The shortest path poset of finite Coxeter Groups

Saúl A. Blanco

Cornell University
Fall Eastern Section Meeting of the AMS
Penn State, October 24-25

Coxeter Groups

Groups with presentation

$$
\left.\langle S|\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e, \text { for all } s, s^{\prime} \in S\right\rangle
$$

where

- $m(s, s)=1$
- $m\left(s, s^{\prime}\right)=m\left(s^{\prime}, s\right) \geq 2$ for $s \neq s^{\prime}$
- $m\left(s, s^{\prime}\right)=\infty$ means that there is no relation between s and s^{\prime}.

Examples.

- $\mathbb{Z}_{2}=\left\langle s \mid s^{2}=1\right\rangle$.
- The dihedral group of order $2 m$.
$I_{2}(m)=\left\langle s_{1}, s_{2} \mid\left(s_{1} s_{2}\right)^{m}=\left(s_{2} s_{1}\right)^{m}=s_{1}^{2}=s_{2}^{2}=1\right\rangle$. When $m \geq 3$, this is the group of symmetries of the m-gon.
- The symmetric group.
$A_{n-1}=S_{n}=\left\langle s_{1}, s_{2}, \ldots, s_{n-1} \mid\left(s_{i} s_{j}\right)^{m\left(s_{i}, s_{j}\right)}\right\rangle$, where $s_{i}=(i, i+1), m\left(s_{i}, s_{i+1}\right)=3$ and otherwise $m\left(s_{i}, s_{j}\right)=2$ for $i<j$.

Basic Definitions

- Each $w \in W$ can be expressed as $w=s_{1} s_{2} \ldots s_{n}$ with $s_{i} \in S$. If n is minimal, then $s_{1} s_{2} \ldots s_{n}$ is a reduced expression for w. In this case, we define the length function by $\ell(w)=n$.
- $T(W)=\left\{w s w^{-1} \mid w \in W, s \in S\right\}$ is the set of reflections of (W, S).
- Bruhat Order: Let $v, w \in W$. We say that $v \leq w$ if and only if there exist $t_{1}, \ldots, t_{k} \in T$ so that $v t_{1} t_{2} \cdots t_{k}=w$ with $\ell\left(v t_{1}\right)>\ell(v)$ and $\ell\left(v t_{1} \cdots t_{i}\right)>\ell\left(v t_{1} \cdots t_{i-1}\right)$ for $i>1$.
- If W is finite, then there exists a maximal-length word w_{0}^{W}; that is, $\ell(w) \leq \ell\left(w_{0}^{W}\right)$ for all $w \in W$.
- If $|W|<\infty$, then $\ell\left(w_{0}^{W}\right)=|T(W)|$.

Bruhat Graph

The directed graph (V, E) consisting of $V=W$ and $(u, v) \in E$ if $\ell(u)<\ell(v)$ and there exists $t \in T$ with $u t=v$ is called the Bruhat graph.

For example, consider S_{3} with generators $s_{1}=(1,2)$, $s_{2}=(2,3)$, with labeling $1 \rightarrow s_{1}, 2 \rightarrow s_{1} s_{2} s_{1}, 3 \rightarrow s_{2}$

Reflection Order

A reflection order Is a total order $<_{T}$ on the reflections of W so that for any dihedral reflection subgroup W^{\prime} (i.e, W^{\prime} has two generators, $x, y \in T$), then either

$$
x<_{T} x y x<_{T} x y x y x<_{T} \ldots<_{T} y x y x y<_{T} y x y<_{T} y
$$

or

$$
y<T y x y<T y x y x y<T \ldots<T x y x y x<T x y x<T x
$$

where x and y are the generators of W^{\prime}.

Complete cd-index

Fix a reflection ordering $<_{\tau}$. Consider a chain (path) C in the Bruhat graph of $[u, v]$ labeled by reflections, say

$$
\boldsymbol{C}=\left(t_{1}, t_{2}, \ldots, t_{k}\right)
$$

The descent set of C is

$$
D(C)=\left\{i \in[k-1] \mid t_{i+1}<_{T} t_{i}\right\}
$$

The complete cd-index encodes the descent sets of all the Bruhat paths.

Complete cd-index

The encoding is done as follows: Let $\Delta=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ be a path of length k from u to v. Then define $w(\Delta)=x_{1} x_{2} \cdots x_{k-1}$ where

$$
x_{i}= \begin{cases}\mathbf{a} & \text { if } t_{i}<_{T} t_{i+1}(\text { for ascent }) \\ \mathbf{b} & \text { if } t_{i+1}<_{T} t_{i}\end{cases}
$$

Now consider the polynomial $\sum_{\Delta} w(\Delta)$. Set

$$
\begin{aligned}
& \mathbf{c}=\mathbf{a}+\mathbf{b} \\
& \mathbf{d}=\mathbf{a b}+\mathbf{b a}
\end{aligned}
$$

After the substitution, $\sum_{\Delta} w(\Delta)$ becomes a polynomial with variables \mathbf{c} and \mathbf{d}. This is denoted by $\widetilde{\psi}_{u, v}$, and it is called the complete cd-index of $[u, v]$.

Example

Consider S_{3} with generators $s_{1}=(1,2)$ and $s_{2}=(2,3)$, and reflection ordering

$$
s_{1}=(1,2)<T S_{1} S_{2} s_{1}=(1,3)<T S_{2}=(2,3) .
$$

A bigger example

$\tilde{\psi}_{12435,53142}=c^{5}+6 c d c^{2}+6 c^{2} d c+3 d c^{3}+3 c^{3} d+7 c d^{2}+$ $+7 d^{2} c+6 d c d+c^{3}+2 d c+2 c d$

Shortest Path Poset of W

If W is a finite Coxeter group, we can form a poset $S P(W)$ with the shortest paths of W. For example, consider the Bruhat graph of B_{2} (signed permutations of two elements)

12

$S P(W)$ is a gra
The absolute length of $w \in W$ is the minimal number of reflections t_{1}, \ldots, t_{k} so that $t_{1} t_{2} \cdots t_{k}=w$. We write $\ell_{T}(w)=k$.

Bruhat Order for A_{2}
Absolute Order for A_{2}

$S P\left(A_{n-1}\right)$

How to describe the shortest paths from e to
$w_{0}^{A_{n-1}}=n n-1 \ldots 21$? .

Let $r_{i}=(i n+1-i)$ and $k=\left\lfloor\frac{n}{2}\right\rfloor$. Then
Theorem
If $t_{1} t_{2} \cdots t_{k}=w_{0}^{A_{n-1}}$ then

- $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}=\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$
- $t_{i} t_{j}=t_{j} t_{i}$ for all i, j
- $\left(t_{\sigma(1)}, t_{\sigma(2)}, \ldots, t_{\sigma(k)}\right)$ is a path in $B\left(A_{n-1}\right)$ for all $\sigma \in A_{n-1}$.

Corollary
$S P\left(A_{n-1}\right) \cong$ Boolean (k), the Boolean poset of rank k (poset of subsets of $\{1, \ldots, k\}$ ordered by inclusion).

Example: B_{2}

$S P\left(B_{2}\right)$ is formed by two copies of Boolean(2) that share the smallest and biggest elements.

In general, we have

Theorem
Let W be finite Coxeter group, w_{0} the longest element in W, and $\ell_{0}=\ell_{T}\left(w_{0}\right)$. If $t_{1} t_{2} \cdots t_{\ell_{0}}=w_{0}$ then
(a) $t_{i} t_{j}=t_{j} t_{i}$ for $1 \leq i, j \leq \ell_{0}$. In particular $t_{\tau(1)} t_{\tau(2)} \cdots t_{\tau\left(\ell_{0}\right)}=w_{0}$ for all $\tau \in A_{\ell_{0}-1}$.
(b) $\left(t_{\tau(1)}, t_{\tau(2)}, \ldots, t_{\tau\left(\ell_{0}\right)}\right)$ is a path in the Bruhat graph of W for all $\tau \in A_{\ell_{0}-1}$

Corollary (SP(W))
$S P(W)$ is formed by α_{W} Boolean posets of rank ℓ_{0} (that share the smallest and biggest elements).

W	$\operatorname{rank}(S P(W))$	\# of Boolean posets
A_{n}	$\left\lfloor\frac{n}{2}\right\rfloor$	1
B_{n}	n	b_{n}
D_{n}	n if n is even; $n-1$ if n is odd	d_{n}
$I_{2}(m)$	$2 m$ even; 1 m odd	$\frac{m}{2} m$ even; 1 m odd
F_{4}	2	1
H_{3}	3	5
H_{4}	4	75
E_{6}	4	3
E_{7}	7	135
E_{8}	8	2025

$$
\begin{aligned}
& b_{n}=1+\sum_{j=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{j!} \prod_{i=0}^{j-1}\binom{n-2 i}{2} \\
& d_{n}=\frac{1}{\left\lfloor\frac{m}{2}\right\rfloor!} \prod_{i=0}^{\left\lfloor\frac{m}{2}\right\rfloor-1}\binom{n-2 i}{2}, m=n \text { if } n \text { is even. Otherwise } m=n-1 .
\end{aligned}
$$

cd-index of Boolean(k)

Let $\psi($ Boolean (k)) be the cd-index of Boolean(k) (that is, the regular cd-index of the Eulerian poset Boolean (k). Then Ehrenborg and Readdy show that
$\psi($ Boolean $(1))=1$
$\psi($ Boolean $(k))=\psi($ Boolean $(k-1)) \cdot \mathbf{c}+G(\psi($ Boolean $(k-1))$
G is the derivation (derivation means $G(x y)=x G(y)+G(x) y)$ $G(\mathbf{c})=\mathbf{d}$ and $G(\mathbf{d})=\mathbf{c d}$.
For example

$$
\begin{aligned}
& \psi(\text { Boolean }(2))=\mathbf{c} \\
& \psi(\text { Boolean }(3))=\mathbf{c}^{2}+\mathbf{d} \\
& \left.\psi(\text { Boolean }(4))=\mathbf{c}^{\mathbf{3}}+\mathbf{2 (c d}+\mathbf{d c}\right)
\end{aligned}
$$

Theorem

The lowest-degree terms of $\widetilde{\psi}_{e, w_{0}}$ are given by
$\alpha_{W} \psi\left(\operatorname{Boolean}\left(\ell_{T}\left(w_{0}\right)\right)\right)$ for some $\alpha_{W} \in \mathbb{Z}$.

Corollary

The lowest-degree terms of $\widetilde{\psi}_{e, w_{0}}$ are minimized (component-wise) by $\psi\left(\right.$ Boolean $\left.\left(\ell_{0}\right)\right)$.

This corollary is true for the lowest degree terms of $\psi_{e, v}$ if [$c^{\ell_{0}-1}$] $=1$, where $\left[c^{k}\right]$ is denotes the coefficient of c^{k} in $\psi_{e, v}$.

Conjecture: Corollary holds for $\widetilde{\psi}_{u, v}$.

