Derangements and Cubes

Gary Gordon

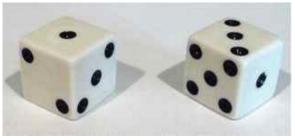
Department of Mathematics Lafayette College

Joint work with Liz McMahon

イロト 不得 とくほと くほとう

3

Problem How many ways can you roll a die so that *none* of its faces are in the same position?



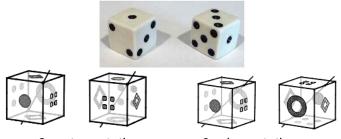
Before

After

イロン 不得 とくほ とくほとう

ъ

Problem How many ways can you roll a die so that *none* of its faces are in the same position?



8 vertex rotations

6 edge rotations

・ 回 ト ・ ヨ ト ・ ヨ ト

Direct Isometries corresponding to face derangements

Answer: 14

Derangements

Hatcheck Problem How many ways can we return *n* hats to *n* people so that no one receives her own hat?

A *derangement* of a set *S* is a permutation with no fixed points.

Theorem

The number of derangements
$$d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$$
. Thus,
 $d_n/n! \rightarrow e^{-1} \approx 0.367879...$

Theorem

Recursion:
$$d_n = (n-1)(d_{n-1} + d_{n-2})$$

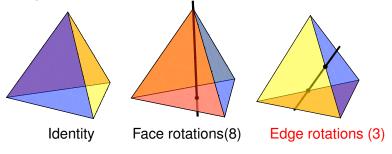
イロト イポト イヨト イヨト

Geometry of derangements

Geometric Fact

Derangements of $[n] \leftrightarrow$ isometries of the regular (n-1)-simplex in which every one of the *n* facets is moved.

In \mathbb{R}^3 , regular tetrahedron has 4! isometries – Rotations



・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Geometry of derangements

Geometric Fact

Derangements of $[n] \leftrightarrow$ isometries of the regular (n-1)-simplex in which every one of the *n* facets is moved.

Reflections and rotary reflections Reflections (6) Rotary reflections (6) **Derangements** 3 edge rotations and 6 rotary reflections: $d_4 = 9$

(신문) (문)

Cubes and coats

Couples Coatcheck Problem *n* couples each check their two coats at the beginning of a party; the attendant puts a couple's 2 coats on a single hanger.

- Attendant randomly selects a hanger;
- Attendant randomly hands a coat from that hanger to each person in the couple.

How many ways can the coats be returned so that no one gets their own coat back?

イロト イポト イヨト イヨト

Cubes and coats

Definition

c-derangements: Let \hat{d}_n be the number of ways to return the coats so that no one receives their own coat.

Facts:

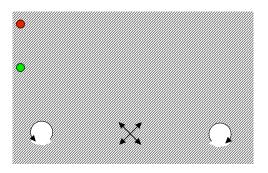
- There are 2ⁿn! ways to return the 2n coats.
- There are 2^{*n*}*n*! isometries of an *n*-cube.
- The number of coat derangements \hat{d}_n is the same as the number of facet derangements of the *n*-cube.

ヘロト ヘ戸ト ヘヨト ヘヨト

Squares

 $\hat{d}_{2} = 5$

Deranging the edges of a square.



The 5 edge derangements of a square.

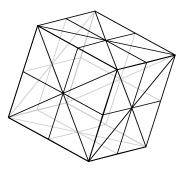
Gordon & McMahon Derangements and Cubes

★ Ξ → ★ Ξ → .

Isometries of the cube

Fact: There are $2^33! = 48$ isometries of a cube.

- Direct
 - The identity;
 - 8 vertex rotations of 120° and 240°;
 - 6 180° edge rotations;
 - 9 rotations through the centers of opposite faces.
- Indirect
 - 9 reflections
 - 15 rotary reflections



ヘロン 人間 とくほ とくほ とう

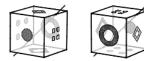
ъ

Direct face derangements

Direct isometries

- The identity;
- 8 vertex rotations of 120° and 240°;
- 6 180° edge rotations;
- 9 rotations through the centers of opposite faces.

8 vertex rotations



6 edge rotations

(4) E > (4) E > (1)

Direct Isometries corresponding to face derangements

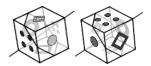
Indirect face derangements

Central inversion ($z \leftrightarrow -z$)

Reducible rotary reflection (6)

Irreducible rotary reflection (8)

 $\hat{d}_3 = 14 + 15 = 29$



イロト イポト イヨト イヨト

Formulas

Theorem

Let \hat{d}_n be the number of facet derangements of the n-cube.

•
$$\hat{d}_n = 2^n n! \sum_{k=0}^n \frac{(-1)^k}{2^k k!}$$
 Compare: $d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$

• $\hat{d}_n = \sum_{k=0}^n {n \choose k} 2^k d_k$, where $d_n = (ordinary)$ derangements.

• Recursion: $\hat{d}_n = (2n-1)\hat{d}_{n-1} + (2n-2)\hat{d}_{n-2}$

Compare: $d_n = (n-1)(d_{n-1} + d_{n-2})$

イロン 不良 とくほう 不良 とうせい

Data

Probabilistic interpretation

In the coatcheck problem, the probability that no one receives their own coat approaches $e^{-1/2} \approx 0.6065 \dots as n \to \infty$. [Compare: $d_n \to e^{-1} \approx 0.3679 \dots$]

Derangement numbers

n	0	1	2	3	4	5	6
d _n	1	0	1	2	9	44	265
\hat{d}_n	1	1	5	29	233	2329	27,949

Rates of convergence

$$\frac{d_6}{6!} - \frac{1}{e} = 1.76 \times 10^{-4} \qquad \qquad \frac{\hat{d}_6}{2^6 6!} - \frac{1}{\sqrt{e}} = 1.46 \times 10^{-6}$$

Gordon & McMahon

Derangements and Cubes

More data

Ordinary derangements

Direct isometries \leftrightarrow even permutations Indirect isometries \leftrightarrow odd permutations

Number of even and odd derangements for $n \leq 7$.

n	1	2	3	4	5	6	7
d _n	0	1	2	9	44	265	1854
en	0	0	2	3	24	130	930
On	0	1	0	6	20	135	924
$e_n - o_n$	0	-1	2	-3	4	-5	6

・ 回 ト ・ ヨ ト ・ ヨ ト

More more data

Hypercube facet derangements

Direct isometries \leftrightarrow 'even' permutations Indirect isometries \leftrightarrow 'odd' permutations

Number of even and odd hypercube derangements for $n \leq 7$.

n	1	2	3	4	5	6	7
<i>d_n</i>	1	5	29	233	2329	27,949	391,285
ên	0	3	14	117	1164	13,975	195,642
Ôn	1	2	15	116	1165	13,974	195,643
$\hat{e}_n - \hat{o}_n$	-1	1	-1	1	-1	1	-1

・聞き ・ヨト ・ヨト

Direct and indirect facet derangements

Theorem

Let \hat{e}_n and \hat{o}_n be the number of direct and indirect facet derangements of a cube, resp. Then

$$\hat{\boldsymbol{e}}_n-\hat{\boldsymbol{o}}_n=(-1)^n.$$

Proof idea

● Each facet derangement ↔ signed permutation matrix.

$$A = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \leftrightarrow (11^*)(22^*)(345^*)(3^*4^*5)$$

ヘロン 人間 とくほ とくほ とう

ъ

$$\hat{\boldsymbol{e}}_n-\hat{\boldsymbol{o}}_n=(-1)^n.$$

• Easy fact:
$$det(A) = \pm 1$$
.

- An isometry is direct iff det(A) = 1.
- Find the first row k with $a_{k,k} = 0$.

 $\hat{\boldsymbol{e}}_n-\hat{\boldsymbol{o}}_n=(-1)^n.$

• Change the sign of the only non-zero entry in row *k* to produce a new matrix *A*':

 $\begin{array}{ccccc} A & & A' \\ \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \\ & & A \leftrightarrow (11^*)(22^*)(345^*)(3^*4^*5) \\ & & A' \leftrightarrow (11^*)(22^*)(34^*53^*45^*) \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$$\hat{\boldsymbol{e}}_n-\hat{\boldsymbol{o}}_n=(-1)^n.$$

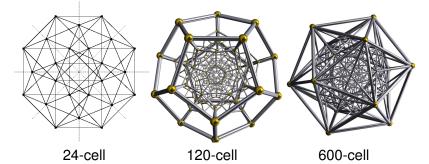
In this example, A is direct and A' is indirect. In general, this involution (almost) gives a 1-1 correspondence between direct and indirect facet-derangements.

- Central inversion \leftrightarrow the matrix -I.
- *n* even \leftrightarrow central inversion is direct.
- $n \text{ odd} \leftrightarrow \text{central inversion is indirect.}$

・ 同 ト ・ 国 ト ・ 国 ト …

1

Future projects - 4 dimensions



- Find the number of vertex, edge, 2-dimensional and 3-dimensional face derangement numbers for the 24-cell and the 120-cell.
- For each class of derangements, count the direct and indirect isometries.

イロト イポト イヨト イヨト