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Abstract

It is well known that if a finite graded lattice of rank n is supersolvable, then it has
an EL-labelling where the labels along any maximal chain form a permutation of
{1,2,...,n}. We call such a labelling an S,, EL-labelling and we show that a finite
graded lattice of rank n is supersolvable if and only if it has such a labelling. This
result can be used to show that a graded lattice is supersolvable if and only if it has
a maximal chain of left modular elements.

We next study finite graded bounded posets that have S, EL-labellings and de-
scribe a type A 0-Hecke algebra action on their maximal chains. This action is local
and the resulting representation of these Hecke algebras is closely related to the flag
h-vector. We show that finite graded lattices of rank n, in particular, have such an
action if and only if they have an S,, EL-labelling.

Our next goal is to extend these equivalences to lattices that need not be graded
and, furthermore, to bounded posets that need not be lattices. In joint work with
Hugh Thomas, we define left modularity in this setting, as well as a natural extension
of S, EL-labellings, known as interpolating labellings. We also suitably extend the
definition of lattice supersolvability to arbitrary bounded graded posets. We show
that these extended definitions preserve the appropriate equivalences.

Finally, we move to the study of P-partitions. Here, edges are labelled as either
“strict” or “weak” depending on an underlying labelling of the elements of the poset.
A well-known conjecture of R. Stanley states that the quasisymmetric generating
function for P-partitions is symmetric if and only if P is isomorphic to a Schur labelled
skew shape poset. In characterizing these skew shape posets in terms of their local
structure, C. Malvenuto made significant progress on this conjecture. We generalize
the definition of P-partitions by letting the set of strict edges be arbitrary. Using
cylindric diagrams, we extend Stanley’s conjecture and Malvenuto’s characterization
to this setting. We conclude by proving both conjectures for large classes of posets.

Thesis Supervisor: Richard P. Stanley
Title: Levinson Professor of Applied Mathematics
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Chapter 1

Introduction

The study of edge labellings of partially ordered sets (posets) has its beginnings in
the work of Richard Stanley [35]. An edge labelling is nothing more than a map
from the edges of the Hasse diagram of a poset to the positive integers. Despite this
apparent simplicity, showing that a poset admits a particular type of edge labelling
can yield important information about its combinatorial and topological properties.
Perhaps the most successful such type of edge labelling is the class of EL-labellings,
defined by Anders Bjorner in [5] and motivated by examples from [35], [36] and [37].
If a poset has an EL-labelling, then we know that its associated simplicial complex is
shellable and hence Cohen-Macaulay. Furthermore, EL-labellings yield combinatorial
interpretations for important invariants of a poset, such as its Mobius function, flag
f-vector and flag h-vector. We will be interested in a particular subclass of EL-
labellings known as “S,, EL-labellings.” Their definition has additional combinatorial
appeal in that S,, EL-labellings of a poset are EL-labellings where the labels along
any maximal chain of the poset form a permutation of the set {1,2,...,n}.

In Chapter 2, we investigate the connection between S,, EL-labellings and a clas-
sical lattice property. Supersolvable lattices were introduced by Stanley in [36] as
a generalization of distributive lattices. Examples of supersolvable lattices that are
not necessarily distributive include the lattice of subgroups of a supersolvable group
(hence the terminology) and the lattice of partitions of a set. Using different termi-
nology, Stanley showed that supersolvable lattices admit S, EL-labellings. As our
first main result, we will show that the converse is also true and so a lattice is su-
persolvable if and only if it has an S,, EL-labelling. Before proving this result, we
give background, definitions and examples to fully explain and motivate the above
concepts. As an application, we give an example of how this characterization of lat-
tice supersolvability in terms of S,, EL-labellings can be used to give short alternative
proofs of otherwise difficult supersolvability results.

One of the tools used in Chapter 2 is a naturally defined action on the maximal
chains of a poset with an S, EL-labelling. This action has a number of desirable
properties. The first is that it is a local action, in that it only changes a maximal
chain in at most one place. Local actions on the maximal chains of a poset have
received considerable recent attention: see, for example, [16], [17], [34], [39] and [40].
Furthermore, as explained in proper detail in Section 2.5, the generators of our action
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satisfy essentially the same axioms as the generators of a particular Hecke algebra of
type A. We thus refer to the action as a “local #,(0) action.” Since we are working
with posets with S,, EL-labellings, our definition applies to all supersolvable posets.
The special case of this action for a distributive lattice is discussed in [11].

We begin Chapter 3 by giving an introduction to quasisymmetric functions, as
there are two quasisymmetric functions related to our action. The first, defined by
Richard Ehrenborg [13], depends only on the flag f-vector, or flag h-vector, of the
poset in question. The second is what is known as the “characteristic” of the character
of the defining representation of our local #,(0) action, as defined in [12] and [20].
Perhaps the most significant property of our action is that its two quasisymmetric
functions are essentially equal. Thus, we follow [34] and [39] in calling our action a
“good” H,(0) action. The primary aim of Chapter 3 is to determine what posets
have good H,(0) actions. Our main result of the chapter is that a lattice has a good
H,(0) action if and only if it has an S,, EL-labelling. In fact, our result holds for a
more general class of posets, and we discuss some examples and counterexamples in
Section 3.4. The work of Chapters 2 and 3, which also appears in a more concise form
as [27], brings together three seemingly different concepts from the theory of ordered
sets: supersolvability, edge labellings and actions on maximal chains.

As a consequence of our first two main results, we have given two new charac-
terizations of lattice supersolvability. In Section 4.1, we see that our results can be
used to give a third new characterization. Stanley showed in [36] that a supersolvable
lattice has a maximal chain of left modular elements. Applying a result of Larry
Liu [21], Hugh Thomas observed that we can now deduce that a graded lattice is
supersolvable if and only if it has such a left modular maximal chain. This is a con-
siderable strengthening of a result of Stanley [36] which says that these two properties
are equivalent in a semimodular lattice.

In Chapter 4, which is joint work with Thomas, we seek to extend our equiva-
lences to lattices which need not be graded and, furthermore, to posets which need
not be lattices. We define a natural extension of left modularity and we introduce
“interpolating labellings,” a natural extension of S, EL-labellings. We then show
the relevant desired result: an arbitrary bounded poset has a left modular maximal
chain if and only if it has an interpolating labelling. It is now natural to ask for an
appropriate extended definition of supersolvability. We conclude Chapter 4 by giving
such a definition and by showing that, for a bounded graded poset, supersolvabil-
ity, possessing a left modular maximal chain and having an S,, EL-labelling are all
equivalent properties.

Chapter 5 discusses the topic of P-partitions, which also has its beginnings in
[35]. While the material of this final chapter is essentially separate from that of the
earlier chapters, the work is similar in nature. First, quasisymmetric functions play a
prominent role and we show an explicit connection with Ehrenborg’s quasisymmetric
function. Secondly, P-partitions are also concerned with a certain type of labelling
of the edges of a poset. Indeed, we begin with a (vertex) labelled poset, and this la-
belling determines a designation of the edges of the poset as either “strict” or “weak.”
A P-partition can be defined to be a map from the elements of the poset to the posi-
tive integers that is order-preserving and that is strictly order preserving along strict

14



edges. Our object of study is a certain quasisymmetric generating function for all P-
partitions of a given poset. In fact, Ira Gessel’s original definition of quasisymmetric
functions [14] was motivated by this particular generating function. We wish to de-
termine the conditions on our poset which makes this generating function symmetric,
and a well-known conjecture of Stanley [35, page 81] states that the generating func-
tion is symmetric if and only if our poset is isomorphic to what is known as a “Schur
labelled skew shape” poset. For these skew shape posets, the generating functions
are precisely the skew Schur functions, which are known to be symmetric. The con-
jecture has been shown to be true by Stanley for posets with no strict edges and has
been verified by John Stembridge for all posets with at most seven elements. Given
that one would have to determine information on the global structure of our labelled
poset from the symmetry of its P-partition generating function, it is hardly surprising
that Stanley’s conjecture remains open. However, Claudia Malvenuto [25] provided
a far less daunting formulation of the conjecture by characterizing these skew shape
posets in terms of their local structure. Sections 5.1 and 5.2 give an exposition of this
background material.

From the definition of P-partitions, we see that they depend only on the desig-
nation of strict and weak edges, and not directly on the underlying labelling of the
poset. This suggests that we might take a poset with an arbitrary designation of
strict and weak edges and study the resulting natural generalization of P-partitions.
Using the idea of cylindric diagrams [30] (see also [2], [15]), we are led to an exten-
sion of Stanley’s conjecture for these generalized P-partitions. Our first result of this
chapter is to extend Malvenuto’s reformulation to this setting. Finally, we conclude
by proving Stanley’s conjecture and our generalized version for large classes of posets.

Our goal throughout is to give a self-contained exposition that would be accessible
to a graduate student with some familiarity with posets and basic combinatorics.
While we have aimed to give a clear formulation and proof of our main results, we
have also striven to display the results in a meaningful context by sharing intuition
and providing any necessary or especially relevant background.
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Chapter 2

EL-labellings and supersolvability

2.1 Preliminaries

We will write the cardinality of a set S as |S| or #S, and P, Z, Q and C will
denote the set of positive integers, integers, rational numbers and complex numbers,
respectively. For any positive integer n, we will write [n] for the set {1,2,...,n}, and
{a1,a9,...,a;}< will signify that a; < ay < -+ < a;. Throughout, we let s; denote
the permutation which transposes ¢ and 7 + 1, and composition of permutations will
be from right to left.

All of our posets will be finite. If z < y in a poset P and there does not exist z
in P such that x < z < y, then we say that y covers x and we write z < y. We will
write <y to mean that y either covers or equals z. Let £(P) = {(s,t) : s<t in P},
the set of edges of the Hasse diagram of P, and let M(P) denote the set of maximal
chains of P. (For undefined poset terminology, see Appendix A.) We will say that P
is bounded if it contains a unique minimal and a unique maximal element, denoted 0
and 1 respectively.

We now define one of our main objects of study: an edge labelling v of a poset P
is simply a function v : E(P) - Z. f m:s =2y <z; <--- <1z =t is a maximal

chain of the interval [s, t], then we write y(m) = (y(zo, 1), v(21, 22), - - ., Y(Th—1, Tk))-
The chain m is said to be increasing if y(zg, x1) < y(z1,22) < + -+ < y(x_1, 7%). We
define the descent set D(m) of an integer sequence m = (ay, as, . .., a;) by

D(ﬂ') = {Z ta; > ai—l—l}-
We define the set of inversions INV (w) of 7 by
INV(TF) = {(aj,a,-) 1< g, > aj}.

Suppose a poset P has an edge labelling v and m is a maximal chain of P. It is
natural to define the descent set of m to be the descent set of v(m) and the set of
inversions of m to be the set of inversions of y(m). We let <; denote lexicographic
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order on finite integer sequences, defined by:

(a1,az,...,a5) < (b1,b2,...,bg)
if either
(i) j<kand a; =b; fori=1,2,...,4, or
(ii) a; < b; for the least 7 satisfying a; # b;.

Finally, suppose P is a bounded graded poset of rank n. Let rk denote the rank
function of P, so rk(0) = 0 and rk(1) = n. If z < y in P, let rk(z,y) denote

rk(y) — rk(x).

2.2 EL-labellings

The idea of studying edge labellings of posets goes back to [35]. An important mile-
stone was Anders Bjorner’s introduction of EL-labellings.

Definition 2.2.1. Let P be a finite poset. An edge labelling v : £(P) — Z is called
an EL-labelling if the following two conditions are satisfied:

(i) Every interval [s,?] has exactly one increasing maximal chain m.
(ii) Any other maximal chain m’ of [s, ¢] satisfies y(m') > v(m).

This concept originates in [5] with motivating examples coming from [35] and
[36], which appear here as Examples 2.2.3 and 2.3.5 respectively. For the case when
P need not be graded, see [8, 9]. A poset P with an EL-labelling is said to be edge-
wise lexicographically shellable or EL-shellable. While this definition of EL-labellings
applies to any finite poset, for the remainder of this chapter we will only be concerned
with EL-labellings of bounded graded posets.

Example 2.2.2. Consider the poset B, the set of subsets of [n]. If y covers z in B,
then y — 2 = {i} for some i € [n] and we set y(z,y) = 7. This defines an EL-labelling
for B,,.

Example 2.2.3. Any finite distributive lattice is EL-shellable. Let L be a finite
distributive lattice of rank n. By the Fundamental Theorem of Finite Distributive
Lattices [4, p. 59, Thm. 3], that is equivalent to saying that L = J(P), the lattice
of order ideals of some n-element poset P. Let w : P — [n] be a linear extension of
P, i.e., any bijection labelling the vertices of P that is order-preserving (if a < bin P
then w(a) < w(b)). This labelling of the vertices of P defines a labelling of the edges
of J(P) as follows: if y covers z in J(P), then the order ideal corresponding to y is
obtained from the order ideal corresponding to x by adding a single element, labelled
by i, say. Then we set y(z,y) = i. This gives us an EL-labelling for L = J(P).
Figure 2-1 shows a labelled poset and its lattice of order ideals with the appropriate
edge labelling.
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Figure 2-1: An EL-labelling of a distributive lattice

The ubiquity and usefulness of EL-labellings arises from the fact that if P is EL-
shellable, then P is shellable and hence Cohen-Macaulay. Further information on
these concepts can be found in [5] and the highly recommended survey article [6].
EL-labellings also give a simple combinatorial interpretation of some fundamental
invariants of a poset, as we now explain.

Let P be a bounded graded poset of rank n and let S C [n — 1]. We define the
S-rank selected subposet Pg of P by

Ps={z € P:1k(z) € S}uU{0,1}

Notice that Pg is graded of rank |S| 4+ 1. Let ap(S) denote the number of maximal
chains of Pg. In other words,

ap(S)=#{0 <z <xy < <z < 1: {rk(z1),1k(z2),...,1k(zi5))} = S}.

The function ap : 2"~ — Z is known as the flag f-vector of P. It contains equivalent
information to the flag h-vector Sp of P defined by

Br(8) = Y _(=1) Tlap(T). (2.1)
TCS
By Inclusion-Exclusion, this is equivalent to the definition
ar(S) = 3 Br(T). (2.2)

TCS

The following result appears, in increasing order of generality, in [35], [36], [37]
and [5].

Theorem 2.2.4. Let P be a finite bounded graded poset of rank n with an EL-labelling
v. Then, for all S C [n — 1], Bp(S) is equal to the number of mazimal chains of P
with descent set S. In particular, Bp(S) > 0.

The proof below is modeled on Stanley’s proof of Theorem 3.13.2 in [38].

Proof. To each maximal chain ¢ : 0 = zp < 21 < --- < Tig|41 = 1 of Ps we wish
to associate a maximal chain m of P with descent set contained in S. Since 7 is an
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EL-labelling, the interval [x;, z;11] in P has exactly one increasing maximal chain m,;.
Thinking of chains in terms of their elements, we let

m=m0Um1U---Um|5‘.

It is clear that this gives a bijection between maximal chains of Ps and maximal
chains of P with descent set contained in S. Therefore, ap(S) equals the number of
maximal chains of P with descent set contained in S. Applying Inclusion-Exclusion,
we conclude that 5p(S) is the number of maximal chains of P with descent set equal
to S. O

Note. We only used property (i) of EL-labellings in this proof. Edge labellings with
this property are known as R-labellings.

Part of Stanley’s motivation for studying the flag h-vector was to obtain informa-
tion about the sign of the Mébius function of bounded graded posets. If x < y in a
poset P, then the Mobius function pp(z,y) is given by

pp(z,y) =co—c1+co—czg+---,

where ¢; is the number of chains z = 2y < 21 < --+ < x; = y of length 7 between z
and y. If P is graded and z < y, letting S = {rk(z) + 1, rk(z) +2,...,rk(y) — 1}, we
see that

pr(z,y) = Y (=) apy(T)

TCS

= (1) (1) Mgy ()

TCS

(_1)rk(w’y) B[z,y] (S)

Since every interval of an EL-shellable poset inherits an EL-labelling, we get
the following combinatorial interpretation of the Mobius function of an El-shellable
poset.

Corollary 2.2.5. Let P be a finite bounded graded poset with an EL-labelling .
When z < y in P, (=1) W up(z,y) is equal to the number of mazimal chains
T=xo< T <<z =y of [x,y] satisfying

Y(wo, x1) > y(@1,22) > - > Y(Th—1, Tk)-

In particular,
(=)™ @9 pp(z,y) > 0.

2.3 S, EL-labellings

The reader may have noticed that the two examples of EL-labellings given in the
previous section had the property that the labels along any maximal chain, when
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(@ (b)

Figure 2-2: Two posets that are EL-shellable but not snellable

read from bottom to top, formed a permutation. El-labellings with this property
will be a major focus of our work.

Definition 2.3.1. An EL-labelling v of a bounded graded poset P of rank n is said
to be an S,, EL-labelling if, for every maximal chain m : O=gp<ay < - <z =1
of P, the map sending i to y(z;_1, ;) is a permutation of [n]. In other words, v(m)
is an element of the permutation group S, written in the usual way.

If a poset P has an S,, EL-labelling, or snelling for short, then it is said to be S,
EL-shellable, or snellable for short. Note that the second condition in the definition
of an EL-labelling is redundant in this case.

Example 2.3.2. The posets shown in Figure 2-2 are seen to be EL-shellable. How-
ever, it can be shown that neither of them is snellable. Notice that the second poset,
unlike the first, is a lattice. It appears, together with this EL-labelling, in [32]. To
build some intuition for these labellings, it is worthwhile to see why these posets fail
to have snellings.

(a) We wish to give this poset a snelling . Without loss of generality, we can let
the maximal chain a < b < d < f be the increasing maximal chain. Since the
chain a < b < e < f must be labelled by a permutation, we must have that
{y(b,e),v(e, f)} = {2,3}. In fact, since b< d < f is the increasing chain in [b, 1],
we must have (b, e) = 3 and (e, f) = 2. Similarly, v(a, c) = 2 and (¢, d) = 1.
But then the maximal chain a < c¢<e < f will not be labelled by a permutation.

Note. This explanation highlights a useful fact about snellings: in intervals of rank 2
that are “diamond” shaped (i.e. have two elements of rank 1), opposite edges must
receive the same label.

(b) Again, suppose we wish to give this lattice a snelling . Since the interval [a, 1]
must have an increasing chain, we must have (b, 1) equaling 3 or 4. By the
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note above applied to the interval [c,1], we must also have v(c,d) € {3,4}.
Similarly, v(e, f) € {3,4} and (0, g) € {3,4}. But then it is impossible for the
interval [0, h] to have an increasing chain.

Before proceeding with examples, we present the following uniqueness result for
snellings.

Lemma 2.3.3. Let v and  be two S,, EL-labellings of a bounded graded poset P. If
v and ¢ have the same increasing mazimal chain, then v and § coincide.

Proof. Let m: 0 =20 <2, <--- <z, =1 be a maximal chain with lexicographically
minimal v labelling among those chains for which v and ¢ disagree. Since m is not the
increasing chain from 0 to 1 of 7, we can find an i such that v(z;_1, ;) > Y(2i, Tip1)-
Since the interval [z;_1,2;+1] must have an increasing chain, there exists a maximal
chain m’ of P which differs from m only a rank ¢ and which has labels from v which
are increasing in this interval. Then y(m') <; v(m), so v and § agree on m’. Since
the labelling of m’ determines the labelling of m, v and § must also agree on m. Thus
they agree everywhere. O

Example 2.3.4. We wish to look more closely at the snelling for distributive lattices
described in Example 2.2.3. Given a distributive lattice L = J(P), we would like
to be able to give it a snelling without referring to P. Pick any maximal chain
m:0=2¢<2, <---<x2, =1 of J(P) and let y(m) = (1,2,...,n). This determines a
linear extension of P which in turn determines a snelling for J(P) as in Example 2.2.3.
By Lemma 2.3.3, this is the only snelling of J(P) that satisfies y(m) = (1,2,...,n).

Let y < z be any edge of J(P) and suppose z —y = {i} as order ideals of P. Then
we have that

i=min{j:z;Vy >z}

since joins in J(P) are just set unions and the order ideal corresponding to z; is
{1,2,...,7}. This gives us a way to specify v without referring to P. Explicitly, for
y < zin L = J(P), setting

Y(y,2) =min{j : z; Vy > 2}

gives us the unique snelling of J(P) that has 0 = z¢<z; <---<z, = 1 as its increasing
maximal chain.

Example 2.3.5. The set of supersolvable lattices is our final example and is also the

example most relevant to our work. These lattices will be the subject of the next
section.

2.4 Supersolvable lattices

The following definition first appeared in [36].

22



Figure 2-3: A supersolvable lattice that is not distributive

Definition 2.4.1. A finite lattice L is said to be supersolvable if it contains a maximal
chain, called an M-chain of L, which together with any other chain in L generates a
distributive sublattice.

Supersolvable lattices can be thought of as a generalization of distributive lattices.
Indeed, this introduction of supersolvable lattices allowed Stanley to extend results for
distributive lattices from [35] to this larger class of lattices. One of these extensions
appears below as Theorem 2.4.7.

Example 2.4.2. Distributive lattices are supersolvable. This is a direct consequence
of the following lemma.

Lemma 2.4.3. Any sublattice of a distributive lattice is distributive.

Proof. Let L be a distributive sublattice. Recall that this is equivalent to the state-
ment that
zVyAz)=(@Vy AzV2) (2.3)

for all z,y,z in L. Let K be any sublattice of L and let  and y be elements of K.
By definition of K, x Vyy and 2 Ay y must be in K and must equal Vg y and x Ay
respectively. Therefore, (2.3) also holds in K for all elements z,y and z of K. a

Example 2.4.4. Figure 2-3 shows a supersolvable lattice with the M-chain indicated
by open dots. Since z,y and z do not satisfy Equation (2.3), this lattice is not
distributive. The sublattice generated by the M-chain and the chain z < w is shown
with bold edges, and is seen to be isomorphic to the distributive lattice of Figure 2-1.

Example 2.4.5. This example explains the terminology “supersolvable lattice.”

Definition 2.4.6. A finite group G is supersolvable if it has a sequence of subgroups
{e}cGicGC---CGp=G (2.4)

such that each G; is normal in G and G;,1/G; is cyclic of prime order.

As shown in [36, Example 2.5], the lattice of subgroups L(G) of a supersolvable
group G is a supersolvable lattice, with M-chain given by (2.4). In fact, as shown in
[5, Theorem 3.3], L(G) is supersolvable if and only if G is supersolvable.

23



The following result is of central importance to the main questions addressed in
this thesis. It was first shown in [36] and a self-contained proof in a more general
setting is given in Volkmar Welker’s survey article [44]. It will also follow from our
observations in Section 4.1. However, we have already built sufficient background to
give an elementary proof.

Theorem 2.4.7. Let L be finite supersolvable lattice of rank n. Then L has an S,
EL-labelling.

Proof. Let M : 0 = g < z; < --- <z, = 1 denote the M-chain of L. Given any
chain ¢ of L, we know that M and ¢ together generate a distributive lattice. The
main idea is to give this distributive lattice a snelling v as in Example 2.3.4 so that
v(M) = (1,2,...,n). By varying ¢, we can label every edge of L. Our proof of
the validity of this approach divides into three parts. First, we must show that this
assigns a unique label to each edge of L. Next, we will show that each maximal chain
of L is labelled by a permutation. Finally, we will show that each interval has exactly
one increasing chain.

We showed in Example 2.3.4 that, in the sublattice generated by M and any «,
the label on an edge y < z is given by

Y(y,2) =min{j:z; Vy > z}. (2.5)

Now the expression z; Vy > z is either true in every such sublattice containing y and
z or is false in every such sublattice. Therefore, each edge y < z is assigned a unique
label.

It is clear that all the labels are in the set {1,2,...,n}. Suppose that a maximal
chain m of L contains two edges with the same label. Then these two edges must
have received the same label in the sublattice K generated by M and m. But this
is impossible, since the labelling of K is a snelling. We conclude that every maximal
chain of L is labelled by a permutation.

It is clear from our construction that each interval will have at least one increasing
chain. Let [y, z] be an interval of minimal rank with two increasing chains,

Yy=u<ur <---up=z2 and y=wy<wy < wg = 2.

Since every maximal chain of L is labelled by a permutation and since both chains
are increasing, we must have y(u; 1,u;) = y(w;_1,w;) = I; for i = 1,2,..., k. Also,
by the minimality of [y, 2], we must have u; # w; and by the definition (2.5) of the
labelling, we must have x;, Vy > u; and x5, V y > w;. Therefore, x;, Vy > uy V w.
It follows that for every edge y' < 2’ in the interval [uy, u; V wi], we have z;, Vy' > 2/
and so y(y',2') < ;. Furthermore, since y(ug,u;) = l;, we have y(y/,2') < ;. But
the edge y' < 2’ is in the interval [y, z] and all the edges of [y, 2] must be in the
set {l1,ls,...,lx}<. This gives a contradiction and so every interval has exactly one
increasing maximal chain. O

This brings us to the first question addressed in this program of research.
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Figure 2-4: The action on the maximal chains

Question 2.4.8. What other graded lattices, apart from supersolvable lattices, have
S, EL-labellings?

We are now in a position to state our first main result.

Theorem 2.4.9. A finite graded lattice of rank n has an S, EL-labelling if and only
if it is supersolvable.

We will prove Theorem 2.4.9 in Section 2.6 but first, we wish to study a general
property of snellable lattices.

2.5 H,(0) actions

Let P be a bounded graded poset of rank n with a snelling 7, and let m be a maximal
chain of P. Suppose m has a descent at i. Since P is snellable, there exists exactly
one chain m’ : 0 = zg < @ < -+ - < ;4 L <L < < Ty = 1 differing only
from m at rank 7 and having no descent at i. This suggests the following definition
of functions U; : M(P) — M(P):

Definition 2.5.1. Let P be a finite bounded graded poset of rank n with an S,
EL-labelling. Let m be a maximal chain of P. We define U, Us, ... U,y : M(P) —
M(P) by U;(m) = w', where m’ is the unique maximal chain of P differing only from
m at possibly rank 7 and having no descent at .

Under this definition, we see that the descent set of a maximal chain m of P can
also be defined to be the set

{i € [n—1]: Ui(m) # m}. (2.6)

This definition will be used in Chapter 3 for posets P where no snelling is defined.
Observe that when m’ # m, y(m') is the same as y(m) except that the ith and
(i + 1)st elements have been switched. In other words, y(m') = y(m)s; . Figure 2-4
shows an example for the case n = 4. Let m be the maximal chain to the left. It has
a descent at 2 and therefore m’ = Uy(m) # m. The labels of m’ are forced by the fact
that m’ does not have a descent at 2. We have that y(m') = v(m)s,.
We see that the action of Uy, U, ..., U,_1 has the following properties:
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Xj+2

Figure 2-5: UzUz—i—le = Ui+1UiUZ’+1

1. Tt is a local action, i.e., U;(m) agrees with m except possibly at the ith rank.
Local actions on the maximal chains of a poset have been studied, for example,
in [16], [17], [34], [39] and [40].

2. U2 =U; fori =1,2,...,n—1. This differs from most of the local actions in
the aforementioned papers which were symmetric group actions and so satisfied
U?=1.

3. UiU; = U,Us if i — j| > 2.

4. UUjp\U; = Uj;1UUsyq for i = 1,2,...,n — 2. Showing this requires a routine
check of each of the six possible relative orderings of y(x;_1, z;), v(%;, x;11) and
¥(Zi11, Ziv2). The only non-trivial and interesting case is when

Y(@iz1, i) > Y(Ti, Tig1) > Y(Tit1, Tivo)-

The “proof by picture” for this case is given in Figure 2-5 where, without loss
of generality, we assume that the labels appearing in the interval [z;_1, x;, 2] are
simply 1,2 and 3. The original chain is shown in the center, with the action of
U;U;11U; drawn toward the left and the action of U;U;U; 1 drawn toward the
right. Since [x; 1,%;42] has only one increasing chain, we must have a = b and
¢ = d, giving that U;U; 1 U; = U;j11U;Uj1 .-

Now we compare this to the definition of the Hecke algebra of S, and of the
corresponding 0-Hecke algebra.

Definition 2.5.2. Let C(q) be the field of rational functions in the variable ¢. The
Hecke algebra H,, of type A,,_; is the C(g)-algebra generated by T3, 75, ..., T, 1 with
relations:

() T=(q—1)T;+qfori=1,2,...,n— 1.
(i) T,T; = T,T; if |i — j| > 2.
(iii) 7;7—;4_17—; :7—;_1_17—;71_}_1 fOI‘Z: 1,2,,77,—2.
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For more information, see [19, §7.4] and [31]. Setting ¢ = 0 suggests the following
definition of the 0-Hecke algebra #,,(0) as studied in [11], [12], [20] and [29].

Definition 2.5.3. The 0-Hecke algebra H,(0) of type A,,_; is the C-algebra generated
by 11,75, ...,T,_1 with relations:

() T, = -T; fori=1,2,...,n — 1.
(ii) T;T; = TyT; if |i — j| > 2.
(iii) T T3 Ty = Ty Ty Ty for i =1,2,...,n — 2.

We can extend the action of Uy, Us,...,U,—; on M(P) to a linear action on
CM(P), the complex vector space with basis M(P). If we set T; = —U; then
U, Us,...,U, 1 generate the 0-Hecke algebra and so we can now refer to our action

on the maximal chains of P as a local H,(0) action. In [11, §3.9], Gérard Duchamp,
Florent Hivert and Jean-Yves Thibon describe the special case of this action on dis-
tributive lattices. They work in the language of linear extensions of a poset ) which,
as we have seen, correspond to snellings of J(Q).

2.6 Snellable implies supersolvable

Our main aim for this section is to prove Theorem 2.4.9.

Let L be a finite graded lattice of rank n. By Theorem 2.4.7, we know that if L
is supersolvable, then L is snellable. Now we suppose that L has a snelling v and we
wish to prove that L is supersolvable. We let M denote the unique maximal chain of
L labelled by the identity permutation. Taking M to be our candidate M-chain, we
let L. denote the sublattice of L generated by M and any other chain ¢ of L.

If ¢ is a chain in L that isn’t maximal, then we can extend it to a maximal chain
m in at least one way. Then L, is a sublattice of L, so by Lemma 2.4.3, L. is
distributive if L, is distributive. Therefore, it suffices to show that L., is distributive
for all maximal chains m. Our approach will be to define two new posets, Q) and
P,(m), and to show that

L = Qu = J(Pym))-

Much of what we will say will be true for posets that need not be lattices. With
this in mind, let P be a finite bounded graded poset of rank n with a snelling ~.
We have seen that if U;(m) differs from m, then U;(m) has one less inversion than m
and that v(U;(m)) = y(m)s;. It follows that if m has r inversions then we can find a
sequence U;,,U,,,...,U;, such that U; U;, ---U; (m) = M. We define M,,, a subset
of M(P), as follows:

My = {ml € M(P) : J iy, 1, ..., 4, such that m' = Ui Ui, - - - Ui, (m)}

We label the elements of M, as they are labelled in P. We define ), to be the
subposet of P with elements

{u € L:uem for some m' € M}
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and with a partial order inherited from P. @), can be thought of as the closure of
m in P under the operations Uy, Us,...,U,_1. We should note that it is not obvious
that every maximal chain of ), is in M,,. We wish to obtain a clear picture of the
structure of ,,,. We will now state and prove a series of facts about )., each one of
which brings us a step closer to proving Theorem 2.4.9.

Fact 1. Let m’' and m" be distinct elements of My,. Then y(m') # vy(m").

Proof. Suppose that y(m') = y(m"). Let U;,,U,,,...,U;, and U;,,Uj,,...,U; be se-
quences of minimal length such that m' = U;, U, - - - U, (m) and m" = U, Uj, - - - U, (m).
Now v(U;(my)) = y(my)s; whenever m; is a maximal chain of P with U;(my) # m;.
By the minimality of the sequences above, it follows that

V(ml) = V(m”) = V(m)8i18i1—1 TSy = 7(m)8j18j1—1 © S
Thus s;, 54, - - - 55, and s;,54, - - - 5;, are expressions for y(m')”"'y(m) in terms of a min-
imal number of adjacent transpositions. We say that s; s;, - - - s;, and s;, s, - -+ 55, are
reduced expressions, or reduced decompositions, for v(m’) "' y(m). Tits’ Word Theorem
(see [19, §8.1], [43]) for S, states that any two reduced expressions for a given per-
mutation can be obtained from each other by a sequence of braid moves (i.e. replace
8iSi+15; bY Si+15:8i41 or Vvice versa or replace s;s; by s;s; if [i —j| > 2). In particular,
5i,8i, - - - 8;, can be obtained from s; s, ---s; by a sequence of braid moves. But by
Properties 3 and 4 of the U; action, U;,U;, - - - U;,(m) is invariant under braid moves
and hence
Ui Uiy - - Uiz (m) = Ujl Uj2 T Ujl (m)

We conclude that m’ = m”, which is a contradiction. Therefore, y(m') # y(m”). O

Fact 2. Let u € Q. Then there is a unique chain m, € M, that has increasing
labels between 0 and u and between u and 1.

Proof. Choose any m' € M, such that u € m’. Suppose u has rank ¢ in P. Apply
U,Us,...,U_1,Uis1,...,U,_; repeatedly to m’ to obtain m,. The chain m, is unique
in M, because it is unique in P. O

Fact 3. To each point u of Qm we can associate the subset T'y of [n] consisting of
the labels on any mazimal chain of [0,u] in P. Then any two distinct points of Qun
correspond to distinct subsets of [n].

Proof. Let u, v be distinct elements of @, and suppose 'y, = [',,. Then v(m,) = v(m,),
contradicting Fact 1. O

An important tool for the remainder of the proof will be the weak order on per-
mutations of [n].

Definition 2.6.1. Let v, w be permutations of [n]. We say that v <g w if there exist
i1,1%2, .. .,% such that v = ws; s; _, ---s; and ws;, - - s, s, has one less inversion
than ws;, - -- s, for k=1,2,... 7.
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It is known (see, for example, [7, Prop. 2.5]) that v <g w if and only if INV (v) C
INV (w).

Fact 4. The labels on the elements of My, consist of all those permutations w satis-
fying w <g v(m), each occurring exactly once.

Proof. Compare the definitions of M,, and <p. We see that if m' € M,, then
y(m') <g v(m) and if w <p y(m) then there exists m" € M,, satisfying y(m') = w.
The fact that w occurs only once follows from Fact 1. O

Fact 5. Let u,v € Qn. It is clear that if u < v then I'y, C T',. Suppose I', C T, for
some elements u,v of Qm. Then u < wv.

Proof. Construct a permutation w as follows:

e Let w(l),w(2),...,w(|Ty|) be the elements of T, taken in increasing order.
o Let w(|T'y|+1),...,w(|],]) be the elements of ', — T, taken in increasing order.

e Let w(|T'y| +1),...,w(n) be the elements of [n] — ', taken in increasing order.

Then, since u,v € Q,, we have that
INV(w) € INV (y(my)) UINV (y(my)) € INV (y(m))

and so w <g y(m). Let m,, be the element of M,, from Fact 4 satisfying v(m,,) = w.
By Fact 3, u and v are both elements of m, ,. We conclude that u < v in Q. O

In other words, this fact combined with Fact 3 tells us that the map ¢ : @, — B,
defined by ¢(u) =T, is a poset embedding.

We can now exhibit a poset P, such that Qun = J(P,m)). For any w € S,
we can construct P, a poset on [n] with relation < defined by ¢ < j if and only if
(1,7) € INV (w). For example, if w = 2413 we get the poset on the left in Figure 2-1.

Proposition 2.6.2. Let P be a finite bounded graded poset with a snelling v and let
m be a mazimal chain of P. The map ¢ : Qm — J(Pym)) defined by ¢(u) =T, is a
poset isomorphism.

Proof. Suppose I';, has size k.

UE QR & Ty={w(),w(?2),...,w(k)} for some w <g vy(m)
& Iy ={w(l),w(2),...,w(k)} for some w satisfying
INV(w) C INV (y(m))
& Ty is an order ideal of Py
& Iy e J(P,y(m)).

Therefore, ¢ is a well-defined bijection. If u and v are elements of ),,, by Fact 5,
u<vinQunel,Cl, e, <Tyin J(Pym) (2.7)

as required. O
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In particular, it follows that the structure of @, depends only on ~(m) and not
even on the underlying poset P. It is now time to revert to the case when P = L is a
finite graded lattice of rank n with a snelling . Of course, everything we have shown
above for P will be true in the case P = L.

Proof of Theorem 2.4.9. We now know that (), is a distributive lattice. We next
show that @), is a sublattice of L.

Let u,v € Q with corresponding subsets I', and I',, respectively. Recall that
u Vv denotes the join of v and v in L and that u Vg, v denotes the join of u and v
in Qy, which we now know is a lattice. In L we have that

UV, v =2 uVpv
since @, is a subposet of L. But by (2.7),
rk(u Vg, v) = I, UT,| <rk(u Vg v)

since there are maximal chains of [0, uV v] going through u and others going through
v. Thus,
uVg, v = uVpv.

Similarly,
UNg, V = uApv.

Therefore, ), is a distributive sublattice of L. Furthermore, L, is a sublattice
of Q, since Ly, is a sublattice of L and @), contains m and M. By Lemma 2.4.3, we
conclude that L, is also distributive and hence L is supersolvable. O

The astute reader will notice that, while we have shown that L is supersolvable
and that L, C @, we have not fulfilled our promise to show that L, = Q... However,
this follows from the following lemma.

Lemma 2.6.3. For each element m' of My, we have Quy = Lyy.

Proof. Let m’ be an element of M,, such that (m’) has [ inversions. The proof is
by induction on [ with the result being trivially true for [ = 0. Since we know that
Ly C Qu C Qn, it suffices to restrict our attention to Q)r,. In this setting, we can
label the elements of @, by their corresponding subsets of [n]. By (2.7), join and
meet in ), are just set union and set intersection, respectively.

Referring to Figure 2-6, suppose m’ is the vertical chain. Suppose that |T'| =i —1
and a > b so that m’ has a descent at rank 7. Now

T+ {b} =T+ {a,b}) N ({1,2,...,a—1}))UT

and {1,2,...,a—1} € M. Therefore, T+ {b} € L,y and so we get that Ly,) C Ly
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T+{a,b}

a b
T+{b}
T+{a}
b a

Figure 2-6: Showing U;(m') is in Ly,

as sets. Suppose the descents of m’ are at ranks iy, 1s,...,7. Then, as sets,
Quw = Qu,m) U Quym) U UQu, (w)Um’
= Ly, ()Y Ly, @y U---U Ly, vy Um’ by induction
C L.

O

Example 2.6.4. Let I1,, 1 denote the lattice of partitions of the set [n+1] into blocks,
where we order the partitions by refinement: if u and v are partitions of [n + 1] we
say that u < v if every block of pu is contained in some block of v. Equivalently,
v covers 4 in I, if and only if v is obtained from p by merging two blocks of p.
Therefore, if p has k blocks, then rk(y) = n+ 1 — k and I, has rank n. I, is
shown to be supersolvable in [36] and hence can be given a snelling v as in Theorem
2.4.7. We can choose the M-chain to be the maximal chain consisting of the bottom
element and those partitions of [n 4+ 1] whose only non-singleton block is [i] where
2 <3 < n+1. In the literature, this snelling ~y is often defined in the following form,
which can be shown to be equivalent. If v is obtained from p be merging the blocks
B and B’, then we set

(1, v) = max {min B, min B’} — 1.

A non-crossing partition of [n + 1] is a partition with the property that if some
block B contains 7 and k& and some block B’ contains j and | with ¢ < j < k < [ then
B = B'. Again, we can order the set of non-crossing partitions of [n+1] by refinement
and we denote the resulting poset by NC), ;. This poset, which can be shown to be a
lattice, has many nice properties and has been studied extensively. More information
on NC,;; can be found in Rodica Simion’s survey article [33] and the references
given there. Since NC,,; is a subposet of II,,,1, we can consider +y restricted to the
edges of NC,, ;1. It was observed by Bjorner and Paul Edelman in [5] that this gives
an EL-labelling for NC,,; and we can easily see that this EL-labelling is, in fact, a
snelling of NC),;1. As a folklore result, NC,;; has been known to be supersolvable
and a proof using chain decompositions can be found in [17] or [18]. Theorem 2.4.9
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1234

Figure 2-7: NCy with snelling

now gives a new proof of the supersolvability of NC,, ;. Figure 2-7 shows NCy with
L, = @y highlighted for when m is the maximal chain 0 < 24-1-3 < 234-1 < 1. In
this case, Py is just 3 incomparable elements and so J(Pym)) = B3 = Qn.

Example 2.6.5. In [3], Riccardo Biagioli and Frédéric Chapoton define a class of
lattices on forests of leaf-labelled binary trees. As one of the main results, the authors
prove that intervals in these lattices are supersolvable by giving these intervals explicit
snellings and then applying Theorem 2.4.9.
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Chapter 3

Good H,(0) actions

Let P be a finite bounded graded poset of rank n. We saw in Section 2.5 that there is
a natural way to define a local H,,(0) action on the maximal chains of P. Intriguingly,
there is a very close connection between this action and the flag f-vector and flag
h-vector as discussed in Section 2.2. We will begin with the necessary background.

3.1 Quasisymmetric functions

If f is a formal power series that can be expanded in term of some basis { B, } indexed
by «, then we will use the standard notation [Bg] f to denote the coefficient of Bj in
this expansion of f.

Richard Ehrenborg in [13, Def. 3] suggested looking at the formal power series
(in the variables x = (z1, za,...))

Fp(z) = Z xll'k(tO,tl)x;k(tl,h) .. 'xzk(tk—latk)7 (3.1)

O=to<t1<--<tp_j<tp=1

where the sum is over all multichains from 0 to 1 such that 1 occurs exactly once. Note
that omitting the requirement that 1 occurs only once would cause the coefficients to
be infinite. We will refer to Fp(z) as “Ehrenborg’s flag function.” It is easy to see that
the series Fp(x) is homogeneous of degree n. Also notice that it is a quasisymmetric
function:

Definition 3.1.1. A quasisymmetric function in the variables x1,xq,... , say with
rational coefficients, is a formal power series f = f(z) € Q[[z1,z2,...]] of bounded
degree such that for every sequence ni, ng,...,n, € P of exponents,

n1 M2 | pMm — [T 2 | . Pm
I:xil L, L, ] f |:'7’l]1 x]2 x]m] f

whenever 41 <19 < --- <1, and j; < jJo < -+ < Jm-

Notice that we get the definition of a symmetric function when we change the
condition that the sequences iy, 1o, ...,%, and ji, jo, ..., jm be strictly increasing to
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the weaker condition that each sequence consists of distinct elements. As an example,
the formal power series
=D %

1<i<j
is a quasisymmetric function but is not a symmetric function. While they appeared
implicitly in earlier work, the definition of quasisymmetric functions is due to Ira Ges-
sel [14]. Gessel’s definition was motivated by a generating function for P-partitions
that will be a focal point of our studies in Chapter 5.

If 7 =(m,...,7) is a composition of n, then we define the monomial quasisym-
metric function M, , by

M,, = Z ol ik (3.2)

1<y <<

It is clear that the set {M,}, where 7 ranges over all compositions of n, forms a
basis for the vector space of quasisymmetric functions of degree n. As we know,
compositions of n are in bijection with subsets of [n — 1]. Letting S = {n,n +
Tyy ... T1+ -+ Tk 1}, we will often denote the quasisymmetric function of Equation
(3.2) by Ms,. There is an alternative basis that is more important for our purposes.
Given S C [n — 1], define the fundamental quasisymmetric function Lg, by

LS,R(CL') = Z i1 Ljy = == T4, -

1<i1<ig<---<in
ij<ijfqif jES

LS,n = Z MTn

SCTCl[n—1]

We see that

and so by Inclusion-Exclusion,

Msn= Y, (1) Lr,.

SCTCn—1]

Hence the set {Lg,}, where S ranges over all subsets of [n — 1], forms a basis for the
vector space of quasisymmetric functions of degree n. In fact, it is not hard to show
(see [41, Exercise 7.93]) that the vector space of all quasisymmetric functions is closed
under multiplication and hence can be referred to as the algebra of quasisymmetric
functions over Q. We now wish to express Fp(z) in terms of our two bases.

Lemma 3.1.2. Let P be a finite graded bounded poset of rank n with flag f-vector
ap and flag h-vector Bp. Then

Fp(z)= Y oap(S)Msa(z) = Y Br(S)Lsn(x). (3.3)

SCn—1] SC[n—1]

Proof. The first equality is true by inspection of the definitions of Fp(z), ap(S) and
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Fp(z) = Y ap(S)Msn()

SCin—1]
= Y, () (=)™ Lra(2)
SCn—1] SCTC[n—1]
= > (Z(_l)TS|aP(S)> Lrn()
TC[n—1] \SCT
= Y Bp(D)Lra(@)
TCln—1]
by Equation (2.1). O

The case when Fp is a symmetric function is considered in [34] and [39] and we
wish, in a sense, to extend this to the case when Fp is a quasisymmetric function.
In our references to symmetric functions, we follow the notation of [23]. The usual
involution w on symmetric functions given by w(s)) = sy can be extended to the
set of quasisymmetric functions by the definition w(Lsy,) = Lip-1)-spa- © As in [41,
Exercise 7.94], where this extended definition appears, we leave it as an exercise for
the reader familiar with quasisymmetric functions to check that it restricts to the
ring of symmetric functions to give the usual w. This involution w also appears in
[13], where it is defined in terms of the monomial quasisymmetric functions.

3.2 Good actions

We now introduce some representation theory related to our local #,(0) action. In
the symmetric function case, certain classes of posets P have been found to have the
property that

Fp(z) =ch(y) or wFp(z) = ch(y)

where 9 denotes the character of some local symmetric group action and where ch(2))
denotes its Frobenius characteristic as defined in [23, §1.7]. In extending these con-
cepts to the H,(0) case, we follow the definitions in [12] and [20]. We will use the same
notation as in Section 2.5: P is a bounded graded poset of rank n with a snelling, the
functions Uy, Us, . .., U, give us a local H,(0) action on M(P) and T3, T5, ..., T4
are the generators of the 0-Hecke algebra, with 7; = —U;. The representation theory
of H,(0) is studied by Norton in [29]. There are known to be 27! irreducible rep-
resentations, all of dimension 1. Since 7;?> = —T;, the irreducible representations are
obtained by sending a set of generators to —1 and its complement to 0. We will label
these representations by subsets S of [n — 1], and then the irreducible representation

1 This is slightly different from the involution w on quasisymmetric functions from [25] and [26].

35



g of H,(0) is defined by

%HD:{—lﬁiei

0 ifigsS.
Therefore,

1 ifies,
%“9_{01u¢S

Hence the character of 15, denoted by xg, is given by

1 ifijeSforj=1,2,...,k,

xsWUi Ui, -+ Uy,) = { 0 otherwise.

We define its characteristic by

ch(xs) = Lsa(z), (3.4)

and we extend it to the set of all characters of representations of #,(0) by linearity.

We let x p denote the character of the defining representation of our local H,(0) action
on the space CM(P).

Proposition 3.2.1. Let P be a finite bounded graded poset of rank n with a snelling.
Then the local H,(0) action on the mazimal chains of P has the property that

wFp(z) = ch(xp). (3.5)

Proof. 1t is sufficient to show that the coefficient of Lg,, for any S C [n — 1] is the
same for both sides of (3.5). By (3.3),

[Lsn] wFp(z) = Bp(S°)

where S¢ denotes [n — 1] — S.

Let J C [n— 1] and let {iy,4s,...,%} be a multiset on J where each element of J
appears at least once. Let m € M(P). If U;(m) # m for some i € [n — 1] then U;(m)
has one less inversion than m. It follows that U;, U, - - - U;, (m) = m if and only if the
descent set of m is disjoint from .J. Therefore

xp(Ui Uiy -+ Us,) = #{m e M(P):m has no descents in J}
= Z # {m € M(P) : m has descent set S}

S2J

= ZBP(SC) by Theorem 2.2.4
S2J

= Z ﬂP(SC)XS(Uil Uiz e Ulk)
SCn—1]
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a

Figure 3-1: A poset with a good H,,(0) action

m Ui(m) Us(m)
ml:a<b<d<f ms my
m:a<b<e<f my my
m:a<c<d<jf mg my
m:a<c<e<f my my

Table 3.1: A good H,(0) action

Thus

[LS,n] ch(xp) = [LS,n] ch Z Bp(S)xs | = Bp(S°)

SCln—1]

as required. O

To summarize, we have that if P is a finite bounded graded poset of rank n with
a snelling, then P has a local #,(0) action with the property that wFp(z) = ch(xp).
Following [34] and [39], we call such an action a good H,(0) action. It is natural to
ask for a classification of all posets with good #,(0) actions. As a starting point,
by Theorem 2.4.7, we know that a supersolvable lattice has a good #,(0) action. Is
there an analogue of lattice supersolvability for posets that need not be lattices that
implies the existence of a snelling and hence the existence of a good #,(0) action?
We will address this question in Chapter 4. Are there bounded graded posets, other
than those with snellings, that have good #,(0) actions? We answer this question
affirmatively in the following example.

Example 3.2.2. Consider the poset P shown in Figure 3-1. As shown in Example
2.3.2, this poset is not snellable. However, it does have a good H,(0) action as
described in Table 3.1. It is easy to check that this gives a local #3(0) action. Now
ap(@) = 1,ap({1}) = 2,ap({2}) = 2 and ap({1,2}) = 4. By (2.1), this gives that
Bp(S) =1 for all S C {1,2}. Also, we can check that xp decomposes into characters
of irreducible representations as

XP = X0+ X{1} + X{2} + X{1,2}-
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By (3.3) and (3.4), this gives
wFp(z) = Loa + Ly + Lioys + Lngys = chlxe)-
Therefore, this poset has a good H,(0) action.

We conclude that it is certainly not true that a bounded graded poset has a good
H,(0) action if and only if it has a snelling.

Definition 3.2.3. A graded poset P is said to be bowtie-free if it does not contain
distinct elements a, b, c and d such that a covers both ¢ and d, and such that b covers
both ¢ and d.

In particular, all lattices are bowtie-free but the poset shown in Figure 3-1 is not.
In Section 3.3, we will prove our second main result:

Theorem 3.2.4. Let P be a finite bounded poset of rank n that is bowtie-free. Then
P has a good H,(0) action if and only if P is S, EL-shellable.

We get the following immediate corollary:

Corollary 3.2.5. Let L be a finite graded lattice of rank n. Then the following are
equivalent:

1. L is supersolvable,
2. L 1s S, EL-shellable,

3. L has a good H,(0) action.

3.3 S, EL-labellings from good #,(0) actions

Our goal for this section is to prove Theorem 3.2.4. Throughout this section, P
will denote a finite bounded graded poset of rank n that is bowtie-free. We suppose
that P has a good H,(0) action and we let xp denote the character of the defining
representation of this action on the space CM(P). In other words, we suppose
that there exist functions Uy, Uy, ..., Uy—1 : M(P) — M(P) satisfying the following
properties:

1. The action of Uy, Us,...,U, 1 is local.

2. U2 =U;fori=1,2,...,n—1.

3. UU; =U;U; if |i — j| > 2.

4. U;Up\U; = U UUsyq fori=1,2,...,n — 2.

5. wFp(x) = ch(xp)-
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As we have previously suggested, given any maximal chain m of P, we define the
descent set of m to be the set

{i € [n—1] : U;j(m) # m}.

We wish to show that P is snellable. First, we outline our general approach. Suppose
P has a unique maximal chain M with empty descent set. Given a maximal chain m
of P, suppose we can find U;,,U,,,...,U; with r minimal such that

Ui1 Ui2 s UiT (m) =M. (36)

Then to m we associate the permutation vy, = s;,5;, - - - 5;, and we label the edges of
m by Ym(1), Ym(2), ..., m(n) from bottom to top. Our proof of the validity of this
approach divides into four main parts. The first task is to show that M exists and
is unique. The next is to show that, given m, we can always find U;,,U,,,...,U;,
satisfying (3.6). The third task is to show that vy, is well-defined. Finally, we must
show that this gives a snelling for P.

Definition 3.3.1. Given maximal chains m and m’ of P, we say that the expression
Ui Ui, - - - U (m) = m' is restless if U;, (m) # m and if

UZ-J.UZ-HI---Uir(m) ;éUiHl---UiT(m) fOl“jZ 1,2,...,7‘—1.

We say that two sequences U, U;, - - - U;, and U; U, - -+ Uj, are in the same braid
class if we can get from one to the other by applying Properties 3 and 4 repeatedly.
It is not difficult to see that if U; U;, ---U;, and U, Uj, ---Uj, are in the same braid
class and if U, Uj, - - - U;, (m) = m’ is restless, then U; Uj, - --Uj, (m) = m’ is restless.
Indeed, it is easy to see that applying Property 3 to a restless sequence will give
another restless sequence. Using the fact that P is bowtie-free, it can be readily
checked that applying Property 4 to a restless sequence also gives another restless
sequence.

To every sequence iy, g, ..., such that U, U, ---U;, (m) = m’, we can associate
a counting vector of length n — 1 where the jth coordinate equals the number
of times that i; appears in the sequence 4,%s,...,%,. We say that the expres-

sion U, Uy, ---U; (m) =w' is lezicographically minimal (or lex. minimal for short)
if no sequence U; Uj,---U;, in the braid class of U; U, ---U; and satisfying
Uj,Uj, ---Uj,(m) = m' has a lexicographically less counting vector.

The following result will help us to complete our first two tasks.

Lemma 3.3.2. Let m' be any mazimal chain of P. Suppose U;(m’) # m'. Then there
do not exist iy,1s, ..., 1, satisfying U, U;, - - - U; U;(m') = m'.

Proof. Suppose there exists a sequence 11,09, - -y by satisfying
U, U, ---U; Us(m') =m/. It  suffices to  consider the case  when
Ui U, - - U; Us(m') = m' is restless and lex. minimal. Let [ € [n — 1] denote the
minimum element of the sequence i1,1s,...,4,, 1. Since our equation is restless U
must occur at least twice in the sequence.
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Take any pair of U; appearances with no U; between them. If we had no Uy
between them, we could apply Property 3 until we had an appearance of U;U;, con-
tradicting the restless property since U;? = U,. If there is just one U, 1 between them,
we can apply Property 3 to get U,U; 11U, appearing and then apply Property 4 to get
Ui+1UU; 44, contradicting the lex. minimal property. We conclude that, between the
two appearances of U, there are at least two appearances of U;;;. Choose any two
of these appearances of U, that don’t have another U;,; between them and apply
the same argument to show that there must be at least two appearances of U, o be-
tween them. Repeating this process, we eventually get U;U; appearing, yielding a
contradiction. O

More generally, we can apply the same argument to prove the following statement:

Lemma 3.3.3. Suppose U, U, ---U; (m) = M is restless and lex. minimal. Let
denote the minimum element of the sequence iy,1s,...,%.. Then U, appears exactly
once and for | < i < n — 1, there must be an appearance of U;_; between any two
appearances of U;.

The following result is essentially a rephrasing of Property 5 of our good #,(0)
action into more amenable terms.

Proposition 3.3.4. For all S C [n—1], ap(S) equals the number of mazimal chains
of P with descent set contained in S.

Proof. We know that

Z brsxs

SCln—1]
for some set of coefficients {bps}scin—1] and hence

= > bpsLsn.

SCln—1]

By (3.3) and Property 5, we see that bpgs = 5p(S°).
Now let 17" = {il,iz, ey Zk} - [’I’L — 1] Then

> Bp(S) = > Be(S U, -+ Ui,)

SOT 5C[n—1]
XP(Uil Uiz e Uzk)
= #{m e M(P): m has no descents in T}

by Lemma 3.3.2. Therefore,

Z Bp(S¢) = Z #{m € M(P) : m has descent set S°}

soT soT
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Figure 3-2: A portion of P

which is equivalent to

Z Bp(S9) = Z #{m € M(P) : m has descent set S°}.

SeCln—1]-T SeCln—1]-T
By (2.2), this gives that
ap([n — 1] —=T) = #{m € M(P) : m has descent set contained in [n — 1] — T'}
for all T C [n — 1]. Setting S = [n — 1] — T, we get the required result. O

In particular, setting S = (), we see that P has exactly one maximal chain,
which we denote by M, with no descents. Also, given a maximal chain m of P,
by Lemma 3.3.2 and the finiteness of P, we can find U;,,U,,,...,U;, with r minimal
such that U;,U;, - - - U;, (m) = M . This completes our first two tasks.

Given any maximal chain m of P, we consider the braid classes of the set of
sequences U;,U;, - - - U;, such that U;,U;, - - - U; (m) = M is restless. Our next task is
to show that there is only one such braid class. Every braid class contains at least one
element U, Uy, ---U;, such that U, U, ---U; (m) = M is restless and lex. minimal.
For such an element, the minimum, [, of i1, %s,...,7, is the lowest rank for which
m # my, by Lemma 3.3.3. It follows that [ is the same for all the braid classes. It
suffices to consider the case when [ = 1.

The following result is central to our proof that there is just one braid class.

Lemma 3.3.5. Suppose that the expressions U; Ui, ---U,(m) = M and
Uj,Uj, ---Uj,(m) = M are both restless. Then there exists an element of the braid
class of U;,Us, - --U;, and an element of the braid class of U; U, ---Uj, both ending
on the right with the same U;.

Proof. Suppose U;, U, - --U;, and U;, U;, - - - Uj, are in different braid classes. Without
loss of generality, we take them both to be lex. minimal. If U; can be moved to
the right-hand end in both by applying Property 3, then there’s nothing to prove.
Suppose, by applying Property 3, that U; can be brought to the right end in one
sequence but not in the other. Then P must have the edges shown in Figure 3-2,
where m and M are the maximal chains on the left and right, respectively. We see
that we get a contradiction with the bowtie-free property unless a = b. In this case,
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U, appears at least twice in the latter sequence to the right of the unique appearance
of Uy, contradicting Lemma 3.3.3. We conclude that U; can’t be brought to the right
end in either sequence. Now we consider that portion of each sequence to the right
of the unique U;. By the same logic, the maximal chains we get when we apply these
portions to m must have the same element at rank 2.

Consider the unique U, in each of these portions. By a similar argument, we
conclude that either we’ve nothing to prove or else Us can’t be brought to the right
of either sequence by applying Property 3. In the latter case, we consider the portion
of each sequence to the right of the unique U,. The maximal chains we get when we
apply these portions to m must have the same element at rank 3. Repeating the same
argument, we are eventually reduced to the case where U; is the element at the right
end of both sequences, for some 1. O

Proposition 3.3.6. If the expressions U, U;, -+ - U; (m) = M and U; Uj, - - - Uj, (m) =
M are both restless then s; S, -+ 8i, = 8j,5j,* " Sj, -

8

Proof. 1t suffices to prove the result in the case when r is as small as possible. We
prove the result by induction on r, the result being trivially true when r = 0.

For r > 0, by the previous lemma, there exists an element U, Uy, ---U;,_,U; of
the braid class of U;, U, - - - U;, and an element Uy, Uy, - - - U;,_,U; of the braid class of
Uj,Uj, - - -Uj,. Consider U;(m). By the induction hypothesis,

S1SIy "SI,y = S1SJy " ST 1>
Therefore, since permutations are invariant under braid moves,

84184y """ S84, = SI1SIy " " " SI,_18i = SJ18Jy "7 " SJ_18i = 85155y 7 S, -

8

Finally, we can make the following definition:

Definition 3.3.7. If U; U, - - - U;, (m) = M is restless then we define
Ym = S8iy Siy "+ Siy

For every maximal chain m of P, we label the edges of m from bottom to top by
Ym (1), Ym(2), - - ., ¥m(n). Our final task is to show that this gives an edge labelling,
and in particular a snelling, for P. We divide the proof into a number of small steps.

Step 1. If UyU;,---U; (m) = M is restless then vyym = S48, S, 1S a reduced
expression. Furthermore, if ym = 5,84, -+ -5, 15 another reduced expression, then
UjUj, - - - Uj,(m) = M s restless.

r

Proof. The first assertion follows from the fact that if v, = s;,5;, - - - S5, is not reduced
then we can apply a sequence of braid moves to get s;s; appearing. This contradicts
the restless property. The second assertion follows from Tits’ Word Theorem applied
to the reduced expressions for 7,,, together with the fact that applying Properties 3
and 4 to a restless expression results in another restless expression. O
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Step 2. The permutation vy has a descent at i if and only if U;(m) # m. In this
case, Yy,(m) 1S the same as v except that the ith and (i + 1)st elements have been
switched, removing the descent.

Proof. Using Step 1, we have that

Ui(m) #m
& Ui Ui, - - - U; U;(m) = M is restless for some i, i, ..., i,
& 8§, Sip "+ Si, Si = Ym 15 @ reduced expression for some iy, %9, . .., %
& Ym$i has one less inversion than 7,

& Ym has a descent at i.

When Uj(m) # m and vy = 8,54, - - - 5;,5; is reduced we see that vy, m) = 54, Si, - - - Si,.»
yielding the second statement. U

Step 3. Let S C [n—1]. Then every chain in P with rank set equal to S has exactly
one extension to a mazximal chain of P with descent set contained in S.

Proof. Given any chain ¢ with rank set S, let m be any extension of ¢ to a maximal
chain in P. Apply U; for i ¢ S repeatedly to m. By Step 2, this will eventually
yield an extension of ¢ which is a maximal chain with descent set contained in S.
Therefore, every chain with rank set S has at least one such extension. We get

ap(S) < #{m € M(P) : m has descent set contained in S}.
However, by Proposition 3.3.4,
ap(S) = #{m € M(P) : m has descent set contained in S}.

Thus ¢ has exactly one extension to a maximal chain of P with descent set contained
in S. O

Step 4. For every maximal chain m of P, labelling the edges of m from bottom to top
by Ym(1), 1m(2), - - ., Ym(n) gives an edge labelling for P.

Proof. Let z,y € P be such that y covers x and let m and m’ be maximal chains of
P containing both z and y. Define S = [rk(z), rk(y)] and let m(, ) denote the unique
extension of z < y to a maximal chain with descent set contained in S. By applying
U; for « ¢ S repeatedly to m, we can reach m(,,. By Step 2, since we never apply
Urk(z) of Uny) in reaching m(, .y from m, we must have yu(rk(y)) = Ym,,,, (tk(y)).
That is, m and m(,,) give the same label to the edge (x,y). Similarly, m’ and m,,)
give the same label to the edge (z,y). Therefore, m and m’ give the same label to the
edge (z,y) and so we have an edge labelling for P. O

Step 5. This edge labelling is a snelling for P.
Proof. Let x,y € P be such that x < y. Let

S=[n-1]—-{rk(z) + 1,rk(z) + 2,...,rk(y) — 1}

43



a

Figure 3-3: A “mask”

in Step 3. The fact that the interval [z, y] has exactly one increasing maximal chain
follows from Step 3 and the fact that we now have an edge labelling. Every maximal
chain is labelled by a permutation by definition. Therefore, P is snellable, proving
Theorem 3.2.4. O

3.4 Remarks and examples

Remark 3.4.1. Theorem 3.2.4 does indeed contain information not contained in
Corollary 3.2.5, in that there exist bounded graded bowtie-free posets that are
snellable but are not lattices. For example, take the lattice By with a snelling as
described in Example 2.2.2. Now delete the edge ({3,4},{2,3,4}) in the Hasse dia-
gram of B, to form the Hasse diagram of a new poset P and label the remaining edges
as they are labelled in By. We can check that the new poset has the desired properties.
Indeed, since B, is bowtie-free, P must be bowtie-free. The vertices corresponding to
{3} and {4} have {3,4}, {1,3,4}, {2,3,4} and {1,2,3,4} as common upper bounds
but now have no least upper bound since {3, 4} is no longer less that {2,3,4}. Finally,
there are no increasing chains in By of length greater than 1 that contain both {3,4}
and {2,3,4} and so every interval of P still has exactly one increasing chain.

Remark 3.4.2. A careful examination of the proof of Theorem 3.2.4 reveals that,
rather than working with a bowtie-free poset, the same proof will also work for a
poset that is free of the shape shown in Figure 3-3. We will refer to such a poset as a
“mask-free” poset. (Admittedly, the origin of this term requires some imagination!)
More precisely, we will say that a poset is mask-free if it does not contain elements
a, b, ¢, d and e with relations a < b (and not just a < b), a<c, b<d, b<e, c<d
and c < e. Using a dual argument in the proof also allows it to work for posets that
are free of the dual of the shape shown in Figure 3-3. We will refer to such posets
as “mask*-free” posets. Therefore, we have actually proved the following result: a
finite bounded poset of rank n that is mask-free or mask*-free has a good #,(0)
action if and only if it has an §,, EL-labelling. However, at this point, we cannot say
anything interesting or relevant about posets that are mask-free but not bowtie-free.
Therefore, for the purposes of clarity, we stated Theorem 3.2.4 only for bowtie-free
posets.
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Figure 3-4: A non-lattice with a snelling

Remark 3.4.3. It seems that we have fully answered the question of bounded graded
posets in the bowtie-free case. What can we say about such posets that are not bowtie-
free? In Example 3.2.2 we saw a poset with a bowtie that has a good H,(0) action
but which is not snellable. On the other hand, Figure 3-4 shows a bounded graded
poset that has a bowtie but which is still snellable and hence, by Proposition 3.2.1,
has a good H,(0) action. This suggests the following question.

Question 3.4.4. Let C denote the class of bounded graded posets that have a good
H,(0) action. Is there some “nice” characterization of C, possibly in terms of edge
labellings?
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Chapter 4

Connections with left modularity
and generalizations

4.1 Left modularity

Corollary 3.2.5 gives two new characterizations of lattice supersolvability. We now
introduce a third new characterization.
Given an element z of a finite lattice L, and a pair of elements y < z, it is always
true that
(xVyY)ANz>(xAz)Vy. (4.1)

Definition 4.1.1. An element x of a lattice L is said to be left modular if, for all
y < zin L, we have
(xVy)ANz=(xNz)Vy. (4.2)

We will say that a chain in L is left modular if each of its elements is left modular.
In general, if a property is defined for elements of a poset, then when we say that a
chain has that property, we mean that every element of the chain has that property.

Example 4.1.2. If L is a distributive lattice, then
(zAz)Vy=(xVy) A(zVy)

for all elements x, y and z of L. If we assume that y < z, then 2z V y = z and we get
Equation (4.2). Therefore, every element of a distributive lattice is left modular.

The following result appears as [36, Proposition 2.2].
Proposition 4.1.3. Any M-chain of a lattice L is a left modular mazimal chain.

Proof. Let x be any element of an M-chain M of a lattice L and let y < z in L. The
sublattice of L generated by M, y and z is distributive. Thus, as shown in Example
4.1.2, x is left modular. We conclude that M is left modular. O

The following observations leading to the theorem below were made by Hugh
Thomas. It is shown by Larry Shu-Chung Liu in [21, §3.2] that if a lattice has a left
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modular maximal chain of length n, then it has an EL-labelling where all the labels
are from the set [n| and no label appears twice on any maximal chain. Furthermore,
the labels on the left modular maximal chain are increasing. Restricting to graded
lattices, this tells us that if a lattice has a left modular maximal chain, then it has an
S, EL-labelling. Combining this with Corollary 3.2.5 and Proposition 4.1.3, we get
the following theorem.

Theorem 4.1.4. Let L be a finite graded lattice of rank n. Then the following are
equivalent:

1. L is supersolvable,

2. L is S, EL-shellable,

3. L has a good H,(0) action,

4. L has a left modular maximal chain.

It is shown in [36] that if L is upper-semimodular, then possessing a left modular
maximal chain and being supersolvable are equivalent. Theorem 4.1.4 is a consider-
able strengthening of this. Here we used S,, EL-labellings to connect left modularity
and supersolvability. It is natural to ask for a direct proof of the equivalence of (1)
and (4).

Note. For each of these four properties, there is a unique distinguished maximal
chain. Respectively, the distinguished chain is the M-chain, the increasing chain
in the snelling, the chain fixed under the good #,(0) action and the left modular
maximal chain. We should highlight the fact that if a maximal chain is distinguished
with respect to one property, then it is a distinguished chain for the other three
properties. More precisely, the proofs of the equivalences in Theorem 4.1.4 actually
give us the following slightly stronger result:

Porism 4.1.5. Let L be a finite graded lattice of rank n with a mazximal chain M.
Then the following are equivalent:

1. M s an M-chain,

2. M is the increasing maximal chain of an S, EL-labelling of L,

3. M is the unique chain that is fized under a good H,(0) action of L,
4. M s left modular.

A definite strength of Theorem 4.1.4 is that it brings together four different areas
of the theory of partially ordered sets. On the other hand, the theorem only applies
to graded lattices. The remainder of this chapter will be devoted to extensions of the
equivalences to more general classes of posets.
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Figure 4-1: The Tamari lattice 7, and its interpolating EL-labelling

4.2 Interpolating labellings and viability

Observe that the definition of left modularity applies equally well to lattices that
are not graded. This suggests that we might try to generalize the definitions of
supersolvability, good #,(0) actions or S, EL-labellings to lattices that need not
be graded. We will discuss generalizations of supersolvability in Section 4.5. The
following generalization of S,, EL-labellings was suggested by Hugh Thomas.

Definition 4.2.1. Let P be a finite bounded poset. An EL-labelling v of P is said
to be interpolating if, for any y < u < z, either

(i) v(y,u) <v(u,z) or

(ii) the increasing chain from y to z, say y = wp < w; < --- < w, = 2, has the
properties that its labels are strictly increasing and that y(wg, w;) = v(u, 2)
and y(wr—1, wy) = y(y, u).

Example 4.2.2. The reader is invited to check that the labelling of the non-graded
poset shown in Figure 4-1 is an interpolating EL-labelling. In fact, the poset shown
is the so-called “Tamari lattice” Ty. For all positive integers n, there exists a Tamari
lattice T,, with C,, elements, where C,, = #1(27?), the nth Catalan number. More
information on the Tamari lattice can be found in [9, §9], [10, §7] and the references
given there, and in [21, §3.2], where this interpolating EL-labelling appears. The
Tamari lattice is shown to be EL-shellable in [9] and is shown to have a left modular

maximal chain in [10].

To show that interpolating EL-labellings are a suitable generalization of S,, EL-
labellings, there are two basic requirements. The first is that an interpolating EL-
labelling of a graded poset of rank n should be an S,, EL-labelling. While this is not
obvious from the definition, it will follow as a consequence of Lemma 4.4.2, one of our
first results on interpolating EL-labellings. The second requirement is that a lattice
should have an interpolating EL-labelling if and only if it has a left modular maximal
chain. The following result was proved by Thomas.
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Figure 4-2: A poset with a viable left modular maximal chain

Theorem 4.2.3. A finite lattice has an interpolating EL-labelling with increasing
chain M if and only if M s a left modular mazimal chain.

Rather than proving this result, we would like to formulate an extension of it.
The extended version of Theorem 4.2.3 and the other material of this chapter became
the subject of a joint paper [28] with Thomas. Observe that we defined interpolating
EL-labellings for posets that need not be lattices. This suggests that we might try
to generalize the definition of left modularity to posets where meet and join are not
always well-defined.

Let P be any bounded poset. Let z and y be elements of P. We know that z
and y have at least one common upper bound, namely 1. The set of common upper
bounds of z and y might not have a least element but, if it does, then we denote this
least element by x V y. Similarly, if x and y have a greatest common lower bound,
then we denote it by = A y.

Now let w and z be elements of P with w,z > y. Consider the set of common
lower bounds for w and z that are also greater than or equal to y. Clearly, y is in this
set. If this set has a greatest element, then we denote it by w A, z and we say that
w A, z is well-defined (in [y, 1]). For example, consider the poset shown in Figure 4-2,
which we encountered in Remark 3.4.3 as a non-lattice with a snelling. We see that
(z Vy) Ay z is well-defined in this poset, even though (z V y) A z is not. Similarly, let
w and y be elements of P with w,y < z. If the set {u € P | u > w,y and u < z} has
a least element, then we denote it by w V* y and we say that w V? y is well-defined
(in [0, 2]). We will usually be interested in expressions of the form (z V y) A, z and
(x A z) V# y. The reader that is solely interested in the lattice case can choose to
ignore the subscripts and superscripts on the meet and join symbols.

Definition 4.2.4. An element z of a finite bounded poset P is said to be wviable if,
forally <zin P, (x Vy) Ay z and (z A 2) V* y are well-defined. A viable element
of P is said to be left modular if, for all y < z in P,

(xVy)Nyz=(xA2z)Vy.

Example 4.2.5. The poset shown in Figure 4-2 is certainly not a lattice but the
reader can check that the increasing maximal chain is viable and left modular.

We are now ready to state our extensions of Theorem 4.2.3.
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Theorem 4.2.6. Let P be a bounded poset with a viable left modular maximal chain
M. Then P has an interpolating EL-labelling with M as its increasing mazimal chain.

The proof of this theorem will be the content of the next section. In Section 4.4,
we will prove the following converse result.

Theorem 4.2.7. Let P be a bounded poset with an interpolating EL-labelling. The
unique increasing chain from 0 to 1 is a viable left modular mazximal chain.

As one consequence, we get Theorem 4.2.3 when P is a lattice. As another conse-
quence, in the graded poset case, we have given an answer to the question of when P
has an S,, EL-labelling. As we know from Proposition 3.2.1 and Theorem 3.2.4, this
has ramifications on the existence of a good H,(0) action.

These two theorems, when compared with Theorem 4.1.4, might lead one to ask
about possible supersolvability results for bounded posets that aren’t graded lattices.
This problem is discussed in Section 4.5. We obtain a satisfactory result in the graded
case but the ungraded case is left as an open problem.

4.3 Interpolating labellings from left modularity

Our aim for this section is to prove Theorem 4.2.6. We suppose that P is a bounded
poset with a viable left modular maximal chain M : 0 = 2y < 21 < --- <z, = 1. We
want to show that P has an interpolating EL-labelling. We begin with some lemmas
which build on the viability and left modularity properties.

Lemma 4.3.1. Suppose that y < w < z in P and let x € M. Then ((x Az)V*y)Viw
is well-defined and equals (z A z) V* w. Similarly, ((x V y) Ay 2) Ay w is well-defined
and equals (z V y) Ay w.

Proof. We need to check that, in [0, 2], (z A 2) V* w is the least common upper bound
for w and (xz A z) V¥ y. Clearly (z A z) V¥ w is a common upper bound for w and
(z A z) V#y. Now suppose u € [0, z] is a common upper bound for w and (z A z) V* .
In particular, u > z A z and u > w. Therefore, u > (z A z) V* w and so (z A 2) V* w
is the least common upper bound.

Similarly, in [y, 1], (z Vy) A, w is the greatest common lower bound for (z V) A, z
and w. O

Lemma 4.3.2. Suppose that t < u in [y,z] and x € M. Let w = (x Vy) Ay z =
(xANz)VPyinly,z]. Then (wV*t) Ayu and (w Ay u) V* t are well-defined elements
of [t,u] and are equal.

Proof. We see that, by Lemma 4.3.1,

(@vVi)nu=((zVE)Ar2) dvu=((zAz) VL) Avu
= (((xA2) V2 y) Vi) Apu = (w VP E) A

Similarly,
(xAu) Vit = (wAyu) V"'t

o1



But (z Vt) Ayu = (z Au) V* ¢, yielding the result. O
Lemma 4.3.3. Suppose x and w are viable and that x is left modular in P.

(a) If x < w then for any z in P we have t A z < w A z.

(b) If w <z then for any y in P we have wV y <z Vy.

Part (b) appears in the lattice case as [21, Lemma 2.5.6] and as [22, Lemma 5.3].

Proof. We prove (a); (b) is similar. Assume, seeking a contradiction, that z A z <
u < wA z for some v € P. Now u < z and v < w. It follows that u;{x
Now z < x Vu < w. Therefore, w = x V u. So

u=(xAz)Vu=(xVu)Ayz=wAz,

which is a contradiction. O

We now prove a slight extension of [21, Lemma 2.5.7] and [22, Lemma 5.4].

Lemma 4.3.4. The elements of [y, z] of the form (x; V y) Ay z form a viable left
modular mazimal chain in [y, z].

Proof. Lemma 4.3.2 gives the viability and left modularity properties. By Lemma
4.3.3(b), z; Vy < z;11 Vy. By Lemma 4.3.2 with z = 1, we have that z; V y is left
modular in [y, 1]. Therefore, (z; V y) Ay 2 < (zit1 V y) Ay 2 by Lemma 4.3.3(a). O

We are now ready to specify an edge labelling for P. Let P be a bounded poset
with a viable left modular maximal chain M : 0 = zg <z, < --- <, = 1. We choose
a label set [; < --- < [, of natural numbers. (For most purposes, we can let [; = i.)
We define an edge labelling v on P by, for y < z, y(y,2) = ; if

(i1 Vy)Ayz=y and (z; VY) Ny 2 = 2.

It is easy to see that 7 is well-defined, and this also follows from the next lemma.
We will refer to it as the labelling induced by M and the label set {/;}. When P is
a lattice, this labelling appears, for example, in [21] and [44]. As in [21], we can give
an equivalent definition of v as follows.

Lemma 4.3.5. Suppose y < z in P. Then y(y, z) = l; if and only if
i=min{j | z;Vy >z} =max{j+1|z; Az <y}
Proof. That ¢ = min{j | z; Vy > z} is immediate from the definition of . By left

modularity, v(y, z) = [; if and only if (z;_1 A2) V*y = y and (z; Az) V*y = z. In other
words, z;—1 Az <y and z; Az £ y. It follows that i = max{j +1 |z; Az <y}. O
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We are now ready for the last, and most important, of our preliminary results. Let
ly, 2] be an interval in P. We call the maximal chain of [y, z] from Lemma 4.3.4 the
induced left modular mazimal chain of [y, z]. One way to get a second edge labelling
for [y, z] would be to take the labelling induced in [y, z] by this induced maximal
chain. We now prove that, for a suitable choice of label set, this labelling coincides
with 1.

Proposition 4.3.6. Let P be a bounded poset, 0 = o <z < --- <z, = 1 a viable
left modular mazimal chain and v the corresponding edge labelling with label set {1;}.
Let y < z, and define c¢; by saying

y = @ VYA z=-=(T1VY) N2
(X, VY Ny z2="= (T 1 VY) Ay 2 < -+
< (Te, VY) Ny z =+ = (2, VY) Ay 2.

Let m; = l.,. Let § be the labelling of [y, z] induced by its induced left modular mazimal
chain and the label set {m;}. Then & agrees with v restricted to the edges of [y, z].

Proof. Suppose t < u in [y, z]. Then we have

o(t,u) = < ((ze—1 Vy) Ay 2) VEE) Ayu =t and
T, VY) Ny 2) V) Abu =1

(
(e,
(
(

3

Te—1 AN 2) VPy) Vi t) Ayu =t and

T, N2)VEY) Vi) Ayu =1

Te—1 AN 2) VEE) Avu =t and ((xe; A 2) VL) Abu=u
Tt VE) A 2) Apu =t and ((@e, VE) Arz) bu=u
T VE) Apu =1t and (z,, V) Apu =

y(t,u) =1,.

(
((
((
((
((
((
(

T 00

O

Proof of Theorem 4.2.6. We now know that the induced left modular chain in [y, 2]
has (strictly) increasing labels, say m; < my < --- < m,. Our first step is to show
that it is the only maximal chain with (weakly) increasing labels. Suppose that
Y =wy<w; <---<w, = zis the induced chain and that y =ug<u; <---<uy =2
is another chain with increasing labels.

If s = 1 then y <z and the result is clear. Suppose s > 2. By Proposition 4.3.6, we
may assume that the labelling on [y, z] is induced by the induced left modular chain
{w;}. In particular, we have that y(u;, u;+1) = m; where | = min{j | w; V¥ u; > u;41}.
Let k be the least number such that u; > w;. Then it is clear that v (ug—_1, ux) = m;.
Note that this is the smallest label that can occur on any edge in [y, z]. Since the
labels on the chain {u;} are assumed to be increasing, we must have ~y(ug,u1) = m;.
It follows that w; V* uy > u; and since y < w;, we must have u; = w;. Therefore,
it suffices to consider the interval [wy,z]. Thus, by induction on s, the two chains
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coincide. We conclude that the induced left modular maximal chain is the only chain
in [y, z] with increasing labels.

It also has the lexicographically least set of labels. To see this, suppose that
Y =g <u; <---<ugs = 2z is another chain in [y, z]. We assume that u; # w; since,
otherwise, we can just restrict our attention to [wy, z]. We have ~y(ug, u1) = m;, where
! = min{j | w; > w1} > 2 since wy # uy. Hence 7y(ug, u1) > mo > y(wo, w). This
gives that v is an EL-labelling. (That ~ is an EL-labelling was already shown in the
lattice case in [21] and [44].)

Finally, we show that it is an interpolating EL-labelling. If y < u < z is not the
induced left modular maximal chain in [y, z|, then let y = wo < wy < --- < w, = 2
be the induced left modular maximal chain. We will calculate v(y, u) and y(u, z) by
restricting to [y, z]. We have that vy(y,u) = my where | = min{j | w; V¥ y > u} =
min{j | w; > u} = r since u < z. Therefore, y(y,u) = m,. Also, y(u, z) = m; where
I =max{j+1]|wjAyz <u} =max{j+1|w; <u} =1 since y < u. Therefore,
v(y,u) = my, as required. O

4.4 Left modularity from interpolating labellings

Our main aim for this section is to prove Theorem 4.2.7. We suppose that P is a
bounded poset with an interpolating EL-labelling 7. Let 0 = zg <z, <---<z, = 1 be
the increasing chain from 0 to 1 and let I; = y(x;_1, x;). We will begin by establishing
some basic facts about interpolating labellings.

Let y = wy < w; < --- < w, = 2. Suppose that, for some i, we have y(w; 1, w;) >
v(w;, wi+1). Then the “basic replacement” at i takes the given chain and replaces the
subchain w; 1 <w; <w;;1 with the increasing chain from w; | to w;;. In other words,
the basic replacement at 7 is the analogue for posets that need not be graded of the
action of Uj;, as defined in Section 2.5. The basic tool for dealing with interpolating
labellings is the following well-known fact about EL-labellings.

Lemma 4.4.1. Let y = wy < wy < --- < w, = z. Successively perform basic replace-
ments on this chain, and stop when no more basic replacements can be made. This
algorithm terminates, and yields the increasing chain from y to z.

Proof. At each step, the sequence of labels on the new chain lexicographically precedes
the sequence on the old chain, so the process must terminate, and it is clear that it
terminates in an increasing chain. O

We now prove some simple consequences of this lemma.

Lemma 4.4.2. Let m be the chain y = wy < wy < --- << w, = z. Then the labels on
m all occur on the increasing chain from y to z and are all different. Furthermore,
all the labels on the increasing chain from y to z are bounded between the lowest and
highest labels on m.

Proof. That the labels on the given chain all occur on the increasing chain follows
immediately from Lemma 4.4.1 and the fact that after a basic replacement, the labels
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on the old chain all occur on the new chain. Similar reasoning implies that the labels
on the increasing chain are bounded between the lowest and highest labels on m.
That the labels are all different again follows from Lemma 4.4.1. Suppose other-
wise. By repeated basic replacements, one obtains a chain which has two successive
equal labels, which is not permitted by the definition of an interpolating labelling. [

Lemma 4.4.3. Let z € P such that there is some chain from 0 to z all of whose
labels are in {l1,...,l;}. Then z < x;. Conversely, if z < x;, then all the labels on
any chain from 0 to z are in {ly,...,1;}.

Proof. We begin by proving the first statement. By Lemma 4.4.2, the labels on the
increasing chain from 0 to z are in {I1,...,;}. Find the increasing chain from z to 1.
Let w be the element in that chain such that all the labels below w on the chain are
in {ly,...,l;}, and those above it are in {l;;1,...,l,}. Again, by Lemma 4.4.2, the
increasing chain from 0 to w has all its labels in {l;,...,l;}, and the increasing chain
from w to 1 has all its labels in {l;11,...,l,}. Thus w is on the increasing chain from
0 to 1, and so w = x;. But by construction w > z. So z; > z.

To prove the converse, observe that by Lemma 4.4.2, no label can occur more than
once on any chain. But since every label in {l;11,...,l,} occurs on the increasing
chain from z; to 1, no label from among that set can occur on any edge below z;. [

The obvious dual of Lemma 4.4.3 is proved similarly:

Corollary 4.4.4. Let z € P such that there is some chain from z to 1 all of whose
labels are in {liy1,...,l,}. Then z > x;. Conversely, if z > x;, then all the labels on
any chain from z to 1 are in {liz1, ..., 0}

We are now ready to prove the necessary viability properties.
Lemma 4.4.5. z;Vz and x; Az are well-defined for any z € P and for1=1,2,...,n.

Proof. We will prove that z; A z is well-defined. The proof that x; V z is well-defined
is similar. Let w be the maximum element on the increasing chain from 0 to z such
that all labels on the increasing chain between 0 and w are in {l;,...,l;}. Clearly
w < z and, by Lemma 4.4.3, w < z;.

Suppose y < z, z;. It follows that all labels from 0 to y are in {li,...,1;}. Consider
the increasing chain from y to z. There exists an element u on this chain such that all
the labels on the increasing chain from 0 to « are in {li,...,1;} and all the labels on
the increasing chain from u to z are in {l;;1,...,l,}. Therefore, u is on the increasing
chain from 0 to z and, in fact, u = w. Also, we have that 0 <y < u = w < z. We
conclude that w is the greatest common lower bound for z and x;. O

Lemma 4.4.6. 0 = zg Az < 21 A2 < --- < 2, A 2 = 2z, after we delete repeated

elements, is the increasing chain in [0,2]. Hence, (z; A 2) V? y is well-defined for
y < z. Similarly, (x; V y) Ay z is well-defined.
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a

Figure 4-3: Relative ordering of a, b, ¢, d and x

Proof. From the previous proof, we know that z; A z is the maximum element on the
increasing chain from 0 to z such that all labels on the increasing chain between 0
and z; A z are in {l1,...,[;}. In particular, z; A z < x;;1 A z and so the first assertion
holds.

Now apply Lemma 4.4.5 to the bounded poset [f), z], since it has an obvious in-
terpolating labelling induced from the interpolating labelling of P. Recall that our
definition of the existence of (x; A z) Vi only requires it to be well-defined in [0, z].
The result follows. O

We conclude that the increasing maximal chain 0 = zy < 27 < - =1of P
is viable. It remains to show that it is left modular.

Proof of Theorem 4.2.7. Suppose that z; is not left modular for some 7. Then there
exists some pair y < z such that (z;Vy)Ayz > (2;A2)V¥y. Set = z;, b = (z;A2)V*y
and ¢ = (z; Vy) Ay z. Observe that d :=2Vb>zVy > cwhilea:=zAc<zAz<b
So the picture is as shown in Figure 4-3.

By Lemma 4.4.3, the labels on the increasing chain from 0 to a are less than or
equal to ;. Consider the increasing chain from a to c. Let w be the first element
along the chain. If v(a,w) < [;, then by Lemma 4.4.3, w < x;, contradicting the fact
that @ = © A ¢. Thus the labels on the increasing chain from a to c are all greater
than /;. Dually, the labels on the increasing chain from b to d are less than or equal
to ;. But now, by Lemma 4.4.2; the labels on the increasing chain from b to ¢ must
be contained in the labels on the increasing chain from «a to ¢, and also from b to d.
But there are no such labels, implying a contradiction. We conclude that the z; are
all left modular. O

We have shown that if P is a bounded poset with an interpolating labelling +,
then the unique increasing maximal chain M is a viable left modular maximal chain.
By Theorem 4.2.6, M then induces an interpolating EL-labelling of P. We now show
that this labelling agrees with v for a suitable choice of label set. This is a special
case of the following generalization of Lemma 2.3.3.

Proposition 4.4.7. Let v and 0 be two mterpolatmg EL- labellmgs of a bounded poset
P. Ifv and § agree on the y-increasing chain from 0 to 1, then v and § coincide.

The proof is exactly analogous to the proof of Lemma 2.3.3 and is therefore omit-
ted.

26



4.5 Generalizing supersolvability

Referring to Theorem 4.1.4, we see that we have successfully generalized the equiva-
lence of properties (2) and (4) to arbitrary finite bounded posets. Naturally, we would
like to generalize lattice supersolvability in a similar fashion. More precisely, suppose
P is a bounded poset. For now, we consider the case of P being graded of rank n.
We would like to define what it means for P to be supersolvable, thus generalizing
Stanley’s definition of lattice supersolvability. A definition of poset supersolvability
with a different purpose appears in [44] but we would like a more general defini-
tion. In particular, we would like P to be supersolvable if and only if P has an S,
EL-labelling. For example, the poset shown in Figure 4-2, while it doesn’t satisfy
Welker’s definition, should satisfy our definition. We need to define, in the poset
case, the equivalent of a sublattice generated by two chains.

Suppose P has a viable maximal chain M. Thus (z V y) Ay z and (z A z) V* y are
well-defined for z € M and y < z in P. Given any chain ¢ of P, we define Ry (c) to
be the smallest subposet of P satisfying the following two conditions:

(i) M and ¢ are contained in Ry(c),

(ii) fy < zin P and y and z are in Ry/(c), then so are (zVy) A,z and (zAz) VZy
for any x in M.

Definition 4.5.1. We say that a finite bounded poset P is supersolvable with M-
chain M if M is a viable maximal chain and Rj,(c) is a distributive lattice for any
chain ¢ of P.

Since distributive lattices are graded, it is clear that a poset must be graded in
order to be supersolvable. We now come to the main result of this section.

Theorem 4.5.2. Let P be a finite bounded graded poset of rank n. Then the following
are equivalent:

1. P has an S, EL-labelling,
2. P has a viable left modular mazimal chain,
3. P s supersolvable.

Proof. Theorems 4.2.6 and 4.2.7 restricted to the graded case give us that (1) < (2).

Our next step is to show that (1) and (2) together imply (3). Suppose P is a
bounded graded poset of rank n with an S, EL-labelling. Let M denote the increasing
maximal chain 0 = zg < 21 < --- <z, = 1 of P. We also know that M is viable and
left modular and, by Lemma 2.3.3, induces the same S,, EL-labelling. As in Section
2.6, given any maximal chain m of P, we define @), to be the closure of m in P under
basic replacements. In other words, @)y, is the smallest subposet of P which contains
M and m and which has the property that, if y and z are in Q,, with y < 2z, then
the increasing chain between y and z is also in ). By Proposition 2.6.2, we know
that Qy, is a distributive lattice. Now consider Rj;(c). We will show that there exists
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| Graded | Not necessarily graded

1. Supersolvable 1.7
Lattice || 2. S, EL-labelling 2. Interpolating EL-labelling

3. Good H,(0) action 3.7

4. Left modular maximal chain | 4. Left modular maximal chain
Not 1. Supersolvable 1.7
nec. 2. S, EL-labelling 2. Interpolating EL-labelling
Lattice | 3. Good H,(0) action 3.7

(in bowtie-free case)
4. Viable left mod. max. chain | 4. Viable left mod. max. chain

Table 4.1: Equivalent properties

a maximal chain m of P such that Ry (c) = Qun. Let m be the maximal chain of
P which contains ¢ and which has increasing labels between successive elements of
¢U{0,1}. The only idea we need is that, for y < z in P, the increasing chain from y
tozisgiven by y = (2o Vy) Ay 2 < (z1 Vy) Ay 2 < -+ < (2, VY) Ay 2 = 2, Where
we delete repeated elements. This follows from Lemma 4.3.4 since the induced left
modular chain in [y, z] has increasing labels. It now follows that Ry(c) = Qn, and
hence Ry (c) is a distributive lattice.

Finally, we will show that (3) = (2). We suppose that P is a bounded super-
solvable poset with M-chain M. Suppose y < z in P and let ¢ be the chain y < z.
For any x in M, xz V y is well-defined in P (because M is assumed to be viable) and
equals the usual join of z and y in the lattice Ry/(c). The same idea applies to z A z,
(xVy) Ay zand (z A z) V¥ y. Since Ry (c) is a distributive lattice, we have that

(@VyY)Nyz=@VyAz=(@A2)V(yAhz)=(@Az)Vy=(rAz)V'y
in Ry (c) and so M is left modular in P. O

Note. We know from Theorem 2.4.9 that a graded lattice of rank n is supersolvable if
and only if it has an S,, EL-labelling. Therefore, it follows from Theorem 4.5.2 that
the definition of a supersolvable poset restricts to graded lattices to give the usual
definition. However, suppose P is a graded lattice with maximal chain M. We should
note that it is not obvious, and may not even be true, that for a given chain ¢ of P,
Ru(c) equals the sublattice of P generated by M and c.

We can informally summarize the main results of the last three chapters in the
Table 4.1. This suggests the following questions.

Question 4.5.3. If P has an interpolating labelling, we can always define @y, to be
the closure of m under basic replacements. The argument for the equality of Rj/(c)
and @, in the proof of Theorem 4.5.2 above holds even if P is not graded. However,
in the ungraded case, it is certainly not true that @), is distributive. The search for a
full generalization of Theorem 4.1.4 thus leads us to ask what can be said about @, in
the ungraded case. Is it even a lattice? Can we say anything even in the case that P
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is a lattice? Our overall goal with these questions would be to define supersolvability
in a reasonable way for posets that need not be graded.

Question 4.5.4. Our work of Chapter 3 on good H,(0) actions relied on our poset
P being graded. If P is not graded, we can still consider the action on the maximal
chains of P resulting from basic replacements. Does this action have any interesting
properties?
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Chapter 5

P-partitions and quasisymmetric
functions

We now leave the general topic of edge labellings of a poset and move on to an
exposition of the results of a different research project. While essentially separate
from the material of Chapters 2, 3 and 4, this work is very similar in nature. For
instance, it is also concerned with a distinction among the edges of a poset. A
connection in terms of quasisymmetric functions is given by Proposition 5.1.2.

5.1 Stanley’s (P,w)-partitions conjecture

As with edge labellings of posets, the material of this chapter has its beginnings
in [35], where Conjecture 5.1.5 below first appeared. First, we give the necessary
definitions. Let P be a finite poset with n elements and let w : P — [n] be a bijection
labelling the elements of P. We will often refer to elements of P by their images
under w. Unlike linear extensions of P as defined in Example 2.2.3, w need not be
order-preserving. The following definition first appeared in [35].

Definition 5.1.1. A (P, w)-partition is a map o : P — P with the following proper-
ties:

(i) If s <tin P then o(s) < o(t). i.e. o is order-preserving.
(ii) If s <t and w(s) > w(t) then o(s) < o(t).

Thus a (P, w)-partition is an order-preserving map from P to the positive integers
with additional strictness conditions depending on w. If s <t is an edge of P and
w(s) > w(t), then we will refer to (s,t) as a strict edge. Otherwise, we will say that
(s,t) is a weak edge. In particular, if w is order-preserving, then all edges are weak
and any order-preserving map from P to P is a P-partition. For more information
on (P,w)-partitions, see [14], [38, §4.5] and [41, §7.19]. We will denote the set of
(P, w)-partitions by A(P,w).
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3

Figure 5-1: A poset P with its labelling w

Our main object of study will be the (P,w)-partition generating function Kp,(z)
in the variables x = (x1, 3, ...) defined by

Kpo(z Z on_t)_ Z xla—l(l #0-1(2)

o €A(Pw) tEP oEA(Pw)

We see that Kp,(x) is a quasisymmetric function. In fact, the following result makes
explicit a close connection between Kp,(x) and Ehrenborg’s flag function Fp(z) of
Equation (3.1).

Proposition 5.1.2. Suppose that w is a linear extension. Then
Kp7w($) = Fj(p) (33)

Proof. Suppose o is a (P, w)-partition whose image in P has maximum value k. Then
o determines a multichain

PCt1 CtyC--Cty1 Cly=P (5.1)

of order ideals of P, where t; = {y € P : o(y) < i}. In fact, we see that this map
from (P, w)-partitions to multichains of J(P) is a bijection. Also, the contribution of
o to Kp,(z) is

x|1t1|m\2t2*t1| L x|ktk—tk—1|’

which is exactly the contribution of the multichain (5.1) to Fjpy(x). We conclude
the result. O

We now give some examples of (P,w)-partitions.

Example 5.1.3. Suppose (P,w) is given by Figure 5-1, where the double edges cor-
respond to strict edge of P. We see that a (P,w)-partition o must fall into exactly
one of the classes shown in Table 5.1. For simplicity, we write the quasisymmetric
function M,,, defined by Equation 3.2 as M,,...,,, where 7 = (7y,...,7) is a com-
position of n. We conclude that Kp,(z) = Moy + Mg + 2Mi111. Therefore, the
monomial z2x,23 appears with coefficient 1 in K pw(x) whereas x1x2x§ has coefficient
0. In particular, Kp,(x) is not symmetric. In general, suppose that we have a qua-
sisymmetric function f = > ¢, M,, where the sum is over all compositions « of n € P.
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Values of o Contribution to Kp,(x)

0(3)=0(4) <0o(2) <ao(1) Moy
o(3)<o(4)=0(2) <o(1) Mg
o(3)<o(4) <o(2) <a(1) M1
0(3)<o(2)<o(4) <o(1) M1

Figure 5-2: A Schur labelled skew shape and its corresponding labelled poset

We see that f is a symmetric function if and only if ¢, = cs whenever o and 3 are
compositions with the same multiset of parts.

Example 5.1.4. We let A = (A1, Ao, ..., \¢) be a partition of the number n. (i.e.
Ai € N A > Ay and ), A = n.) We draw the Young diagram of A in French
notation. For example, the boxes on the left in Figure 5-2 show the partition A =
(4,4,3). We identify A with the sequence (A1, A9, ..., A, 0,0,...). If 4 is another
partition of n then we say that u C A if u; < A; for all 7. This is equivalent to saying
that the diagram of u is contained in the diagram of . If 4 C A, then we define the
skew shape A/ p to be the set of boxes in the diagram of A that remain after we remove
those boxes corresponding to the partition pu. For example, the boxes of Figure 5-2
surrounded by a heavy line correspond to the shape (4,4,3)/(2,1).

If \/u has n boxes, written |\/u| = n, then we define a Schur labelling of A/ to be
a labelling of the boxes of A/u with the numbers [n] that increases down columns and
from left to right along rows. Given a Schur labelling w of A/pu, let (Py/,,w) denote
the labelled poset suggested by rotating the boxes of A/u by 45° counterclockwise.
All of these definitions are best explained by an example and Figure 5-2 shows a
Schur labelling w of A/p and the corresponding labelled poset (Py/,,w). We say that
(Px/u,w) is a Schur labelled skew shape poset or just a skew shape poset.

We see that a (P,w)-partition of a skew shape poset (Py/,,w) corresponds to an
assignment of positive integers to the boxes of \/u that weakly increases from left to
right along rows and strictly increases up columns. This is exactly the definition of a
semistandard Young tableau of shape A/u. Furthermore, the quasisymmetric function
Kp,,,«w gives us exactly the Schur function s/,. A nice combinatorial proof from 1]
that s)/, is symmetric also appears as [41, Theorem 7.10.2]. We do not include it
here as we use the same argument to prove the slightly more general Theorem 5.4.5.
We conclude that Kp,,(z) is symmetric if (P,w) is a skew shape poset.

This brings us to Stanley’s P-partitions Conjecture. We say that two labelled
posets are isomorphic if there exists a poset isomorphism between them that sends
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B, B, Bs B,

Figure 5-3: The 13 labelled posets with 3 elements

weak edges to weak edges and strict edges to strict edges.

Conjecture 5.1.5. Let (P,w) be a labelled poset. Kp, () is symmetric if and only
if (P,w) is isomorphic to a Schur labelled skew shape poset.

In [38, Exercise 4.23] and [42], this conjecture is shown to be true when w is a
linear extension. John Stembridge has verified the conjecture for all posets P with
|P| < 7.

To prove the conjecture in this form, we would have the daunting task of deducing
information about the global structure of (P,w) from the symmetry of Kp,(z). A
reformulation in terms of local conditions on (P, w) is the subject of the next section.

5.2 Malvenuto’s reformulation

This subject of this section is the work of Claudia Malvenuto on Stanley’s (P,w)-
partitions conjecture. The proofs can be found in [24], with some clarification and
further analysis of the implications of her results in [25].

The reader may already have observed that to calculate Kp,(z), we don’t need
to know the full labelling w. It suffices to know which edges are strict and which
edges are weak. Therefore, from now on, we will often omit the labels on the vertices,
and when we refer to a “labelled poset,” we mean a poset with strict and weak edges
which come from some underlying labelling.

Consider the set of all possible labelled posets with 3 elements, as shown in Figure
5-3. The posets in the first row are shown with a corresponding skew shape. In
particular, all the posets in the first row are skew shape posets and so have symmetric
generating functions. On the other hand, we can see that none of the posets in the
second row are skew shape posets. Also, none of their generating functions, which are
shown in Table 5.2, are symmetric. We will refer to these six posets as “forbidden”
posets.

A subposet @ of a poset P is said to be convex if b € () whenever a, c € () with
a < b<cin P. From the remarks above, we know that a skew shape poset (Py/,,w)
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(P, w) KP’W(SE)
B, M3y + My + 2Miy + 2Miq4
B, My +2My1y
B, Mo + 2Mi1q
Bs Mo + My
Bs | Moy + M1y

Table 5.2: Generating functions for the 6 forbidden posets

cannot have any of the forbidden posets as a convex subposet. We say that (Py/,,w)
“has no forbidden convex subposets.” Malvenuto proved the following converse result.

Theorem 5.2.1. Let (P,w) be a labelled poset. If (P,w) has no forbidden convex
subposets, then (P,w) is isomorphic to a skew shape poset.

We conclude that a labelled poset (P, w) is isomorphic to a skew shape poset if and
only if it has no forbidden convex subposets. In particular, if (P,w) has no forbidden
convex subposets, then it is isomorphic to a skew shape poset and hence Kp,(z) is
symmetric. It follows that Stanley’s conjecture reduces to the following statement.

Conjecture 5.2.2. Let (P,w) be a labelled poset. If Kp,(z) is symmetric then (P,w)
has no forbidden conver subposets.

We will discuss our progress with this conjecture in Section 5.6.

Remark 5.2.3. We can also formulate a statement of the conjecture that doesn’t
refer to forbidden posets or to skew shape posets. Suppose (P,w) is a labelled poset
and () is a convex subposet of P. We will use w|g to denote the labelling w restricted to
the elements of Q). If (P,w) has no forbidden convex subposets, then clearly (Q,w|q)
has no forbidden convex subposets and by Theorem 5.2.1, Kq,, is symmetric. We
also know that if K |, is symmetric, then (Q,w|q) can not be one of the forbidden
posets. Hence, (P,w) has no forbidden convex subposets if and only if Kg /|, is
symmetric for all convex subposets () of P. Therefore, showing Stanley’s conjecture
is equivalent to showing that if Kp,(z) is symmetric then so is K¢, for every
convex subposet @ of P. By induction on |P| — |Q], it even suffices to show this just
for |@Q| = |P| —1. However, we found this formulation to be far more difficult to work
with than Conjecture 5.2.2.

5.3 Oriented Posets

As we observed, given a labelled poset (P,w), the generating function Kp,(z) depends
only on the poset P and the designation of edges as strict or weak. This suggests
that, given a poset P, we might choose any designation O of strict and weak edges.
We define a (P, O)-partition in the obvious manner:
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a b

Figure 5-4: Orienting the edges of a poset

Definition 5.3.1. Let P be a poset with a designation O of strict and weak edges.
A (P, O)-partition is a map o : P — P with the following properties:

(i) If s <t in P then o(s) < o(t). i.e. o is order-preserving.
(ii) If s <t and (s,t) is a strict edge, then o(s) < o(t).

We denote the set of (P, O)-partitions by A(P, Q).

For example, consider the poset (P, O) shown on the left in Figure 5-4. We orient
the strict edges of the poset upward and the weak edges of the poset downward.
Therefore, if the designation of strict and weak edges came from a labelling w of P,
then the arrow always points to the smaller label. (One can think of the arrow as
begin a less-than sign which compares the labels at the end of the edge.) In certain
settings, it will helpful to use this idea of thinking of the designation of strict and
weak edges as an orientation of the Hasse diagram of P. This explains the use of
the letter “O” for the designation of strict and weak edges. We will refer to (P, O)
as an oriented poset. Occasionally, we will think of (P, 0) as a directed graph, with
the direction on the edges coming from the orientation O (and not from the partial
ordering of P).

A walk in (P,0) is a walk in the directed graph (P,O). In particular, a walk
must follow the direction of the arrows. A cycle of (P, O) is a closed walk and we say
that (P, O) is acyclic if and only if it has no cycles. For example, the oriented poset
in Figure 5-4 contains exactly one cycle, namely the closed walk which, say, starts
at a, then goes in turn to ¢, b and d before returning to a. We write this cycle as
a — ¢ — b — d — a or, alternatively, with b, c or d as the starting and finishing point.
It is clear that the designation of strict and weak edges in this example cannot come
from a labelling w. Indeed, suppose that (P, O) actually corresponds to a labelled
poset (P,w). Then w would have to satisfy w(a) > w(c) > w(b) > w(d) > w(a), which
is impossible. In general, we can use the same argument to show that if any oriented
poset has a cycle, then its designation of strict and weak edges cannot come from a
labelling w of the vertices. In fact, we have the appropriate converse result, as stated
in the following lemma.

Lemma 5.3.2. Let (P,0) be an oriented poset. The designation of strict and weak
edges of (P,O) can come from a labelling of the vertices of P if and only if (P,0) is
acyclic.

Proof. If (P,0) contains a cycle, then by the argument above, the designation of
strict and weak edges cannot come from a labelling.
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Figure 5-5: Generalizing the idea of a skew shape poset

Now suppose that (P, O) is acyclic. Define a new ordering < on the elements of
P by x < y if and only if there is a walk in (P, O) from y to z. It is readily checked
that <g is a partial ordering. Let ) be the resulting poset, and let w be any linear
extension of (). Since () has the same underlying set as P, w can also be viewed as a
labelling of the vertices of P. If (z,y) is a strict edge in (P, O), then there is a walk
from z to y, so © >¢g y and hence w(z) > w(y). Similarly, if (z,y) is a weak edge in
(P, 0) then w(z) < w(y). We conclude that the labelled poset (P, w) has the required
designation of strict and weak edges. 0

We define the generating function Kpo(x) analogously to Kp,(x):

o1 o1
KP,O($) = Z Ty (1)1';# @...
g€ A(P,0)

Example 5.3.3. Consider again the oriented poset (P, O) shown in Figure 5-4. Using
the same method as in Example 5.1.3, we can compute that

Kpo(z) = Mas + 2Mayy + 2Mio1 + 2My12 + 4 M1

Notice that Kpo(x) is symmetric and also that (P, O) has no forbidden convex sub-
posets. So, even though (P, O) is not a labelled poset, it is still consistent with Con-
jecture 5.2.2. Next, it is natural to ask if (P, O) is isomorphic to a skew shape poset.
However, we know that skew shape posets are all labelled posets since they come from
Schur labelled skew shapes. Therefore, (P, Q) cannot be a skew shape poset. In any
case, suppose we try to construct a skew shape corresponding to (P, O). Referring
now to Figure 5-5, we see that we need the box corresponding to a to be directly be-
low the box corresponding to ¢ and directly to the left of the box corresponding to d.
Also, we need the box corresponding to b to be directly below the box corresponding
to d and directly to the left of the box corresponding to c. Naively putting this all
together, we might be led to the construction on the right in Figure 5-5. We refer
to such constructions as cylindric skew shapes. The author first encountered them in
the work of Alexander Postnikov [30], where they are called cylindric diagrams. This
example motivates the formal definitions of the next section.
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5.4 Cylindric skew shapes

Cylindric skew shapes will allow us to generalize Conjecture 5.1.5 and Theorem 5.2.1
to oriented posets. For the following introduction to the notation and definitions
related to cylindric skew shapes, we largely follow [30]. We remark that related
objects, known as cylindric partitions, which extend the idea of plane partitions, are
studied in [15].

Fix integers u,v > 2. We define the cylinder €,, to be the following quotient of
72

Cuo = 22/ (—u,v)Z.

In other words, &,, is the quotient of the integer lattice Z? modulo a shifting action
which sends (4, ) to (1 — u,j + v). For (i,7) € Z?, we let (i,5) = (1,7) + (—u,v)Z
denote the corresponding element of €,,,. €,, inherits a natural partial order <¢ from
Z? which is defined by its covering relations (i, j) <¢ (i + 1, 5) and (i, 7) <¢ (1,75 + 1).
Note. This partial order is antisymmetric since u and v are positive. We require
u,v > 2 to ensure that (i, j) <¢ (i+1,7) and (3, j) <e (i, 7+ 1) are covering relations.
Indeed, suppose that w =1 and v > 1. Then we would have

<070> <e <O’ 1> <¢- - <e <O;/U> = <1’0>

and so (0, 0) is not covered by (1,0). We have a similar problem if v = 1. The covering
relations (i, j) <e¢ (i + 1, j) and (i, j) <¢ (i, 7 + 1) are essential in the definition below
of cylindric skew shape posets.

Definition 5.4.1. A cylindric skew shape is a finite convex subposet of the poset
Coo-

Example 5.4.2. We can regard skew shapes \/u as a special case of cylindric skew
shapes. Suppose \/pu fits inside a box of width u and height v, where we always
choose u and v to be at least 2. We embed A/ in &€,, by mapping the box in the ith
row and jth column of A/u to (i, 7). Figure 5-6 shows the resulting image of \/u in
Z2, with one representative of A/u shown in bold. Notice that elements of different
representatives of \/u are always incomparable in Z2. Of course, we could also embed
A/p in €y where v’ > u and v' > v. This would result in extra space between the
representatives of \/p in Z?. For example, setting v’/ = u + 1 and v' = v would leave
a blank extra column of Z? between any two neighboring representatives of A/ .

Example 5.4.3. The construction on the right in Figure 5-5 is a cylindric skew shape
with u = 2 and v = 2,

Let C be any cylindric skew shape which is a subposet of the cylinder &,,. The
elements of C' inherit a partial order from €,,. Suppose we consider the vertical
edges (i, j) <e (1,7 + 1) of C to be strict and the horizontal edges (i, j) <¢ (i + 1, j)
to be weak. This designation of strict and weak edges makes C into an oriented
poset (P,0), which we refer to as a cylindric skew shape poset. For example, we
encountered a cylindric skew shape poset in Figure 5-5. Also, because of Example
5.4.2, skew shape posets are always cylindric skew shape posets.
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Figure 5-6: Skew shapes are cylindric skew shapes
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Figure 5-7: A cylindric tableau and its cylindric skew shape poset

Suppose C'is a cylindric skew shape which is a subposet of the cylinder &€,,. Let
us define what we mean by the rows and columns of C'. The p-th row is the set
{(i,7) € C | j = p} and the g-th column is the set {{(i,j) € C | i = q}. ' So the
rows only depend on p (mod v) and the columns only depend on ¢ (mod ). Thus
the cylinder €,, has exactly v rows and u columns.

Finally, suppose that (P, O) is a cylindric skew shape poset derived from a cylindric
skew shape C. We see that a (P, O)-partition corresponds to an assignment o of
positive integers to the boxes of C that weakly increases from left to right along
rows and strictly increases up columns. We call such an assignment a semistandard
cylindric tableau of shape C. Semistandard cylindric tableaux appear in [2] under the
name “proper tableaux.”

Example 5.4.4. Figure 5-7 shows a semistandard cylindric tableau as well as the cor-
responding cylindric skew shape poset (P, ), with elements labelled by their images
under the corresponding (P, O)-partition.

Theorem 5.4.5. Suppose (P,0) is a cylindric skew shape poset derived from a cylin-
dric skew shape C. Then Kpo(z) is symmetric.

'In [30], rows and columns are defined the other way around.
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Proof. For the sake of completeness, we reproduce here the proof from [41, Theo-
rem 7.10.2], since the proof in the case of skew shape posets extends directly to the
cylindric case.

Since every permutation is a composition of adjacent transpositions, it suffices to
show that Kpo(z) is invariant under the interchanging of z; and z;.,. Suppose that
|C| = n and that o = (a1, a9, ...) is a weak composition of n. (ie. Y ,a; = n and
o; € N) Let

Q= (011, Aoy e ooy OG—1,OG+1, 0y, Oj42, Ot 3, . - )

If 7¢c,o denotes the set all semistandard cylindric tableau of shape C' with «; parts
equal to ¢ for all 7, then we seek a bijection ¢: 7o o — Tea-

Let T € 7¢,o- Consider the parts of T" equal to ¢ or ¢ + 1. Some columns of T
will contain no such parts, while some others will contain both ¢ and 7 + 1. These
column we ignore. The remaining parts equal to ¢ or 1+ 1 occur once in each column,
and consist of rows with a certain number r of ¢’s followed by a certain number s of
1+ 1’s, where r and s depend on the row in question. For example, a portion of T'
could look as follows:

1+1 141
? { ! ;1 +1 e+1 o+1 i+1 1+1

]

In each such row, convert the r 2’s and s 2+ 1’'s to s #’s and r 7 + 1’s:

1+1 141
7 ?

(>
~
~

\

(-
+
—_

i+1 i+1

s=4 r;2 i

We easily see that the resulting array ¢(7) belongs to 7¢ 4, and that ¢ establishes
the desired bijection. O

We say that two oriented posets are isomorphic if there exists a poset isomorphism
between them that sends weak edges to weak edges and strict edges to strict edges.
Our investigations have suggested the following extension of Stanley’s Conjecture
5.1.5.

Conjecture 5.4.6. Let (P,O) be an oriented poset. Kpo(x) is symmetric if and
only if every connected component of (P,O) is isomorphic to a cylindric skew shape
poset.

In order to investigate this conjecture, we would like an analogue of Malvenuto’s
Theorem 5.2.1. This will be the subject of the next section.

5.5 Extending the reformulation

Recall the forbidden convex subposets of Figure 5-3. For the same reason that skew
shape posets have no forbidden convex subposets, cylindric skew shape posets also
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Figure 5-8: The six forbidden oriented convex subposets

have no forbidden convex subposets.
Our goal for this section is to reformulate Conjecture 5.4.6 by extending Theorem
5.2.1 as follows:

Theorem 5.5.1. Let (P,0) be an oriented poset. If (P,O) has no forbidden convex
subposets, then every connected component of (P, O) is isomorphic to a cylindric skew
shape poset.

We will need two lemmas about oriented posets, the second of which gives some
insight into their structure. The first lemma appears in [24] and [25].

In Figure 5-8, we show the six forbidden convex subposets along with the appro-
priate orientation of their edges, followed by an allowed subposet A.

Lemma 5.5.2. Suppose (P,0) is an oriented poset which has no forbidden convez
subposets. If a subposet of the form Bs or Bg appears as a non-convex subposet of
(P,0), then then it can only appear as part of an interval of the form A.

Proof. Suppose, without loss of generality, that the subposet B appears in (P, O).
Label its elements by w, y and z where w <y < z. Since Bj is not a convex subposet,
there must be an element v of (P,0O) such that w < v < z and v # y, with a
chain from w to v and another chain from v to z. Using the fact that (P, O) has no
forbidden convex subposets, we can show that both of these chains have length one,
that w <wv is a weak edge and that v < z is a strict edge. We leave the details as a nice
exercise for the reader that is helpful in building intuition for oriented posets with
no forbidden convex subposets. The details can also be found in [24, Corollary 2] or
[25, Corollaire 6.10]. O

Lemma 5.5.3. Let (P, O) be a connected oriented poset which has no forbidden con-
vex subposets. If (P,O) has a cycle, then every element of P is in a cycle.

Proof. Suppose w is an element of P which is not in a cycle. Since P is finite, it
suffices to consider the case when there exists an element z of P, in a cycle C, which
is connected to w by an edge of (P,0). We can assume that z < w and that the edge
(z,w) is strict. Indeed, if z < w is a weak edge, then we can apply the argument
below where we reverse the role of strict and weak edges. If w < z, then we can apply
a similar argument to the dual poset P*.

Since z € C, w ¢ C and z < w is a strict edge, we are limited in the possible config-
uration of edges of C that can occur at z. In fact, we see that the two configurations
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Figure 5-9: Figures for proof of Lemma 5.5.3

shown in Figure 5-9(a) are the only possibilities, where the dotted line represents the
remainder of C. In either case, there exists an element y € C such that y < z is a weak
edge. Notice that the subposet y < 2z < w is of the form Bg, so by Lemma 5.5.2, there
must be a strict edge y < ¢ such that t < w is a weak edge.

Case 1: After going from z to y, the next edge of C is a strict edge. Since this edge
is strict, it must be of the form y < #'. Now since By is a forbidden convex subposet,
we must have that ¢’ = ¢. See Figure 5-9(b). We see that we have a walk which starts
at w, goes to ¢, follows C around to z and then returns to w. Therefore, w is in a
cycle.

Case 2: After going from z to y, the next r edges of C are weak edges, where
r > 1. Suppose this portion of C is of the from z -y = y1 > yo = -+ = ¥ — t,,
where 1, < t, is a strict edge. Notice that the subposet y; <y <t is of the form B,
so by Lemma 5.5.2, there must be a strict edge y; < ¢; such that t; <t is a weak
edge. We continue this process as in Figure 5-9(c). Eventually, we construct a walk
w—t—1t, —ty — -+ — t,. along weak edges. Now construct a cycle which starts
at w, first follows this walk, then follows C around to z and finally returns to w. O

It is worth noting that the new cycles constructed in the proof above have the
same number of edges, weak edges and strong edges as C.

Proof of Theorem 5.5.1. Suppose (P, O) is an oriented poset which has no forbidden
convex subposets. We wish to show that every connected component of (P,0) is
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isomorphic to a cylindric skew shape poset. Therefore, it suffices to assume that
(P, 0) is connected.

Case 1: (P,0) is acyclic. By Lemma 5.3.2, (P, O) is thus a labelled poset. So by
Theorem 5.2.1, (P, O) is isomorphic to a skew shape poset. Hence, by Example 5.4.2,
(P, O) is isomorphic to a cylindric skew shape poset.

Case 2: (P,0) has a cycle. Our proof uses several ideas from Malvenuto’s proof
of Theorem 5.2.1. We proceed by induction on |P|. Let m be a maximal element
of P. By Lemma 5.5.3, m must be in a cycle C. In particular, m must cover at
least two elements of P. Since B; and B, are forbidden convex subposets, m covers
exactly one element w of P with a weak edge and also covers exactly one element
z of P with a strict edge. Clearly, w,z € C. Let () be the subposet of P obtained
from P by removing m. Let O|g denote the orientation O restricted to the edges of
@, and consider the oriented poset (@, 0|q). Now (@, O|q) must still be connected
since C is still connected if we remove m and so there is a walk from w to z. Also,
(@,0|q) cannot have any forbidden convex subposets. If (Q,Olg) is acyclic then,
by Case 1, it is isomorphic to a cylindric skew shape poset. If (Q, Olg) has a cycle
then, by our induction hypothesis, it is again isomorphic to a cylindric skew shape
poset. Therefore, there exists a poset embedding e : Q — €,, such that C = e(Q)
is a cylindric skew shape and such that C' and (@, O|q) are isomorphic as oriented
posets. For convenience, we will choose u and v to be as small as possible. We wish
to extend the domain of e to P and define e(m) so that C'Ue(m) is a cylindric skew
shape and is isomorphic to (P, 0) as an oriented poset.

For any element ¢ of () we denote e(q) by (ig,j,). Since w < m is a weak edge
and Bj is a forbidden subposet, (i, + 1, j,) ¢ C. Similarly, (i,,j, + 1) ¢ C. In fact,
since C' is a cylindric skew shape and is thus convex, (i, + 7, ju), {i,,J. + ) ¢ C for
any r > 1. Suppose (i, j, — 1) is in C and equals e(q) for ¢ € Q. Then ¢ < w is a
strict edge in (@, O|g) so also in (P, O). Hence g < w < m is a subposet of (P, O) the
form Bs and, by Lemma 5.5.2, there exists 2z’ € P such that ¢ <z’ <m and 2’ <m is
a strict edge. We must have that 2’ = z since, otherwise, (P, O) would have a convex
subposet of the form B,. In particular, we get that (i, + 1,ju — 1) = {(i,,J.), as in
Figure 5-10(a). We set e(m) = (i,,ju). Since C is a convex subposet of &,,, it is
clear that C U e(m) is still a convex subposet of €,, and hence is a cylindric skew
shape. We also have that C'U e(m) and (P, O) are isomorphic as oriented posets, as
required. Therefore, it remains to consider the case when (i, j, — 1) ¢ C.

If we have (i, — 1,7,) € C, then a similar argument will show again that
(tw + 1,jw — 1) = (i,,j,) and we continue as before. So we can assume that
(twy Jw — 1), (i, — 1,7,) ¢ C. We are in the situation shown in Figure 5-10(b). Since
there is no element of C directly below or directly to the right of e(w), in (@, O|g)
there is no ¢ € () such that ¢ < w is a strict edge or w < ¢ is a weak edge. In other
words, there are no edges pointing in to w. Therefore w is not in a cycle, and so by
Lemma 5.5.3, (Q, O|g) is acyclic. Lemma 5.3.2 then tells us that (@, O|g) is a labelled
poset and so, by Theorem 5.2.1, (Q,O|g) is a skew shape poset. Since (Q,0|g) is
connected, C' must be rook-wise connected as in Figure 5-10(c). Since we chose u
and v to be minimal, we again have that (i, + 1, j, — 1) = (i, j,). As before, we set
e(m) = (i,, jw) and C U e(m) has the required properties. O
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Figure 5-10: Figures for proof of Theorem 5.5.1

It follows that a connected oriented poset is a cylindrical skew shape poset if and
only if it has no forbidden convex subposets. We can now restate Conjecture 5.4.6.

Conjecture 5.5.4. Let (P,0) be an oriented poset. If Kpo(x) is symmetric then
(P,0) has no forbidden convex subposets.

As we know, Stanley’s Conjecture 5.1.5 is a special case of this conjecture. Our
approach will be to consider oriented posets (P,O) which have forbidden convex
subposets and attempt to show that Kpo(z) is not symmetric. In the next section,
we exhibit techniques which allow us to succeed in a large number of cases.

5.6 Special cases

We suppose that (P, O) is an oriented poset which contains a forbidden convex sub-
poset B. Our underlying goal is to show that Kpo(x) is not symmetric. In Proposi-
tion 5.6.2, we prove that Kpo(z) is not symmetric if B is the only forbidden convex
subposet of (P, 0). In Proposition 5.6.3, we show that Kpo(x) is not symmetric if B
is somehow “higher” in (P, O) than all of the other forbidden convex subposets. We
begin by introducing some useful notation.

Recall the definition of lexicographic order < on sequences from page 18. Suppose
(P,0) is an oriented poset with |P| = n. We define grp,, the “greedy” (P,O)-
partition, to be the (P, O)-partition o that maximizes the sequence

(le=' W)L o™ @), -- -, 1o (n)])

in lexicographic order. Therefore, to construct grp o, we map as many elements of P

as possible to 1, as many elements of the remainder as possible to 2, and so on.
Suppose f is a homogeneous formal power series in the variables x,zs,... of

degree n and a = (a1, @, . . ., i) is a composition of m, where m < n. We will write
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|zt xg? - - -xp* | f to mean the coefficient of z7"z9? - - z}*

considered as constants. As an example,

in f with zx.1,Tkio,...

2 2,2 2 2 2,2 2 2y _ .2 2
|z122 | ({2523 + T12T205 + 12525 + X]T225) = X5 + X.

If @ is a convex subposet of P, then it will not cause any confusion when we
write O|g simply as O. In particular, by (@, O) and K¢ o(z) we mean (@, O|g) and
Kq,0l,(x) respectively. Finally, we introduce a notion of the dual of an oriented poset
(P,0). As usual, let P* denote the dual poset of P. Define an orientation O* of P*
by saying that an edge y < z of P* is strict in O* if and only if z < y is strict in O.
This defines a new oriented poset (P*, O*).

Lemma 5.6.1. Kpo(z) is symmetric if and only if Kp- o«(x) is symmetric.

Proof. Suppose |P| = n. Since Kpo(x) is quasisymmetric, knowing Kpo(z) is equiva-

lent to knowing Kpo(x1, T2, ..., %, 0,0,...). Infact, Kpo(z) is a symmetric function
if and only if Kpo(z1, 22, ...,2s,0,0,...) is a symmetric polynomial in the variables
Z1,To,...,T,. Hence, for the remainder of this proof, we restrict our attention to

(P, O)-partitions and (P*, O*)-partitions with images contained in [n]. Given such
a (P, O)-partition o, we define a (P*, O*)-partition ¢* by o*(y) = n+ 1 — o(y) for
all y € P. This gives a bijection between (P, O)-partitions and (P*, O*)-partitions.
Furthermore

*—1 1 *—1 2 *—1
KP*,O*(xlax2:"'7:5”’0707"') = Z ‘7;#0 ( )‘7;#0 ( )”'x#a e
(P*,0*)-partitions o*
-1 —1(p_ —
_ S GO e e
(P,0)-partitions o
— Z x#a_l(l) xffl_l(Q) . el (O
(P,0)-partitions o
= KP,O(ZE”, Tp—1y---,T1, 0, 0, .. )

Therefore, in the variables x1,%3,...,2,, Kp=o+(21,22,...,2,,0,0,...) and
Kpo(z1,%2,...,24,0,0,...) are either both symmetric polynomials or both asym-
metric polynomials. We conclude the result. O

Suppose (P,0) is an oriented poset with a forbidden convex subposet B. It is
useful to define subposets Jg and Iy of P by

Jg={y € P |y>bforsomebe B}

and Ig = P — Jg. In particular, the minimal elements of Jp are exactly the minimal
elements of B. We are now ready for the results advertised at the beginning of this
section.

Proposition 5.6.2. If the oriented poset (P, O) contains exactly one forbidden convex
subposet, then Kpo(x) is not symmetric.
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Proof. Suppose (P, O) contains exactly one forbidden convex subposet B. If |P| = 3,
then (P,O) must itself be the forbidden convex subposet. As shown in Table 5.2,
Kpo(z) is thus not symmetric. Now we let n = |P| and proceed by induction on n.

Case 1: Jp # P. By our induction hypothesis, K, o(z) is not symmetric. We
wish to exploit this fact to show that Kpo(z) is not symmetric. To do this, we
consider gry, o, the greedy (Ip,O)-partition, and we suppose that the maximum
integer in the image of gr;, , is k. To simplify our expressions, let

(grl_Bl,O(l), ng_BI,O(Q), e, gr;;,o(k)) = (1,9, ...,qk) .

Now consider |[z7"z5?---2y* | Kpo(z), a quasisymmetric function in the variables
Tk41, T2, - - -- Intuitively, this corresponds to beginning a (P, O)-partition by appro-

priately mapping an ideal I of size oy + ag + -+ + a4 to [k] and we wish to map
J = P — I to integers greater than k. We see that

23125 - 23t | Kpo(t) = Ky 0(@het, Thsz, ) + O 07 Ks0(Thst, Trsa, .- )
J

where the sum is over all subposets J # Jg such that I = P — J is an order ideal of
P with oy + as + - - - + a elements, and where a; is some non-negative integer. For
any such J # Jg, we have that j € I = P — J for some j € Jg. In particular, b € I,
where b is a minimal element of B and hence of Jg. Therefore, (J, O) contains no for-
bidden convex subposets, and so by Theorems 5.4.5 and 5.5.1, K; () is symmetric.
However, since K, o(x) is not symmetric, we conclude that |z z9? - - - 23* | Kp o(z)
is not symmetric in the variables zy1, Zg2, - ... Therefore, Kpo(z) is not symmetric.

Case 2: Jg = P. The trick now is to consider the dual oriented poset (P*, O*). It
contains exactly one forbidden convex subposet, which we will also call B. We define
a subposet Jg* of P* by

Jg*={y € P* |y >bin P* for some b € B}

If Jg* # P*, then we can proceed as above to show that Kp« o-(z) is not symmetric.
By Lemma 5.6.1, Kp o(z) is then not symmetric, as required. If Jg* = P*, then every
element of y of P satisfies b < y < b’ for some elements b and b’ of B. Since B is
convex, we conclude that y € B and hence (P, O) = B, showing that Kpo(z) is not
symmetric. O

The ideas used above can be extended to prove the following result for oriented
posets with multiple forbidden convex subposets. Suppose (P, O) is an oriented poset
with a forbidden convex subposet B. For convenience, we let

ap = (grl_;’o(l), grl_;,o(Z), e grl_;’o(k)) )
Proposition 5.6.3. Suppose (P,0) be an oriented poset with forbidden conver sub-

posets B, By, Bo, ..., B,, where r > 0. If ap, <; ap fori=1,2,...,r, then Kpo(z)
18 not symmetric.
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@ (b)

Figure 5-11: Oriented posets with asymmetric generating functions

Proof. Suppose that ag = (a1, ag, ..., ax). We see that

231 25? -- apt | Kpo(r) = Kipo(@ein, Thia, ) + O 0K 0(Tki, Teya, - )
J

where a; is some positive integer and where the sum is over all subposets J # Jg
such that I = P — J is an order ideal of P which has a; + as + - - - + o, elements and
which satisfies [Ma, 0y, ) K1,0(2) # 0. Note that any such I must satisfy

(1,09, ;) <p (g170(1),8176(2); - - -, 8170 (k) -

For any such J # Jg, we have that j € I = P — J for some j € Jg. In particular,
b € I, where b is a minimal element of B and hence of Jg. Furthermore, for any
i=1,2,...,r, since ap, <1, (a1,qy,...,0), we get that b € I for some element b of
B;. For the same reason, b € Ig for some element b of B;. Therefore, J # Jg contains
no forbidden convex subposets and Jg contains B and no other forbidden convex

subposets. Hence, in the variables zyi1, Zx42, - .., Kjo(@ki1, Thto,---) is symmetric
for J # Jp. However, by Proposition 5.6.2, K, o(Zg+1,Tk+2,--.) is not symmetric.
We conclude that Kpo(z) is not symmetric. O

Example 5.6.4. Consider the oriented poset (P, Q) shown in Figure 5-11(a). We see
that it has three forbidden convex subposets, which we denote from left to right by By,
By and Bs. We have that ap, = ap, = (3,1) while ap, = (4). Since ap, <1, agp,, we
can apply Proposition 5.6.3. The proof of the proposition implies that |z1|Kpo(z)
is an asymmetric function of x5, x3,.... Indeed, in the variables x5, z3,..., we can

calculate that
Ll‘%J KP,O(SL') = 2M3 + 6M21 + 7M12 + ]_4M111.

Now consider the oriented poset (P,O) shown in Figure 5-11(b). Again it has
three forbidden convex subposets, which we denote from left to right by By, B, and
Bs. We have that ap, = ap, = ag, = (2,2) and so Proposition 5.6.3 does not
apply. We will however remark that we do have a general technique which shows
that Kpo(z) is not symmetric for this oriented poset. Indeed, let (P, O) denote any
oriented poset which has no cycles. By Lemma 5.3.2, (P, 0) is a labelled poset. If
|P| = n, we consider a new labelled poset (P,O"), whose labels are obtained from
those of (P, O) by subtracting each label from n + 1. We see that the resulting new
orientation O" is exactly the reverse of the orientation O: strict edges become weak
edges and weak edges become strict edges. For example, if (P, O) is the oriented poset
of Figure 5-11(b), then (P, O") is the oriented poset of Figure 5-11(a). As can be seen
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from [41, Corollary 7.19.5], at the level of generating functions, Kpor(z) = wKpo(z),
where w is the involution on quasisymmetric functions as defined on page 35. Since w
sends symmetric functions to symmetric functions, Kpor(x) is symmetric if and only
if Kpo(z) is symmetric. Notice that this result is very similar in nature to Lemma
5.6.1.

It is not difficult to extend our approach to prove slightly more general versions
of Proposition 5.6.3. As one example, we can combine our greedy labellings of Iy
with greedy labellings for Jg — B to give a more refined version of the proposition.
However, our current techniques are not sufficient to prove (or disprove) Conjecture
5.2.2 or Conjecture 5.5.4.
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Appendix A

Poset terminology

For the following introduction to basic poset terminology, we follow [38, Chapter 3].
A partially ordered set (poset) P is a set (which by abuse of notation we also
call P) together with an order relation < satisfying the following properties:

(i) Reflexivity: = < z for all z € P.
(ii) Antisymmetry: If z <y and y < z for z,y € P, then z = y.
(iii) Transitivity: If x <y and y < z for z,y,z € P, then z < 2.

If z,y € P and there does not exist z satisfying z < z < y, then we say that y
covers r and we write z < y. We will only be concerned with finite posets, and finite
posets are completely determined by their cover relations. We will often think of a
poset P in terms of its Hasse diagram, a graph whose vertices are the elements of P
such that if x < y then x is drawn below y, and whose edges are the cover relations.
For example, Figure A-1 shows the poset Dgy of all positive integers that divide 60,
where we say z < y in Dy if y is divisible by z.

The dual poset of P is the poset P* with the same set of elements as P but with
the opposite ordering, i.e. < y in P* if and only if y < z in P. The Hasse diagram
of P* can thus be obtained by turning the Hasse diagram of P upside down. Given

Figure A-1: The Hasse diagram of Dy
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posets P and (), a map ¢ : P — @ is said to be a poset embedding if ¢ is injective
and if

z<yin P& ¢(z) < p(y) in Q.

We then say that ¢ is a poset isomorphism if ¢ is a bijection.

An induced subposet () of P is a subset () of P and a partial ordering of @)
such that if z,y € @, then z < y in () if and only if x < y in P. By a subposet of P,
we will always mean an induced subposet of P. Therefore, to specify a subposet @)
of a poset P, it is enough to specify the elements of Q). If x,y € P, with x <y, then
we will write [z, y], called an interval of P, to denote the subposet of P consisting
of all those elements z € P such that x < z < y. An order ideal (or down-set) of
a poset P is a subposet I of P such that if y € I and x < y in P, then x € I. A
subposet of P is said to be a chain if any two elements x and y of P are comparable,
i.e. either x <y orx > y. The length of a chain C is defined to be |C| —1. A chain
is said to be maximal if it is maximal under inclusion. A poset is said to be graded
if all of its maximal chains have the same length. If P is graded and the length of
every maximal chain is n, then we define the rank function rk : P — [n] of P by
rk(y) = rk(z) + 1 if y covers z in P and rk(z) = 0 if z is a minimal element of P. We
define the rank of a graded poset to be the rank of any maximal element.

If z,y € P, a common upper bound of z and y is an element z of P such that
r < z and y < z. We then say that z is a least upper bound if any other common
upper bound w of x and y satisfies w > z. If a least upper bound of z and y exists,
then we denote it by x V y, the join of x and y. We will write z = z Vp y if we wish
to emphasize that z is the join of x and y in the poset P. Similarly, we define the
notions of common lower bound and greatest lower bound. If x and y have a
greatest lower bound z in P then we write z = z Ap y or just z = A y, and we say
that z is the meet of x and y.

A poset P is said to be a lattice if every two elements have a meet and a join. A
lattice L is said to be distributive if, for all z,y, 2 € L, we have

zV(yNz)=(xVy A(zV2)
and
zA(yVz)=(xAy)V(zA:z).

It is a nice exercise to show that either of these identities implies the other. A
sublattice of a lattice L is a subposet K of L such that if z and y are in K, then so
are x Vy y and x Ar y. Given a subposet @) of a lattice L, we define the sublattice
generated by () to be the smallest sublattice of L which contains Q).
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