Expanding Hall-Littlewood polynomials in the dual Grothendieck basis

Jason Bandlow (Joint work with Jennifer Morse)

University of Pennsylvania

October 23, 2009

Outline

- Classical symmetric function theory
- Pall-Littlewood polynomials
- Grothendieck functions

What is a symmetric function?

- Formal power series in $\mathbb{Q}[x_1, x_2, ...]$ which is
- invariant under permutation of indices.

What is a symmetric function?

- Formal power series in $\mathbb{Q}[x_1, x_2, ...]$ which is
- invariant under permutation of indices.

Example

$$x_1^2 + x_2^2 + x_3^2 + \dots \in \Lambda$$

 $x_1 + 2x_2 + x_3 + 2x_4 + \dots \notin \Lambda$

What are they good for?

What are they good for?

- Representation Theory
- Geometry/Topology
- Mathematical Physics

What are they good for?

- Representation Theory
- Geometry/Topology
- Mathematical Physics
- Beautiful Mathematics

The monomial basis

The monomial symmetric functions are indexed by partitions

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 $\lambda_i \ge \lambda_{i+1}$

$$m_{\lambda} = \sum$$
 monomials whose exponent sequence is a rearrangement of λ

The monomial basis

The monomial symmetric functions are indexed by partitions

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 $\lambda_i \ge \lambda_{i+1}$

$$extit{m}_{\lambda} = \sum$$
 monomials whose exponent sequence is a rearrangement of λ

Example

$$m_{(2,1)} = (x_1^2 x_2 + x_1 x_2^2) + (x_1 x_3^2 + x_1^2 x_3) + \dots + (x_2^2 x_3 + x_2 x_3^2) + \dots$$

The complete homogeneous basis

The (complete) homogeneous symmetric function is defined by

$$h_i = \sum$$
 all monomials of degree i

$$h_{\lambda}=h_{\lambda_1}h_{\lambda_2}\dots h_{\lambda_k}$$

The complete homogeneous basis

The (complete) homogeneous symmetric function is defined by

$$h_i = \sum$$
 all monomials of degree i

$$h_{\lambda}=h_{\lambda_1}h_{\lambda_2}\dots h_{\lambda_k}$$

Example

$$h_{(3)} = m_{(3)} + m_{(2,1)} + m_{(1,1,1)}$$

 $h_{(4,2,1)} = h_4 h_2 h_1$

The Hall inner product

(Due to Philip Hall 1959) Defined by

$$\langle h_{\lambda}, m_{\mu}
angle = egin{cases} 1 & ext{if } \lambda = \mu \ 0 & ext{otherwise} \end{cases}$$

The Hall inner product

(Due to Philip Hall 1959) Defined by

$$\langle h_{\lambda}, m_{\mu}
angle = egin{cases} 1 & ext{if } \lambda = \mu \ 0 & ext{otherwise} \end{cases}$$

Proposition

If $\{f_{\lambda}\}$, $\{f_{\lambda}^*\}$ are dual bases and

$$f_{\lambda} = \sum_{\mu} M_{\lambda,\mu} m_{\mu}$$

then

$$h_{\mu} = \sum_{\lambda} M_{\lambda,\mu} f_{\lambda}^*$$

Semistandard Young tableaux

A left and bottom justified array of numbers, weakly increasing across rows and strictly increasing up columns.

Example

Semistandard Young tableaux

A left and bottom justified array of numbers, weakly increasing across rows and strictly increasing up columns.

Example

7	7			
5	6	6	8	
3	3	4	7	
1	1	2	2	2

Shape: (5, 4, 4, 2)

Semistandard Young tableaux

A left and bottom justified array of numbers, weakly increasing across rows and strictly increasing up columns.

Example

7	7			
5	6	6	8	
3	3	4	7	
1	1	2	2	2

Shape: (5, 4, 4, 2)

Weight: (2, 3, 2, 1, 1, 2, 3, 1)

Grothendieck functions

The Schur basis

Definition

The Schur functions are given by

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} x^{weight(T)}$$

The Schur basis

Definition

The Schur functions are given by

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} x^{weight(T)}$$

Example

The Schur basis

Definition

The Schur functions are given by

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} x^{weight(T)}$$

Example

Fact: Schur functions are a self-dual basis of the symmetric functions.

The Kostka numbers

Definition

The Kostka numbers are defined by

$$K_{\lambda,\mu} = \# \text{ of SSYT}(\lambda,\mu)$$

It follows that

$$s_{\lambda} = \sum_{\mu} \mathit{K}_{\lambda,\mu} \mathit{m}_{\mu}$$

The Kostka numbers

Definition

The Kostka numbers are defined by

$$K_{\lambda,\mu} = \# \text{ of SSYT}(\lambda,\mu)$$

It follows that

$$s_{\lambda} = \sum_{\mu} \mathit{K}_{\lambda,\mu} \mathit{m}_{\mu}$$

$$h_{\mu} = \sum_{\lambda} K_{\lambda,\mu} s_{\lambda}$$

The Kostka numbers

Definition

The Kostka numbers are defined by

$$K_{\lambda,\mu} = \# \text{ of SSYT}(\lambda,\mu)$$

It follows that

$$s_{\lambda} = \sum_{\mu} extstyle extstyle$$

$$h_{\mu} = \sum_{\lambda} K_{\lambda,\mu} s_{\lambda}$$

The matrix $K_{\lambda,\mu}$ is non-negative, integral and uni-triangular.

Interpretations as

- Irreducible characters of GL_n
- Irreducible characters of S_n
- Cohomology classes of the Grassmannian

Interpretations as

- Irreducible characters of GL_n
- Irreducible characters of S_n
- Cohomology classes of the Grassmannian among others.

The *Hall-Littlewood functions* form a basis for the symmetric functions with coefficient ring $\mathbb{Q}[t]$. Interpretations as

- Deformation of Weyl character formula
- Graded S_n character of certain cohomology rings
- Representation theory of matrices over finite fields among others.

Fact: Hall-Littlewood functions interpolate between the Schur and homogeneous symmetric functions.

Fact: Hall-Littlewood functions interpolate between the Schur and homogeneous symmetric functions.

Example

$$H_{(1,1,1)}[X;t] = s_{(1,1,1)} + (t^2 + t)s_{(2,1)} + t^3 s_{(3)}$$

$$H_{(1,1,1)}[X;0] = s_{(1,1,1)}$$

$$H_{(1,1,1)}[X;1] = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)} = h_{(1,1,1)}$$

The fact that $H_{\mu}[X; 1] = h_{\mu}$ together with the fact

$$h_{\mu} = \sum_{\lambda} extstyle extstyle$$

implies

$$extstyle \mathcal{H}_{\mu}[extstyle X;t] = \sum_{\lambda} extstyle K_{\lambda,\mu}(t) extstyle s_{\lambda}$$

where $K_{\lambda,\mu}(1) = K_{\lambda,\mu}$. This led Foulkes to conjecture

$$\mathcal{K}_{\lambda,\mu}(t) = \sum_{T \in \mathcal{SSYT}(\lambda,\mu)} t^{\mathit{stat}(T)}$$

Theorem (Lascoux-Schützenberger)

$$\mathcal{K}_{\lambda,\mu}(t) = \sum_{T \in \mathcal{SSYT}(\lambda,\mu)} t^{\mathit{charge}(T)}$$

where charge is a non-negative integer statistic defined on tableaux.

Theorem (Lascoux-Schützenberger)

$$extstyle extstyle ext$$

where charge is a non-negative integer statistic defined on tableaux.

 $H_{(1,1,1)}[X;t] = t^0 s_{(1,1,1)} + (t^2 + t) s_{(2,1)} +$

Example

$$h_{(1,1,1)} = \qquad s_{(1,1,1)} + \qquad 2s_{(2,1)} + \qquad s_{(3)}$$

 $t^3 s_{(3)}$

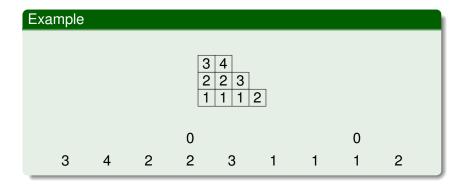
 3 4

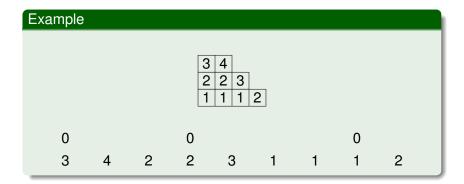
 2 2 3

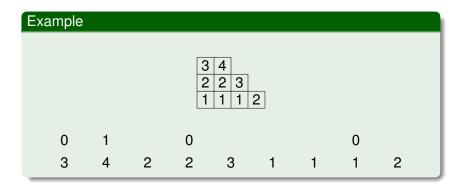
 1 1 1 2

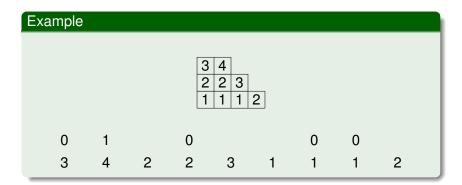
3 4 2 2 3 1 1 1 2

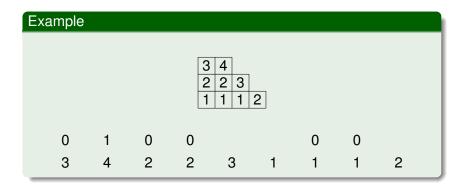
Exa	mple								
3 4 2 2 3 1 1 1 2									
								0	
	3	4	2	2	3	1	1	1	2

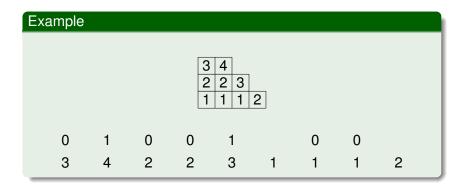














Classical symmetric function theory

Example

1 0 0 1 0 4 2 2 3 1 3

charge(T) = 3

- Introduced by Lascoux-Schützenberger (1982)
- Represent K-theory classes of structure sheaves of Schubert varieties
- Not homogeneous.
- Sign alternating by degree

- Introduced by Lascoux-Schützenberger (1982)
- Represent K-theory classes of structure sheaves of Schubert varieties
- Not homogeneous.
- Sign alternating by degree

Example

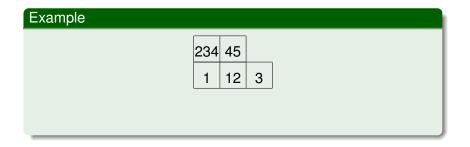
$$G_{(1)} = s_{(1)} - s_{(1,1)} + s_{(1,1,1)} - s_{(1,1,1,1)} + \dots$$

Theorem (Buch 2002)

$$G_{\lambda} = \sum L_{\lambda,\mu} (-1)^{|\mu|-|\lambda|} m_{\mu}$$

where $L_{\lambda,\mu}$ is the number of **set-valued tableaux** of shape λ and weight μ .

Set-valued tableaux



Set-valued tableaux

Example

$$shape(T) = (3,2)$$

weight(T) = (2,2,2,2,1)

Set-valued tableaux

Example

$$shape(T) = (3,2)$$

weight(T) = (2,2,2,2,1)

From

$$G_{\lambda} = \sum_{\mu} L_{\lambda,\mu} (-1)^{|\mu| - |\lambda|} m_{\mu}$$

we see

 $G_{\lambda} = s_{\lambda} \pm \text{ higher degree terms}$

Dual Grothendieck functions

The expansion

$$G_{\lambda} = \sum_{\mu} L_{\lambda,\mu} (-1)^{|\mu| - |\lambda|} m_{\mu}$$

gives an implicit expansion of the dual basis by

$$h_{\mu} = \sum_{\lambda} \mathcal{L}_{\lambda,\mu} (-1)^{|\mu| - |\lambda|} g_{\lambda}$$

Dual Grothendieck functions

The expansion

$$G_{\lambda} = \sum_{\mu} L_{\lambda,\mu} (-1)^{|\mu| - |\lambda|} m_{\mu}$$

gives an implicit expansion of the dual basis by

$$h_{\mu} = \sum_{\lambda} L_{\lambda,\mu} (-1)^{|\mu|-|\lambda|} g_{\lambda}$$

Example

$$g_{(2,1)} = s_{(2,1)} + s_{(2)}$$

Fact: g_{λ} is a positive, finite sum of Schur functions.

Hall-Littlewoods and dual Grothendieck functions

The expansion

$$h_{\mu} = \sum_{\lambda} L_{\lambda,\mu} (-1)^{|\mu|-|\lambda|} g_{\lambda}$$

raises the question: Is the matrix $L_{\lambda,\mu}(t)$ defined by

$$H_{\mu}[X;t] = \sum_{\lambda} L_{\lambda,\mu}(t) (-1)^{|\mu|-|\lambda|} g_{\lambda}$$

nice?

Hall-Littlewoods and dual Grothendieck functions

Theorem (B-M)

$$H_{\mu}[X;t] = \sum_{\lambda} L_{\lambda,\mu}(t) (-1)^{|\mu|-|\lambda|} g_{\lambda}$$

where

$$L_{\lambda,\mu}(t) = \sum_{T \in \mathit{SVT}(\lambda,\mu)} t^{\mathit{charge}(T)}.$$

Compare with

$$H_{\mu}[X;t] = \sum_{\lambda} \mathcal{K}_{\lambda,\mu}(t) s_{\lambda}$$

where

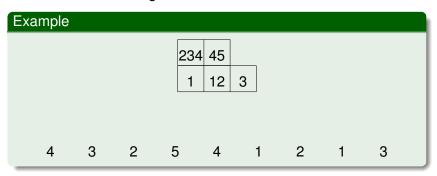
$$K_{\lambda,\mu}(t) = \sum_{T \in SSYT(\lambda,\mu)} t^{charge(T)}.$$

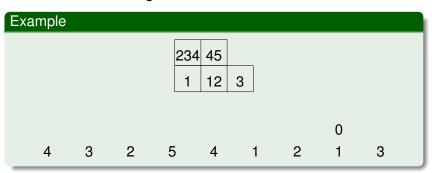
Hall-Littlewoods and dual Grothendieck functions

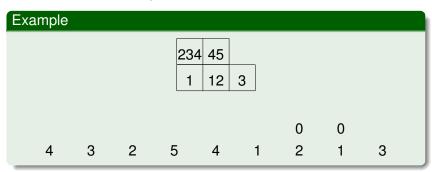
Example

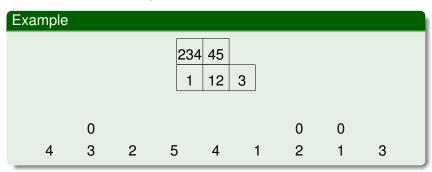
$$egin{aligned} h_{(3,2)} &= \ & g_{(5)} &+ g_{(4,1)} &+ g_{(3,2)} & - g_{(3,1)} & - g_{(4)} \end{aligned}$$

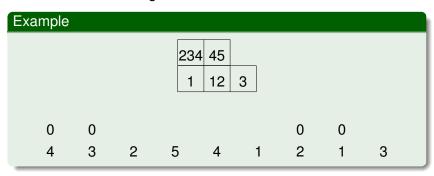
$$H_{(3,2)}[X;t] =$$
 $t^2 g_{(5)} + t^1 g_{(4,1)} + t^0 g_{(3,2)} - t^0 g_{(3,1)} - t^1 g_{(4)}$

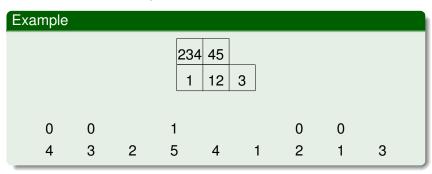


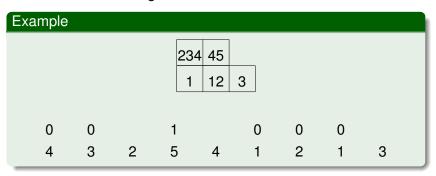


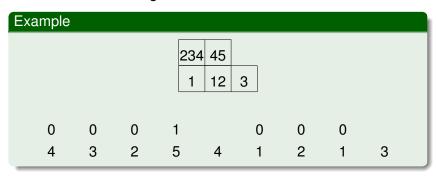


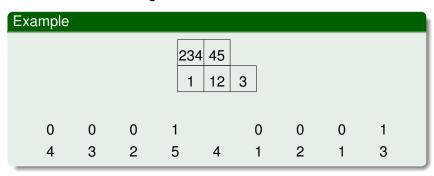












Dual Grothendieck functions

Lam and Pylyavskyy gave a monomial expansion of the g_{λ} .

$$g_{\lambda} = \sum_{\mu} M_{\lambda,\mu} m_{\mu}$$

 $M_{\lambda,\mu}$ is the number of *reverse plane partitions* of shape λ and "weight" μ .

Dual Grothendieck functions

Lam and Pylyavskyy gave a monomial expansion of the g_{λ} .

$$g_{\lambda} = \sum_{\mu} M_{\lambda,\mu} m_{\mu}$$

 $\emph{M}_{\lambda,\mu}$ is the number of *reverse plane partitions* of shape λ and "weight" μ .

Example

shape(
$$T$$
) = (4,3,3,2)
weight(T) = (4,3,1,1)

To show

$$H_{\mu}[X;t] = \sum_{\lambda} L_{\lambda,\mu}(t) (-1)^{|\mu|-|\lambda|} g_{\lambda}$$

we show

$$H_{\mu}[X;t] = \sum_{\lambda} L_{\lambda,\mu}(t) (-1)^{|\mu|-|\lambda|} \sum_{\nu} M_{\lambda,\nu} m_{\nu}$$

by a sign-reversing involution $(S, T) \leftrightarrow (S, T)$

 ${\cal S}$: SVT of shape λ and weight μ

T: RPP of shape λ and weight ν

 $sgn(S,T): (-1)^{|\mu|-|\lambda|}$

Fixed points: $|\mu| = |\lambda| = |\nu|$

Final Thoughts

 g_{λ} and $H_{\mu}[X;t]$ do not seem to "live in the same world", yet the combinatorics relating them is very natural.

Why?