The shortest path poset of finite Coxeter Groups

Saúl A. Blanco

Cornell University

Fall Eastern Section Meeting of the AMS Penn State, October 24–25

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Coxeter Groups

Groups with presentation

$$\langle S \mid (ss')^{m(s,s')} = e$$
, for all $s, s' \in S
angle$

where

• $m(s,s') = m(s',s) \ge 2$ for $s \ne s'$

► m(s, s') = ∞ means that there is no relation between s and s'.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Examples.

$$\blacktriangleright \mathbb{Z}_2 = \langle s \mid s^2 = 1 \rangle.$$

The dihedral group of order 2m.
I₂(m) = ⟨s₁, s₂ | (s₁s₂)^m = (s₂s₁)^m = s₁² = s₂² = 1⟩. When m ≥ 3, this is the group of symmetries of the m-gon.

► The symmetric group.

$$egin{aligned} & A_{n-1} = S_n = \langle s_1, s_2, \dots, s_{n-1} \mid (s_i s_j)^{m(s_i, s_j)} \rangle, \ \text{where} \ & s_i = (i, i+1), \ m(s_i, s_{i+1}) = 3 \ \text{and otherwise} \ m(s_i, s_j) = 2 \ & \text{for } i < j. \end{aligned}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Basic Definitions

► Each $w \in W$ can be expressed as $w = s_1 s_2 ... s_n$ with $s_i \in S$. If *n* is minimal, then $s_1 s_2 ... s_n$ is a reduced expression for *w*. In this case, we define the length function by $\ell(w) = n$.

T(*W*) = {*wsw*⁻¹ | *w* ∈ *W*, *s* ∈ *S*} is the set of reflections of (*W*, *S*).

- ▶ Bruhat Order: Let $v, w \in W$. We say that $v \le w$ if and only if there exist $t_1, \ldots, t_k \in T$ so that $vt_1 t_2 \cdots t_k = w$ with $\ell(vt_1) > \ell(v)$ and $\ell(vt_1 \cdots t_i) > \ell(vt_1 \cdots t_{i-1})$ for i > 1.
- If W is finite, then there exists a maximal-length word w₀^W; that is, ℓ(w) ≤ ℓ(w₀^W) for all w ∈ W.
- If $|W| < \infty$, then $\ell(w_0^W) = |T(W)|$.

Bruhat Graph

The directed graph (V, E) consisting of V = W and $(u, v) \in E$ if $\ell(u) < \ell(v)$ and there exists $t \in T$ with ut = v is called the Bruhat graph.

For example, consider S_3 with generators $s_1 = (1, 2)$, $s_2 = (2, 3)$, with labeling $1 \rightarrow s_1, 2 \rightarrow s_1 s_2 s_1, 3 \rightarrow s_2$

Reflection Order

A reflection order Is a total order $<_T$ on the reflections of W so that for any dihedral reflection subgroup W' (i.e, W' has two generators, $x, y \in T$), then either

 $x <_T xyx <_T xyxyx <_T \dots <_T yxyxy <_T yxy <_T y$

or

 $y <_T yxy <_T yxyxy <_T \ldots <_T xyxyx <_T xyx$

(日) (日) (日) (日) (日) (日) (日)

where x and y are the generators of W'.

Complete **cd**-index

Fix a reflection ordering $<_{T}$. Consider a chain (path) *C* in the Bruhat graph of [u, v] labeled by reflections, say

 $\boldsymbol{C} = (t_1, t_2, \ldots, t_k)$

The descent set of *C* is

$$D(C) = \{i \in [k-1] \mid t_{i+1} <_{T} t_i\}$$

(ロ) (同) (三) (三) (三) (○) (○)

The complete **cd**-index encodes the descent sets of all the Bruhat paths.

Complete cd-index

The encoding is done as follows: Let $\Delta = (t_1, t_2, ..., t_k)$ be a path of length *k* from *u* to *v*. Then define $w(\Delta) = x_1 x_2 \cdots x_{k-1}$ where

$$x_i = \begin{cases} \mathbf{a} & \text{if } t_i <_{\mathcal{T}} t_{i+1} \text{(for ascent)} \\ \mathbf{b} & \text{if } t_{i+1} <_{\mathcal{T}} t_i \end{cases}$$

Now consider the polynomial $\sum_{\Delta} w(\Delta)$. Set

c = a + bd = ab + ba

After the substitution, $\sum_{\Delta} w(\Delta)$ becomes a polynomial with variables **c** and **d**. This is denoted by $\tilde{\psi}_{u,v}$, and it is called the complete **cd**-index of [u, v].

Example

Consider S_3 with generators $s_1 = (1, 2)$ and $s_2 = (2, 3)$, and reflection ordering

 $s_1 = (1,2) <_T s_1 s_2 s_1 = (1,3) <_T s_2 = (2,3).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A bigger example

$\widetilde{\psi}_{12435,53142} = c^5 + 6cdc^2 + 6c^2dc + 3dc^3 + 3c^3d + 7cd^2 + 7d^2c + 6dcd + c^3 + 2dc + 2cd$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Shortest Path Poset of W

If W is a finite Coxeter group, we can form a poset SP(W) with the shortest paths of W. For example, consider the Bruhat graph of B_2 (signed permutations of two elements)

(日) (日) (日) (日) (日) (日) (日)

SP(W) is a gra The absolute length of $w \in W$ is the minimal number of reflections t_1, \ldots, t_k so that $t_1 t_2 \cdots t_k = w$. We write $\ell_T(w) = k$.

Bruhat Order for A₂

Absolute Order for A₂

・ロト・「聞・・「問・・「問・・」 しゃくの

$SP(A_{n-1})$

How to describe the shortest paths from *e* to $w_0^{A_{n-1}} = n n - 1 \dots 2 1$?.

Let
$$r_i = (i \ n+1-i)$$
 and $k = \lfloor \frac{n}{2} \rfloor$. Then

Theorem

If
$$t_1 t_2 \cdots t_k = w_0^{A_{n-1}}$$
 then
• $\{t_1, t_2, \dots, t_k\} = \{r_1, r_2, \dots, r_k\}$
• $t_i t_j = t_j t_i$ for all i, j
• $(t_{\sigma(1)}, t_{\sigma(2)}, \dots, t_{\sigma(k)})$ is a path in $B(A_{n-1})$ for all $\sigma \in A_{n-1}$.

Corollary

 $SP(A_{n-1}) \cong Boolean(k)$, the Boolean poset of rank k (poset of subsets of $\{1, \ldots, k\}$ ordered by inclusion).

 $SP(B_2)$ is formed by two copies of *Boolean*(2) that share the smallest and biggest elements.

In general, we have

Theorem

Let W be finite Coxeter group, w_0 the longest element in W, and $\ell_0 = \ell_T(w_0)$. If $t_1 t_2 \cdots t_{\ell_0} = w_0$ then (a) $t_i t_j = t_j t_i$ for $1 \le i, j \le \ell_0$. In particular $t_{\tau(1)} t_{\tau(2)} \cdots t_{\tau(\ell_0)} = w_0$ for all $\tau \in A_{\ell_0-1}$. (b) $(t_{\tau(1)}, t_{\tau(2)}, \dots, t_{\tau(\ell_0)})$ is a path in the Bruhat graph of W for all $\tau \in A_{\ell_0-1}$

Corollary (SP(W))

SP(W) is formed by α_W Boolean posets of rank ℓ_0 (that share the smallest and biggest elements).

(ロ) (同) (三) (三) (三) (三) (○) (○)

W	rank(SP(W))	# of Boolean posets
A _n	$\lfloor \frac{n}{2} \rfloor$	1
B _n	п	b _n
D _n	<i>n</i> if <i>n</i> is even; $n - 1$ if <i>n</i> is odd	d _n
$I_2(m)$	2 <i>m</i> even; 1 <i>m</i> odd	$\frac{m}{2}$ <i>m</i> even; 1 <i>m</i> odd
F ₄	2	1
H ₃	3	5
H_4	4	75
E ₆	4	3
E ₇	7	135
E ₈	8	2025

$$b_n = 1 + \sum_{j=1}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{j!} \prod_{i=0}^{j-1} \binom{n-2i}{2}$$
$$d_n = \frac{1}{\lfloor \frac{m}{2} \rfloor!} \prod_{i=0}^{\lfloor \frac{m}{2} \rfloor-1} \binom{n-2i}{2}, \ m = n \text{ if } n \text{ is even. Otherwise } m = n-1.$$

cd-index of *Boolean*(*k*)

Let $\psi(Boolean(k))$ be the **cd**-index of Boolean(k) (that is, the regular **cd**-index of the Eulerian poset Boolean(k). Then Ehrenborg and Readdy show that

 $\psi(\textit{Boolean}(1)) = 1$

 $\psi(Boolean(k)) = \psi(Boolean(k-1)) \cdot \mathbf{c} + G(\psi(Boolean(k-1)))$

G is the derivation (derivation means G(xy) = xG(y) + G(x)y) $G(\mathbf{c}) = \mathbf{d}$ and $G(\mathbf{d}) = \mathbf{cd}$. For example

$$\psi(Boolean(2)) = \mathbf{c}$$

 $\psi(Boolean(3)) = \mathbf{c}^2 + \mathbf{d}$
 $\psi(Boolean(4)) = \mathbf{c}^3 + \mathbf{2}(\mathbf{cd} + \mathbf{dc})$

Theorem

The lowest-degree terms of $\widetilde{\psi}_{e,w_0}$ are given by $\alpha_W \psi(Boolean(\ell_T(w_0)))$ for some $\alpha_W \in \mathbb{Z}$.

Corollary

The lowest-degree terms of $\tilde{\psi}_{e,w_0}$ are minimized (component-wise) by $\psi(\text{Boolean}(\ell_0))$.

This corollary is true for the lowest degree terms of $\psi_{e,v}$ if $[c^{\ell_0-1}] = 1$, where $[c^k]$ is denotes the coefficient of c^k in $\psi_{e,v}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjecture: Corollary holds for $\overline{\psi}_{u,v}$.