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Coxeter Groups

Groups with presentation
(S (ss)™5) = g, forall s,s" € S)

where
> m(s,s) =1
» m(s,s') =m(s',s) >2fors# ¢
» m(s,s’) = co means that there is no relation between s
and s



Examples.

> Zo=(s|s?=1).

» The dihedral group of order 2m.
lo(m) = (51,82 | (5152)" = (5251)™ = §§ = s5 = 1). When
m > 3, this is the group of symmetries of the m-gon.

» The symmetric group.
An_1=Sn=(S1,82,...,Sn_1 | (Sis))™%)), where
si= (i,i+1), m(s;, si+1) = 3 and otherwise m(s;, s;) = 2
fori <j.



Basic Definitions

» Each w € W can be expressed as w = 5155 ... s, with
s; € S. If nis minimal, then s;s5 ... s, is a reduced
expression for w. In this case, we define the length
function by /(w) = n.

» T(W)={wsw ' |we W,se S}is the set of reflections
of (W, S).

» Bruhat Order: Let v, w € W. We say that v < w if and only
if there exist ty,...,t € T so that vy - - - tx = w with
l(vty) > L(v)and £(vty -- - &) > O(vty - -~ ti_q) for i > 1.

» If W is finite, then there exists a maximal-length word w,";
thatis, ¢(w) < ¢(wy") forall w € W.

> If W] < oo, then ¢(wV) = | T(W)].



Bruhat Graph

The directed graph (V, E) consisting of V = W and (u,v) € E
if /(u) < ¢(v) and there exists t € T with ut = v is called the
Bruhat graph.

For example, consider S; with generators s; = (1,2),
S = (2,3), with labeling1 — s1,2 — $15,51,3 — S

§251852 = 515251




Reflection Order

A reflection order Is a total order <+ on the reflections of W so
that for any dihedral reflection subgroup W’ (i.e, W’ has two
generators, x, y € T), then either

X <T XYX <T XYXYX <7 ... <T YXYXy <1 yXy <ty
or
Y <TYXY <T YXYXY <T ... <T XYXYX <1 XyX <1 X

where x and y are the generators of W'.



Complete cd-index

Fix a reflection ordering <. Consider a chain (path) C in the
Bruhat graph of [u, v| labeled by reflections, say

The descent set of C is

D(C) ={ielk=1]]ti <78}

The complete cd-index encodes the descent sets of all the
Bruhat paths.



Complete cd-index

The encoding is done as follows: Let A = (#, 5, ..., %) be a
path of length k from u to v. Then define w(A) = xyxo - - - Xk_1
where

- Ja ifti <7 tiy4(for ascent)
: b if t,'+1 <7t

Now consider the polynomial > , w(A). Set
c=a+b

d=ab + ba

After the substitution, ), w(A) becomes a polynomial with
variables ¢ and d. This is denoted by v, ,, and it is called the
complete ed-index of [u, v].



Example

Consider Sz with generators s; = (1,2) and s, = (2, 3), and

reflection ordering

S1=(1,2) <r 518281 = (1,3) <7 52 = (2,3).

s28183 = 515251 S1 <7 815951 <7 89
123 a’
131 ab
313 ba
321 b?
2 1
¢€,518251 - 02 + 1




A bigger example

YZ12435753142 = CS + 60d02 + 6020'0 + 3d03 + 303d + 7Cd2+
+7d?c + 6dcd + ¢ + 2dc + 2¢cd



Shortest Path Poset of W

If W is a finite Coxeter group, we can form a poset SP(W) with
the shortest paths of W. For example, consider the Bruhat
graph of B, (signed permutations of two elements)
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SP(W)is a gra
The absolute length of w € W is the minimal number of
reflections tq,.... 4 sothat tjtp - - - txy = w. We write /7(w) = k.

5159281
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S9 §152851 S1
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Bruhat Order for As Absolute Order for As



SP(An_1)

How to describe the shortest paths from e to
An—1

wy"'=nn-1..217
Letri=(i n+1—i)and k= [5]. Then
Theorem p
Iftity-- -t = wy" ' then
> {t1,t2,...,tk}:{r1,r2,...,rk}
> it = tit; for all i, j
> (ta(1)v ta(z), ceey ta(k)) is apath in B(An,1) foralloc € A,_1.

Corollary

SP(An_1) = Boolean(k), the Boolean poset of rank k (poset of
subsets of {1,. .., k} ordered by inclusion).



Example: B

{12}

{ 1}\/{2}

SP(By) is formed by two copies of Boolean(2) that share the
smallest and biggest elements.



In general, we have

Theorem

Let W be finite Coxeter group, wy the longest element in W,
andéo = ET(W()). Iftylo - -- tgo =W then

(@) tity = Gty for 1 < i, j < lo. In particular t.1yt,2) - t(,) = Wo
forall T € Ay, 1.

(b) (t:(1y; tr(2); - - -+ tr(ey)) IS @ path in the Bruhat graph of W for
allr e A40,1

Corollary (SP(W))

SP(W) is formed by oy Boolean posets of rank {y (that share
the smallest and biggest elements).



w rank(SP(W)) # of Boolean posets
An 15] 1
Bn n bn
D, | nifniseven;n—1ifnisodd dn

lo(m) 2 meven; 1 modd 2 meven; 1 modd
Fa 2 1
Hs 3 5
Hy 4 75
Ee 4 3
E; 7 135
Eg 8 2025

5] | j—1
1 n—2i
=103 5 11 (7, %)




cd-index of Boolean(k)
Let ¢/(Boolean(k)) be the cd-index of Boolean(k) (that is, the
regular cd-index of the Eulerian poset Boolean(k). Then
Ehrenborg and Readdy show that

(Boolean(1))= 1
y(Boolean(k))= 1(Boolean(k — 1)) - ¢ + G(¢(Boolean(k — 1))

G is the derivation (derivation means G(xy) = xG(y) + G(x)y)
G(c) =d and G(d) = cd.

For example
y(Boolean(2)) = ¢
¢ (Boolean(3)) = ¢ +d
y(Boolean(4)) = ¢3 + 2(cd + dc)
Theorem

The lowest-degree terms of {567% are given by
aw(Boolean(l1(wp))) for some ay € Z.



Corollary
The lowest-degree terms of 1 , are minimized
(component-wise) by 1)(Boolean((y)).

This corollary is true for the lowest degree terms of v\ if
[c’o~1] = 1, where [cX] is denotes the coefficient of cX in 1 .

Conijecture: Corollary holds for JW.
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