work in progress.

Available on request, or at www.haverford.edu/math/cgreene.
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|—Inequalities for Averages and Means

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY:
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Llnequalities for Averages and Means

Classical examples (e.g., Hardy-Littlewood-Polya)

THE AGM INEQUALITY:
X1+X2‘i,‘1"'+xn2(X1X2“.Xn)1/n VXZO

NEWTON'S INEQUALITIES:

ex(x) ex(x) o ex—1(x) exr1(x)
el e(D) = aa( () ™0

MUIRHEAD'S INEQUALITIES: If [A| = ||, then

m() . mu(x
(D) % m, (1) =0

iffA = p (majorization).
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Llnequalities for Averages and Means

Other examples: different degrees

MACLAURIN'S INEQUALITIES:

(ZPY = (2 i< kx=0

SCHLOMILCH'S (POWER SUM) INEQUALITIES:

(png))l/f < (PkT(X))l/k ifj <k x>0
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Llnequalities for Averages and Means

Some results

» Muirhead-like theorems (and conjectures) for all of the
classical families.

» A single "master theorem” that includes many of these.

» Proofs based on a new (and potentially interesting) kind of
“positivity” .
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Llnequalities for Averages and Means

Definitions

We consider two kinds of “averages”:

» Term averages:
1
F(x) = Wf(x)’

assuming f has nonnegative integer coefficients. And also
» Means:

where f is homogeneous of degree d.
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Llnequalities for Averages and Means

Definitions

We consider two kinds of “averages”:

» Term averages:
FO0 = 3370,

assuming f has nonnegative integer coefficients. And also
» Means:

where f is homogeneous of degree d.

Example:

Ei(x) = #k(x) Cx(x) = (Ex(x)¥*
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Llnequalities for Averages and Means

Muirhead-like Inequalities:

ELEMENTARY: Ex(x) > E,(x), x>0 <= A=

POWER SUM: Py(x) < Py(x), x>0 <= A=

HOMOGENEOQOUS: Hy(x) < Hu(x), x>0 < X =p.

SCHUR: S)(x) < Su(x), x>0 = A =pu.



Inequalities for Symmetric Polynomials

Llnequalities for Averages and Means

Muirhead-like Inequalities:

ELEMENTARY: Ex(x) > E,(x), x>0 <= A=
POWER SUM: Py(x) < Pu(x), x>0 <= A =p.
HOMOGENEOQOUS: Hy(x) < Hu(x), x>0 < X =p.
SCHUR: S)(x) < Su(x), x>0 = A =pu.
CONJECTURE: the last two implications are <.

Reference: Cuttler,Greene, Skandera
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|—Inequalities for Averages and Means

The Majorization Poset P;

211111

1111111

[m]

(Governs term-average inequalities for Ey, Py, Hy, Sy and M,.)

=
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L Normalized Majorization

Majorization vs. Normalized Majorization

MAJORIZATION: A < piff Adp 4+ -+ N\j < g + -+ i Vi
MAJORIZATION POSET: (P,, <) on partitions A - n.
NORMALIZED MAJORIZATION: X C y iff 2 i \u\

NORMALIZED MAJORIZATION POSET: Define P, = J,, Ph.
Then (P.,C) = quotient of (P,,C) (a preorder) under the
relation a ~ B if « C B and 3 C «.
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Majorization vs. Normalized Majorization

MAJORIZATION: A < piff Adp 4+ -+ N\j < g + -+ i Vi
MAJORIZATION POSET: (P,, <) on partitions A - n.
NORMALIZED MAJORIZATION: X C y iff 2 i \u\
NORMALIZED MAJORIZATION POSET: Define P, = J,, Pn.

Then (P.,C) = quotient of (P,,C) (a preorder) under the
relation a ~ B if « C B and 3 C «.

NOTES:

> (P.,C) is a lattice, but is not locally finite. (P<,,C) is not a
lattice.

> (Pn, =) embeds in (P, ) as a sublattice and in (P<,,C) as
a subposet.
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P<n < partitions A with |\| < n whose parts are relatively
prime.

11111

Figure: (P<g, =) with an embedding of (Ps, <) shown in blue.
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Muirhead-like Inequalities for Means

ELEMENTARY: €5(x) > €,(x), x>0 <= AL pu.
POWER SUM: By(x) < Pu(x), x>0 <= AL pu.
HOMOGENEOQOUS: $,(x) < H,(x), x>0 <= AL pu.

CONJECTURE: the last implication is <.
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L Normalized Majorization

Muirhead-like Inequalities for Means

ELEMENTARY: €)(x) > €,(x), x>0 < AL pu.
POWER SUM: By(x) < Pu(x), x>0 <= AL pu.

HOMOGENEOQOUS: $,(x) < H,(x), x>0 <= AL pu.

CONJECTURE: the last implication is <.

What about inequalities for Schur means &,7 We have no idea.

What about inequalities for monomial means 21,7 We know a lot.
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THEOREM/CONJECTURE: M\ (x) < M, (x)iffA < p.
where A < is the double majorization order (to be defined
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LMaster Theorem: Double Majorization

A “Master Theorem” for Monomial Means

THEOREM/CONJECTURE: 90y(x) < 9, (x)iffA < pu.

where A < is the double majorization order (to be defined
shortly).

Generalizes Muirhead'’s inequality; allows comparison of symmetric
polynomials of different degrees.
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|—Master Theorem: Double Majorization

The double (normalized) majorization order

DEFINITION: A < 1 iff A C g and X 2 4,
EQUIVALENTLY: A <1y iff (3 < 4 and ; = 3
DEFINITION: DP, = (P,, <)

RESRmE
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LMaster Theorem: Double Majorization

The double (normalized) majorization order

DEFINITION: A < p iff A C g and X 3 4,

EQUIVALENTLY: X < 1 iff 3 < 4 and ﬁM - |£|
DEFINITION: DP, = (P,, <)
NOTES:

» The conditions A C . and X' Iy are not equivalent.
Example: A = {2,2}, p={2,1}.

> If X < pandp <N, then A = u; hence DP, is a partial order.

» DP, is self-dual and locally finite, but is not locally ranked,
and is not a lattice.

» For all n, (Pp, X) embeds isomorphically in DP, as a
subposet.
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|—Master Theorem: Double Majorization
:

DP<s

Figure: Double majorization poset DP<5 with vertical embeddings of
Pn, n=1,2,...,5. (Governs inequalities for 91,.)
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LMaster Theorem: Double Majorization

DP

o

4 51
3, 4 42
2 3 32 3
1 T 77 321
1 2 222

111111

Figure: Double majorization poset DP<g with an embedding of Ps
shown in blue.
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LMaster Theorem: Double Majorization

Much of the conjecture has been proved:

“MASTER THEOREM": A, i1 any partitions

i - e A Al
My <M, ifand only if A < p, e, B = m and B > -

PROVED:
» The “only if" part.
» For all A, u with [A| < |ul.
> For A, v with |A], || <6 (DP<s).

» For many other special cases.
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LMaster Theorem: Double Majorization

Interesting question

The Master Theorem/Conjecture combined with our other results
about Py and &, imply the following statement:

MA(x) < M(x) & Exy < €y and Pa(x) < Pu(x).
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LMaster Theorem: Double Majorization

Interesting question

The Master Theorem/Conjecture combined with our other results
about Py and &, imply the following statement:

MA(x) < M(x) & Exy < €y and Pa(x) < Pu(x).

Is there a non-combinatorial (e.g., algebraic) proof of this?
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Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an
argument of the following type:

Assuming that F(x) and G(x) are symmetric polynomials, let F(y)
and G(y) be obtained from F(x) and G(x) by making the
substitution

Xi=YitYyirrtyn, =100

Then F(y) — G(y) is a polynomial in y with nonnegative
coefficients. Hence F(x) > G(x) for all x > 0.
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substitution
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Inequalities for Symmetric Polynomials
L Y_Positivity

Why are these results true? Y-Positivity

ALL of the inequalities in this talk can be established by an
argument of the following type:

Assuming that F(x) and G(x) are symmetric polynomials, let F(y)
and G(y) be obtained from F(x) and G(x) by making the
substitution

Xi=Yi+Yiyr Yo, i=1..,0

Then F(y) — G(y) is a polynomial in y with nonnegative
coefficients. Hence F(x) > G(x) for all x > 0.

We call this phenomenon y-positivity — or maybe it should be
“why-positivity". . ..
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Example: AGM Inequality

= N o=

(Sum[x[i ], {i, n}1/n)"n
RHS = Product [x[i ], {i, n}]
1 .
oulzls —— (X[1] +X[2] +X[3] + X [4])
256
oulz= X[1] X[2] X[3] x[4]

4= LHS-RHS /. Table[x[i]-Sumly[j], {j, i, n}

1. (i, n}]

outal= =Y [4] (Y[3] +Y[4]) (Y[2] +y[3] +y[4]) (Y[1] +y([2] +y[3] +Yy[4]) +

1
—— (y[1]+2y(2] +3y(3] +4y[4])*
256

ins= % // Expand

1t 1
oufs: ———+ —Y
Y Tose a2

—y[1]y[212y(3] + —y[2]°y(3] + — y([1]?
[11y[2]7y[3] + s + y
yilly y y y

128
27 27 81y[3]* 1
— Y1y —y21yB8) s ———+ —
64 32 256 16

3 2 : 3 9 2
— Y[ Y2]°y[4] « ~y[2]°y[4] + —VyI[1]°y
4 2 16

~yi212y[3]y[4] + —y[1]y[3]?
[21°y[31y (4] + [
y yi3ly yily

3 1
11°y(2]+ —y(1)?y 217+ S y[1]y(2]
yi2l s Syity gymy

213

16 64

, 27 , 27 A A
y(3] +§y[1]y[2]y[31 ~§y[21 yI3)° +

3
y[11°y (4] +§y[112y[21 y[4]+

5
[31y(4] +ZY[1] YI2]y[3]y[4] +

4]+ 4 [31°y(4) Y117y 4]
“Zy21y(31? 1+ —y3)? = 2 24
y s yi2ly y 16‘/ s y

1 2 1 2 2 1 2 1 2 3 2 2
YY1y (417 2y 207y 1417+ 2y 1Y 8]Y (412 2y 2]V (31 Y1417+ =y (317y (4]

DA
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Y-Positivity Conjecture for Schur Functions

If |[A] = || and A\ = p, then

sa(x)  su(x)
S1) s | TV

is a polynomial in y with nonnegative coefficients.
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Y-Positivity Conjecture for Schur Functions

If |[A] = || and A\ = p, then

5(x)  su(x)
S,\(l)

Xi = Yit - yn
is a polynomial in y with nonnegative coefficients.

Proved for |A| <9 and all n. (CG + Renggyi (Emily) Xu)
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|—Symmetric Functions of Degree 3

"Ultimate” Problem: Classify all homogeneous symmetric
function inequalities.
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|—Symmetric Functions of Degree 3

More Modest Problem: Classify all homogeneous
symmetric function inequalities of degree 3.
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LSymmetric Functions of Degree 3

This has long been recognized as an important question.

Peoblem: Cia.on
m .Jamry all }""Wseneous

symmetric func.+ion requalitie

g of ﬂ'fsree e

www. hetemeel.com
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LSymmetric Functions of Degree 3

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric f(x) such that f(x) > 0 for all
x > 0. Such f’s will be called nonnegative.
» If f is homogeneous of degree 3 then
f(x) = ams(x) + Bma1(x) + ymi11(x), where the m's are
monomial symmetric functions.
» Suppose that f(x) has n variables. Then the correspondence
f «—— («, 8,7) parameterizes the set of nonnegative f's by a
cone in R3 with n extreme rays.



Inequalities for Symmetric Polynomials

LSymmetric Functions of Degree 3

Classifying all symmetric function inequalities of degree 3
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f(x) = ams(x) + Bma1(x) + ymi11(x), where the m's are
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» Suppose that f(x) has n variables. Then the correspondence
f «—— («, 8,7) parameterizes the set of nonnegative f's by a
cone in R3 with n extreme rays. This is not obvious.
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LSymmetric Functions of Degree 3

Classifying all symmetric function inequalities of degree 3

We seek to characterize symmetric f(x) such that f(x) > 0 for all
x > 0. Such f’s will be called nonnegative.
» If f is homogeneous of degree 3 then
f(x) = ams(x) + Bma1(x) + ymi11(x), where the m's are
monomial symmetric functions.
» Suppose that f(x) has n variables. Then the correspondence
f «—— («, 8,7) parameterizes the set of nonnegative f's by a
cone in R3 with n extreme rays. This is not obvious.

» We call it the positivity cone P, 3. (Structure depends on n.)
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LSymmetric Functions of Degree 3

Example:

For example, if n = 3, there are three extreme rays, spanned by

i(x) = mo(x) —6mi11(x)
h(x) = m(x)
f3(x) = m3(x) — ma1(x) + 3mi11(x).

If f is cubic, nonnegative, and symmetric in variables
x = (x1, %2, x3) then f may be expressed as a nonnegative linear
combination of these three functions.
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|—Symmetric Functions of Degree 3

Example:

If n = 25, the cone looks like this:
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LSymmetric Functions of Degree 3

Main Result:

Theorem: If x = (x1,x2,...,%,), and f(x) is a symmetric function
of degree 3, then f(x) is nonnegative if and only if f(17) > 0 for
k=1,...,n where 17 = (1,...,1,0,...,0), with k ones and
(n — k) zeros.
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Main Result:
Theorem: If x = (x1, x2,...,Xp), and f(x) is a symmetric function
of degree 3, then f(x) is nonnegative if and only if f(17) > 0 for
k=1,...,n where 17 = (1,...,1,0,...,0), with k ones and
(n — k) zeros.
Example: If x = (x1, x2, x3) and
f(x) = m3(x) — mo1(x) + 3my11(x), then

£(1,0,0) = 1
f(1,1,0) = 2-2=0
f(1,1,1) = 3-6+3=0
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LSymmetric Functions of Degree 3

Main Result:

Theorem: If x = (x1, x2,...,Xp), and f(x) is a symmetric function
of degree 3, then f(x) is nonnegative if and only if f(17) > 0 for
k=1,...,n where 17 = (1,...,1,0,...,0), with k ones and

(n — k) zeros.

Example: If x = (x1, x2, x3) and

f(x) = m3(x) — mo1(x) + 3my11(x), then

£(1,0,0) = 1
f(1,1,0) = 2-2=0
f(1,1,1) = 3-6+3=0

NOTES:

» The inequality f(x) > 0 is known as Schur’s Inequality (HLP).

» The statement analogous to the above theorem for degree
d > 3 is false.
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LSymmetric Functions of Degree 3

Application: A positive function that is not y-positive

Again take f(x) = m3(x) — mo1(x) + 3m111(x), but with n =5
variables.

Then £(1,0,0,0,0) = 1, £(1,1,0,0,0) = 0, £(1,1,1,0,0) = 0,

f(1,1,1,1,0) =4, f(1,1,1,1,1) = 15. Hence, by the Theorem,
f(x) > 0 for all x > 0.
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Application: A positive function that is not y-positive

Again take f(x) = m3(x) — mo1(x) + 3m111(x), but with n =5
variables.

Then £(1,0,0,0,0) = 1, £(1,1,0,0,0) = 0, f(1,1,1,0,0) = 0,
f(1,1,1,1,0) =4, f(1,1,1,1,1) = 15. Hence, by the Theorem,
f(x) > 0 for all x > 0.

However, y-substitution give f(y) =

outiz Y113 +2y[117y (2] +y (112 (3] +y[1]y[2) y[3] +Y[2]1°y[3] 2y (1] y[2] ¥ [4] +
2y[2)%y[4) +4y[1]y[3]y[4] +8Y[2]y[3]y[4] +6y[3]°y[4] +3y([1]y(4]2+6Y[2] y[4)*+
9y (3] y[417+4y[41°-y[1)1%y (5] +3y[1]y(2]y(5]+3y[2]°y[5] +8Yy[1]y(3]y[5] +
16y (2] y(3]y[5] +12y(3)2y (5] +13y[1] y[4] y[5] +26Y[2] y[4)y[5] +39y[3]y[4]y[5] +
26y [4)7y (5] +9y[1]y[5]°+18y(2]y[5]°+27y([3]y(5]*+36y[4]y(5]%+15y(5]°

which has exactly one negative coefficient, —y[1]%y[5].
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Reference:

> ‘“Inequalities for Symmetric Functions of Degree 3", with
Jeffrey Kroll, Jonathan Lima, Mark Skandera, and Rengyi Xu
(to appear).

Available on request, or at www.haverford.edu/math/cgreene.
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