A Pieri rule for skew shapes

Sami H. Assaf
Massachusetts Institute of Technology
sassaf@math.mit.edu

Peter R.W. McNamara
Bucknell University

October 24, 2009

Schur functions

A partition is a weakly decreasing sequence of nonnegative integers.

5				
4	7	8	9	
2	4	7	7	
1	1	3	4	

$$
T \in \operatorname{SSYT}(5,4,4,1)
$$

A semi-standard Young tableau of shape λ is a filling of the cells of λ with positive integers such that entries weakly increase along rows and strictly increase up columns.

The Schur function $s_{\lambda}(X)$ is the generating function for $\operatorname{SSYT}(\lambda)$,

$$
s_{\lambda}(X)=\sum_{T \in \operatorname{SSYT}(\lambda)} X^{T} \quad \text { where } X^{T}=x_{1}^{\# 1^{\prime} s} x_{2}^{\# 2^{\prime} s} \ldots
$$

skew Schur functions

For $\mu \subset \lambda$, the skew diagram λ / μ is the set theoretic difference $\lambda-\mu$.

3				
1	3	3	7	
		1	4	
			2	5

$$
T \in \operatorname{SSYT}((5,4,4,1) /(3,2))
$$

A semi-standard Young tableau of (skew) shape ν is a filling of the cells of ν with positive integers such that entries weakly increase along rows and strictly increase up columns.

The skew Schur function $s_{\nu}(X)$ is the generating function for $\operatorname{SSYT}(\nu)$,

$$
s_{\nu}(X)=\sum_{T \in \operatorname{SSYT}(\nu)} X^{T}, \quad \text { where } X^{T}=x_{1}^{\# 1^{\prime} s} x_{2}^{\# 2^{\prime} s} \ldots
$$

The Pieri rule gives a formula for expanding $s_{\lambda} s_{(n)}$ in terms of $\left\{s_{\mu}\right\}$.
Theorem. For λ a partition, we have

$$
s_{\lambda}(X) s_{(n)}(X)=\sum_{\lambda^{+} / \lambda} s_{n-\text { hor. strip }} s_{\lambda^{+}}(X),
$$

where λ^{+} / λ is a horizontal strip of size n.

Example: $s_{(3,2,2)} s_{(2)}=s_{(3,2,2,2)}+s_{(3,3,2,1)}+s_{(4,2,2,1)}+s_{(4,3,2)}+s_{(5,2,2)}$.

skew Pieri rule

Theorem. (Assaf-McNamara 2009) For λ / μ a skew diagram, we have

$$
s_{\lambda / \mu} s_{(n)}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda(n-k) \text {-hor. strip } \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}}
$$

with λ^{+} / λ a horizontal strip of size $n-k, \mu / \mu^{-}$a vertical strip of size k.
Example: $s_{322 / 11} s_{2}=s_{3222 / 11}+s_{3321 / 11}+s_{4221 / 11}+s_{432 / 11}+s_{522 / 11}$

$$
-s_{3221 / 1}-s_{332 / 1}-s_{422 / 1}+s_{322}
$$

Proof of the Pieri rule

Robinson-Schensted row insertion algorithm:

5						57				
4	7	8	9			4	4	8	9	
2	4	7	7			2	3	7	7	
1	1	3	4	7		1	1	2	4	7

Proposition. For any $T \in \operatorname{SSYT}(\lambda)$ and any $k, T \leftarrow k \in \operatorname{SSYT}(\lambda \cup \square)$. Moreover, this process is reversible.

Lemma. Repeated row insertions $T \leftarrow k_{1} \leftarrow k_{2} \leftarrow \cdots \leftarrow k_{n}$ add a horizontal strip of size n if and only if $k_{1} \leq k_{2} \leq \cdots \leq k_{n}$.

Theorem. The R-S row insertion algorithm gives a bijection

$$
\operatorname{SSYT}(\lambda) \times \operatorname{SSYT}(n) \stackrel{\sim}{\longleftrightarrow} \bigsqcup_{\lambda^{+} / \lambda} \underset{n-\text { hor. strip }}{ } \operatorname{SSYT}\left(\lambda^{+}\right)
$$

Row insertion for skew shapes

Slightly more general notion of R-S row insertion for skew shapes.

> internal insertion:

Proposition. External and internal row insertions are well-defined, reversible operations on SSYT of skew shape.

A sign-reversing involution

Construct a sign-reversing involution on $\operatorname{SSYT}\left(\lambda^{+} / \mu^{-}\right)$.

Proposition. A downward slide will remove a box of λ^{+} / λ and add a box to μ / μ^{-}with overall shape λ plus a horizontal strip minus μ minus a vertical strip. Moreover, this process is reversible.

Proof of the skew Pieri rule

Theorem. (Assaf-McNamara) Downward and upward slides establish a sign-reversing involution on

such that fixed points are in bijection with $\operatorname{SSYT}(\lambda / \mu) \times \operatorname{SSYT}(n)$.
Theorem.(Assaf-McNamara) For λ / μ a skew diagram, we have

$$
s_{\lambda / \mu} s_{(n)}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda(n-k) \text {-hor. strip } \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda+/ \mu^{-}},
$$

with λ^{+} / λ a horizontal strip of size $n-k, \mu / \mu^{-}$a vertical strip of size k.
Also a symmetric function proof by Thomas Lam based on the $n=1$ proof of Richard Stanley, using the Hall inner product.

The End

Preprint available on the arXiv:

Sami H. Assaf and Peter R.W. McNamara. A Pieri rule for skew shapes. arXiv:0908.0345

\mathbf{Y}	\mathbf{o}	\mathbf{u}

A skew Littlewood-Richardson rule

Conjecture. (Assaf-McNamara) For λ / μ and σ / τ,

$$
s_{\lambda / \mu} s_{\sigma / \tau}=\sum_{\substack{T^{+} \in \operatorname{SSYT}\left(\lambda^{+} / \lambda\right) \\ T^{-} \in \operatorname{ASSYT}\left(\mu / \mu^{-}\right)}}(-1)^{\mid \mu / \mu^{-}} s_{\lambda^{+} / \mu^{-}},
$$

summing over SSYTs T^{+}of shape λ^{+} / λ for some $\lambda^{+} \supseteq \lambda$, and ASSYTs T^{-}of shape μ / μ^{-}for some $\mu^{-} \subseteq \mu$, such that

- the content of $T^{-} \cup T^{+}$is the difference $\sigma-\tau$, and
- the reverse reading word of $\left(T^{-}, T^{+}\right)$is τ-Yamanouchi.

This conjecture was recently proven by Thomas Lam, Aaron Lauve and Frank Sottile in the general setting of Hopf Algebras:
T. Lam, A. Lauve and F. Sottile. Skew Littlewood-Richardson rules from Hopf algebras. arXiv:0908.3714

