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The monomial basis

The monomial symmetric functions are indexed by partitions

A:()‘17>‘27"'7>\k) )\iZ)\i—H

my = monomials whose exponent sequence is

a rearrangement of \

M1y =(XEXo + X1 X5) + (X1 X5 + X2x3) + ...

+ (X5X3 + X2X5) + . ..
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The complete homogeneous basis

The (complete) homogeneous symmetric function is defined by

hi=Y_  all monomials of degree i

hx = hy By, - By,

hgy = M) + Me2,1) + M(1,1.1)

ha2,1) = hahzhy
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The Hall inner product

(Due to Philip Hall 1959) Defined by

1 ifA=p
0 otherwise

(hx, m#> = {

If {£\}, {f} are dual bases and

f)\ = Z M)\,umu
I

then

My =Y " My,fy
A
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Semistandard Young tableaux

A left and bottom justified array of numbers, weakly increasing
across rows and strictly increasing up columns.

Example

= wol
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Shape: (5,4, 4,2)
Weight: (2,3,2,1,1,2,3,1)
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The Schur basis

The Schur functions are given by

Sy = Z Xweight( T)
TeSSYT(N)

S@) = X2 Xxo+ Xy X2+ 2X1 Xo X3+
2 (2] 3] |2
1[1] 1]2] 1[2][1]3]

Fact: Schur functions are a self-dual basis of the symmetric
functions.
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The Kostka numbers

Definition

The Kostka numbers are defined by

Ky, = # of SSYT(), 1)

It follows that

S\ = Z K,\yumu
o

h,u = Z K)\’#S)\
A

The matrix K}, ,, is non-negative, integral and uni-triangular.
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Interpretations as

¢ Irreducible characters of GL,

¢ Irreducible characters of S,

e Cohomology classes of the Grassmannian
among others.
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Hall-Littlewood functions

The Hall-Littlewood functions form a basis for the symmetric
functions with coefficient ring Q[t]. Interpretations as

e Deformation of Weyl character formula

e Graded S, character of certain cohomology rings

o Representation theory of matrices over finite fields
among others.
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Fact: Hall-Littlewood functions interpolate between the Schur
and homogeneous symmetric functions.
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Hall-Littlewood functions

Fact: Hall-Littlewood functions interpolate between the Schur
and homogeneous symmetric functions.

Haa0) X t] = sa1.1) + (B + 1)s@1) + 253
Ha,1,)[X; 0] = (11,1
Hia,1,0) X5 1] = 8(1,1,1) +28(2,1) + S3) = h(1,1,1)
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Hall-Littlewood functions

The fact that H,,[X; 1] = h, together with the fact
h# = Z K)\’HS)\
A
implies
HL.[X; 1] = Z Ky u(t)sA
A

where K, (1) = K) .. This led Foulkes to conjecture

K)\"u‘ ( t) — Z tstat( T)

TeSSYT(\,u)
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Hall-Littlewood functions

Theorem (Lascoux-Schiitzenberger)
K, i (t) _ Z tcharge( T)
TESSYT (M)

where charge is a non-negative integer statistic defined on
tableaux.
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Hall-Littlewood functions

Theorem (Lascoux-Schiitzenberger)

K, M(t) _ Z tcharge( T)
TESSYT(\p)
where charge is a non-negative integer statistic defined on
tableaux.
haq1) = S(1,1,1)+ 2521+ 5(3)
o
3 2
1]2][1]3]

H(1,1,1)[X; t] = lLOS(1,1,1)1L (tz + t)S(2’1)+ I‘SS(s)
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The charge statistic

3[4
2/213
1[1]1]2]
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Hall-Littlewood polynomials

The charge statistic

\V)
=N
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Schubert varieties
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Grothendieck functions

Introduced by Lascoux-Schiitzenberger (1982)

Represent K-theory classes of structure sheaves of
Schubert varieties

Not homogeneous.

Sign alternating by degree

G1) = S(1) — S(1,1) T S(1,1,1) — S(A,1,4,4) T - -~
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Grothendieck functions

Theorem (Buch 2002)
Gy = Z Ly |M| \Alm

where L, , is the number of set-valued tableaux of shape \
and weight p.
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Set-valued tableaux

234/ 45
1112] 3

shape(T) = (3,2)
weight(T) = (2,2,2,2,1)

From
G)\ — Z L/\ ‘:U" ‘)‘lm

we see
Gy, = s) = higher degree terms
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Dual Grothendieck functions

The expansion
Gy = Z Ly 1)lkl= \Alm

gives an implicit expansion of the dual basis by
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Dual Grothendieck functions

The expansion
Gy = Z Ly 1)lkl= \Alm

gives an implicit expansion of the dual basis by

h, = Z Ly u(— 1) g,

9(2,1) = S2,1) t+ S(2)

Fact: g, is a positive, finite sum of Schur functions.
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Hall-Littlewoods and dual Grothendieck functions

The expansion

b= Lau(=1)H-Pg,

A

raises the question: Is the matrix L, ,(t) defined by
H. X t] = ZLA 1)lul= gy

nice?



Grothendieck functions

Hall-Littlewoods and dual Grothendieck functions

Theorem (B-M)
Hu[X: ] = ZLA —1)lel=Rig,

where

LA,# ( t) _ Z tcharge( T) )
TeSVT(\,u)

Compare with
Hu[X 1] =) Kau(t)sy
A

where

KA,# ( t) — Z tcharge( T) )
TeSSYT(A,pu)



Grothendieck functions

Hall-Littlewoods and dual Grothendieck functions

Example

h@2) =
9(5) +9@4,1) +9(3,2) —9(3,1) —94)

il

2 2[2 2 .
11]1]2] [1[1]1] [1][1}12

—_

He2)[ X t] =
(2 i i i —
95 +1°9(4,1) +1°9(3,2) 9i,1) 9(4)

v
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The definition of charge is almost identical to the classical case.
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Lam and Pylyavskyy gave a monomial expansion of the g,.
g\ = Z M)\,umu
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M, ., is the number of reverse plane partitions of shape A and
“‘weight” p.
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Dual Grothendieck functions

Lam and Pylyavskyy gave a monomial expansion of the g,.
g\ = Z M)\,umu
w

M, ., is the number of reverse plane partitions of shape A and
“‘weight” p.

= DIN|W
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Grothendieck functions

To show
H.[X; t] = ZLA 1)lel=N g,

we show

Ha X = L) vy, m,
A v

by a sign-reversing involution (S, T) < (S, T)
S: SVT of shape A and weight

T: RPP of shape X\ and weight v

sgn(S, T) : (—1)!k=I

Fixed points: |u| = |A| = |v|



Grothendieck functions

Final Thoughts

g and H,[X; t] do not seem to “live in the same world”, yet the
combinatorics relating them is very natural.

Why?
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