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Abstract. The combined work of Bousquet-Mélou, Claesson, Dukes, Jeĺınek,
Kitaev, Kubitzke and Parviainen has resulted in non-trivial bijections among

ascent sequences, (2+2)-free posets, upper-triangular integer matrices, and

pattern-avoiding permutations. To probe the finer behavior of these bijec-
tions, we study two types of restrictions on ascent sequences. These restric-

tions are motivated by our results that their images under the bijections are

natural and combinatorially significant. In addition, for one restriction, we are
able to determine the effect of poset duality on the corresponding ascent se-

quences, matrices and permutations, thereby answering a question of the first

author and Parviainen in this case. The second restriction should appeal to
Catalaniacs.

1. Introduction

In the last decade, an interesting collection of results has emerged from the
study of (2+2)-free posets, or interval orders as they are also known, and their
connection to permutations avoiding a non-standard permutation pattern of length
three. The starting point for this story was the introduction in Bousquet-Mélou et
al. [3] of a new type of permutation pattern that the authors termed a bivincular
pattern. In that paper it was proven that length-n permutations avoiding the
bivincular pattern 2|31 were in one-to-one correspondence with unlabelled (2+2)-
free posets on n elements. This was shown by encoding both structures as an
integer sequence of length n that has come to be known as an ascent sequence. Via
ascent sequences, Bousquet-Mélou et al. were able to solve the long-standing open
problem of enumerating unlabelled (2+2)-free posets.

In [11], these ascent sequences were shown to uniquely encode another set of
objects: all square upper-triangular matrices of non-negative integers whose entries
sum to n which have neither rows nor columns consisting of only zeros. Such
matrices are known as Fishburn matrices since they were introduced by Fishburn
[13]; these matrices and the three previously mentioned classes are enumerated by
the Fishburn numbers [21, A022493].

These initial two papers linking (bijectively) four different discrete objects led to
a series of papers that studied these bijections and built upon the correspondences.
From the enumerative viewpoint, Dukes et al. [9] and Kitaev & Remmel [20] con-
sidered these objects according to several statistics (such as the number of mini-
mal/maximal elements) and presented multivariate generating functions for these
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statistics. In Claesson et al. [5], the bijections from the original papers were lifted
to achieve bijections between labelled (2+2)-free posets, upper-triangular matrices
whose entries partition a set, and a form of coloured ascent sequences. This lift
of the correspondences to the labelled setting was used to give a bijection from
unlabelled (2+2)-free posets to Fishburn matrices [10], which is equivalent to the
definition of the characteristic matrix in [13, §2.3]).

In another direction, and more recently, it has emerged that refinements of
these correspondences have equally compelling stories to tell. Duncan & Ste-
ingŕımsson [12] studied pattern avoidance in ascent sequences and established bi-
jections between pattern avoiding ascent sequences and other combinatorial objects
such as set partitions and objects enumerated by the Catalan and Narayana num-
bers. Jeĺınek [17] presented a new method to derive formulas for the generating
functions of interval orders. The method generalised the results of [9, 20] and also
allowed the enumeration of self-dual interval orders with respect to several statistics.
Using his newly derived generating function formulas, Jeĺınek proved a bijective re-
lationship between self-dual interval orders and upper-triangular matrices having
no zero rows [17]. Andrews & Jeĺınek [1] built on Jeĺınek’s work and proved several
power series identities involving the refined generating functions for interval orders
and self-dual interval orders. Keller and Young [19] considered the difficult ques-
tion of determining which ascent sequences map to semiorders; also known as unit
interval orders, semiorders are posets that are both (2+2) and (3+1)-free. See also
[20] for a consideration of this question.

The present paper adds to this body of work by analyzing two types of restrictions
on ascent sequences. One motivation for these restrictions is that their images
through the bijections of [3, 10, 11] are combinatorially significant in the subsets
they identify, e.g. series-parallel posets and 231-avoiding permutations. Moreover,
the analysis of the images of these ascent sequences allows us to prove results about
duals of each of the structures, thus going some way in answering an open problem
of Dukes & Parviainen [11].

The first type of restriction we study (in Section 3) begins with a restriction on
the types of ascents one may have in an ascent sequence. In particular, when the
bijection of [3] recursively builds a (2+2)-free poset from an ascent sequence, there
are some ascents that cause complicated and unnatural modifications to the poset,
while the bijection treats all other ascents in a very natural way. Our first restriction
is to those ascent sequences that contain only these ascents that result in this latter
natural behaviour. A motivation for this restriction is that this good behaviour
carries through to the general framework of bijections. Indeed, the images of these
new restricted ascent sequences RAsc through the bijections given in [3, 10, 11] are
proven to be simple restrictions: the subset RMatrices of the matrices from [11]
having only positive diagonal entries, the subset RPosets of (2+2)-free posets which
have a chain of the maximal possible length, and the set RPerms of permutations
avoiding the barred pattern 31524. This set RPerms was already identified in [3] in
the context of modified ascent sequences. See Figure 1.1 for a diagram outlining
our sets and maps of interest.

In Section 4 we give a partial solution to an open problem of Dukes & Parvi-
ainen [11] by addressing the topic of structural duality. The dual P ∗ of a (2+2)-free
poset P is also a (2+2)-free poset. This observation prompts the question as to
whether one can derive the ascent sequence (resp. permutation) corresponding to
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Posets: (2+2)-free posets P

RPosets: P has a
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RPerms: Sn(31524)
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fPA
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Figure 1.1. A diagrammatic summary of the sets and bijections
of interest.

P ∗ from the ascent sequence (resp. permutation) corresponding to P . This question
seems intractable in general because of the complicated map between some ascent
sequences and posets as mentioned in the previous paragraph. However, consis-
tent with our motivation for restricting to better-behaved sets, we can answer this
duality question completely for all posets in RPosets, which we do in Section 4.

In Section 5, we consider the Catalan family CAsc of 101-avoiding ascent se-
quences studied in [12], and investigate their images under the bijections of [3,
10, 11]. (The restricted ascent sequences of [20] are also enumerated by Catalan
numbers but are different from CAsc.) The results are perhaps even nicer than
the R-families and are shown in Figure 1.1. The posets that arise are the series-
parallel interval orders, i.e., those that are both (2+2)-free and N-free. This class
of posets appears in [6, 7], while series-parallel posets in general are widespread in
the literature, partially because their recursive structure permits many polynomial-
time algorithms (see, for example, [14] and the references therein). The matrices
and permutations which correspond to these ascent sequences are those matrices
from RMatrices that are termed SE-free in [18], and 231-avoiding permutations,
respectively.

We conclude in Section 6 with some open questions.

2. Preliminaries

While the intimate connections between four different types of objects are cer-
tainly a strength of this area of study, the drawback for our present purposes is
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there is a considerable amount of background that needs to be introduced, includ-
ing all four classical sets and many of the bijections among them. Our use of
the words “classical” refers to the full sets considered by most of the papers men-
tioned in the Introduction, and as shown by the largest boxes in Figure 1.1: ascent
sequences, (2+2)-free posets, upper-triangular matrices with non-negative integer
entries having neither rows nor columns of all zeros, and permutations avoiding
2|31.

2.1. The classical sets. An ascent sequence is a sequence a = (a1, . . . , an) of
non-negative integers such that a1 = 0, and for all i with 1 < i ≤ n we have
ai ≤ asc(a1, . . . , ai−1) + 1, where asc(a1, . . . , ak) denotes the number of ascents in
the sequence (a1, . . . , ak). For example (0, 1, 0, 1, 3) is an ascent sequence whereas
(0, 1, 0, 2, 4) is not. Let Ascn be the set of all ascent sequences of length n, and let
Asc denote the union of these sets over all n, with the same convention applying to
all the notation below when the subscript n is dropped.

Let Posetsn be the set of (2+2)-free posets on n elements, meaning posets that
have no induced subposet isomorphic to a disjoint union of two 2-element chains.
We will be interested in a different defining property of (2+2)-free posets, as we
now describe. Let P = (P,�) be a poset with n elements. Given x ∈ P , the set
D(x) = {y ∈ P : y ≺P x} is called the strict downset of x. A fact described
as “well known” in [2] and which is easy to check is that a poset is (2+2)-free if
and only if the set of strict downsets of elements of P can be linearly ordered by
inclusion. We let `(P ) denote the number of distinct nonempty such downsets, so
that D(P ) = (D0, . . . , D`(P )) is the sequence of downsets of P linearly ordered by
inclusion. In other words ∅ = D0 ( D1 ( . . . ( D`(P ). For example, for the poset
P in the top left of Figure 2.1, we have

D(P ) = (∅, {p1, p2}, {p1, p2, p5}, {p1, p2, p3, p5}).

(Note that while this example P is labelled for the purposes of the explanation,
the elements of Posets are unlabelled.) We will call Di level i of P , and an element
x ∈ P with D(x) = Di for some i will be said to lie at level i of P . Let Li = Li(P )
be the set of elements lying at level i of P and set L(P ) = (L0, . . . , L`(P )). Again
for P from Figure 2.1,

L(P ) = ({p1, p2, p5}, {p6}, {p3}, {p4}).

Let Matricesn be the set of all upper-triangular matrices whose entries are all
non-negative integers such that there is neither a row nor a column containing only
zeros, and whose sum of all entries is n. Observe that the dimension d of an element
of Matricesn satisfies 1 ≤ d ≤ n.

A sequence a = (a1, . . . , ar) of non-negative integers is said to contain a sequence
b = (b1, . . . , bs) as a pattern if there exists a subsequence of a of length s whose
elements are in the same relative order as those of b. We say a is b-avoiding if it
does not contain b. For example, (0, 2, 1, 3, 1, 0, 2), which we write as 0213102 for
short, contains the pattern 0101 because of its subsequence 0202, but avoids the
pattern 1010.

When considering pattern-avoidance in sequences that are permutations, we al-
low for a more general notion of pattern: a permutation π = π1 . . . πn is said to
contain the pattern 2|31 if there exists an occurrence πiπjπk of 231 in π with the
additional conditions that j = i+ 1 and πi = πk + 1. For example, 32541 contains
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fPM fMP

fPA

fAP
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Figure 2.1. The examples used when defining the bijections in Subsection 2.2.

2|31 because of the occurrence 251 of 231, whereas 31452 avoids 2|31 even though it
has three occurrences of the classical pattern 231. The pattern 2|31 is an example
of a bivincular pattern as introduced in [3] since it puts conditions on both the
entries and positions of an occurrence. As usual, we let Sn(2|31) denote the set of
permutations of length n that avoid 2|31, and this is exactly our set Permsn.

2.2. The bijections. In this subsection, we gather the classical bijections from the
literature [3, 10, 11] that we need. We refer the reader to these references for the
proofs of bijectivity and our claims that particular pairs of maps are inverses. Due
to its length, the reader may prefer to skip this subsection and instead refer back
to it as a reference.

To denote the bijections from [3, 10, 11], we will use labels according to their do-
main and codomain, but rather than use the labels Asc, Posets, Matrices and Perms,
we use the single-letter subscripts A, P, M and S (“S” for “symmetric group”). For
example, fAP denotes the bijection of [3] from ascent sequences to (2+2)-free posets.

If a < b are integers, we use the notation [a, b] for the set {a, . . . , b} and [a, b) for
the set {a, . . . , b− 1}, etc.

For each of our bijections, we will refer to the example in Figure 2.1.

2.2.1. Ascent sequences and matrices. Let a = (a1, . . . , an) be an ascent sequence
and define the truncated sequence a(k) = (a1, . . . , ak). If M is a d × d matrix,
then we write dim(M) = d. Let mindex(M) be the lowest index of a row whose
rightmost entry is non-zero. For example, mindex(M) = 2 for M from Figure 2.1.
The following map first appears in [11] where it is shown to be a bijection to
Matricesn.

Definition 2.1. Given a = (a1, . . . , an) ∈ Ascn, we define fAM(a) recursively. First,
fAM(a(1)) = (1), a 1 × 1 matrix. Supposing M (k) = fAM(a(k)) for some k ∈ [1, n),
we have the following three cases for defining M (k+1) = fAM(a(k+1)).
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AM1 If ak+1 ∈ [0,mindex(M (k))) then let M (k+1) be the matrix M (k) with the
entry at position (ak+1 + 1,dim(M (k))) increased by one.

AM2 If ak+1 = dim(M (k)) then let M (k+1) be the result of appending a new row
and column of zeros to the matrix M (k), and inserting a one into the new
diagonal entry.

AM3 If ak+1 ∈ [mindex(M (k)),dim(M (k))) then let M (k+1) be the outcome of
the following: in M (k), insert a new (empty) row between rows ak+1 and
1 + ak+1, and insert a new (empty) column between columns ak+1 and
1 + ak+1. Let the new row be filled with all zeros except let the rightmost
entry be 1. Move all the entries in the rightmost column above where it
was prised apart to the left to the new empty spaces, and fill their former
positions with zeros. Finally let all other entries in the new column be zero.

Then fAM(a) = fAM(a(n)) = M (n).

Example 2.2. Let a = (0, 0, 1, 2, 0, 1) as in Figure 2.1.

◦ fAM(a(1)) = (1) = M (1).
◦ Since a2 ∈ [0,mindex(M (1)) = 1), AM1 applies and M (2) = (2).
◦ Since a3 = dim(M (2)), AM2 applies and M (3) = ( 2 0

0 1 ).

◦ Since a4 = dim(M (3)), AM2 applies and M (4) =
(

2 0 0
0 1 0
0 0 1

)
.

◦ Since a5 ∈ [0,mindex(M (4)) = 3), AM1 applies and M (5) =
(

2 0 1
0 1 0
0 0 1

)
.

◦ Since a6 ∈ [mindex(M (5)) = 1,dim(M (5)) = 3), AM3 applies and we prise
the matrix M (5) apart between rows 1 and 2, and columns 1 and 2 to

get

(
2 0 1

0 1 0
0 0 1

)
. We fill the new second row with zeros except for a 1 in

column 4. We move the single entry 1 in column 4 above the new row
into the new second column, preserving this entry’s row index, and put
zeros in its former position and in the rest of the new column. We get

M (6) =

(
2 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1

)
= fAM(a).

As is clear in the above definition, AM3 is by far the most involved, and this
will be a feature of AP3 too. When AM3 is used in a recursive step, the results
of the bijection quickly become intractable. The point of the R-families is that
they are defined exactly so that AM3 and AP3 are never invoked, resulting in more
manageable analysis.

We could define fMA as just the inverse of the bijection fAM but it will be useful
to write an explicit definition following [11]. Example 2.2 in reverse serves as an
example of Definition 2.3. Let rowsumi(M) denote the sum of the entries in row i
of M .

Definition 2.3. Given M ∈ Matricesn, define reduce(M) ∈ Matricesn−1 in the
following fashion.

MA1 If rowsummindex(M)(M) > 1 then let reduce(M) equal M with the value at
position (mindex(M),dim(M)) reduced by 1.

MA2 If rowsummindex(M)(M) = 1 and mindex(M) = dim(M) then let reduce(M)
equal M with row dim(M) and column dim(M) removed.

MA3 If rowsummindex(M)(M) = 1 and mindex(M) < dim(M) then perform the
following modifications to M to form reduce(M). For j ∈ [1,mindex(M)),



BIJECTIONS FOR ASCENT SEQUENCES 7

move the entry in position (j,mindex(M)) to position (j,dim(M)). Then
delete row mindex(M) and (the empty) column mindex(M).

Now recursively define M (n) = M , and M (k) = reduce(M (k+1)) for k ∈ [1, n). Let
ak = mindex(M (k))− 1 for i ∈ [1, n] and define fMA(M) = (a1, . . . , an), which is an
ascent sequence [11]. Note that in following this recursive procedure, the sequence
(a1, . . . , an) is constructed from right-to-left.

Remark 2.4. A bijection between ascent sequences and Fishburn matrices is given
in [4] which differs from ours only in the definition of AM3. Since our results are
confined to those ascent sequences where AM3 is never invoked, our results would
work equally well using the bijection of Chen, Yan and Zhou.

2.2.2. Ascent sequences and posets. We next introduce the bijections between Ascn
and Posetsn from [3]. Given a (2+2)-free poset P , recall that `(P ) denotes the
highest index of a level or, equivalently, `(P ) + 1 is the number of levels in P .
Let `?(P ) denote the minimum index of a level that contains a maximal element.
Recall the sequence L(P ) of level sets defined in Subsection 2.1. The definition of
fAP below is very similar in structure to Definition 2.1 above of fAM.

Definition 2.5. Given a = (a1, . . . , an) ∈ Ascn, we define fAP(a) recursively.
First, fAP(a(1)) is the poset consisting of a single element p1. Supposing P (k) =
fAP(a(k)) for some k ∈ [1, n), we have the following three cases for defining P (k+1) =
fAP(a(k+1)).

AP1 If ak+1 ∈ [0, `?(P (k))] then let P (k+1) be the result of adding to P (k) a new
maximal element pk+1 that covers the same elements as do the elements in
Lak+1

(P (k)).

AP2 If ak+1 = 1 + `(P (k)) then let P (k+1) be the result of adding to P (k) a new
element pk+1 covering all maximal elements of P (k).

AP3 If ak+1 ∈ (`?(P (k)), `(P (k))] then let P (k+1) be the outcome of the following:
to P (k), add a new element pk+1 covering the same elements as the elements
in Lak+1

(P (k)). LetM be the set of maximal elements of P (k) lying at any
level less than ak+1. Add all relations x � y where x ∈ M and y is any
element of Lak+1

(P (k)) ∪ · · · ∪ L`(P (k))(P
(k)); here we do not consider the

new element pk+1 to be an element of Lak+1
(P (k)).

Then fAP(a) = fAP(a(n)) = P (n).

Example 2.6. Let a = (0, 0, 1, 2, 0, 1) as in Figure 2.1. Certainly, P (1) is the one-
element poset. The recursive construction of P = fAP(a) appears in Figure 2.2,
where the dotted shapes depict the different levels. The element ak+1 appears
above each arrow and the case name appears below each arrow. The labels pi are
just for expository purposes and are not part of fAP(a). In the final step,M = {p5}.
Note that the new element p6 in the final step ends up on its own level, and this is
true in general for applications of AP3.

To define the inverse fPA, a key observation from Definition 2.5 is that pk+1

is always a maximal element of P (k+1) and, furthermore, ak+1 will be exactly
`?(P (k+1)). Therefore, fPA will be a recursive map that obtains P (k) from P (k+1)

by removing a maximal element at level `?(P (k+1)) and records this level value as
ak+1. Since all maximal elements at the same level in a (2+2)-free poset are order
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p1
0

AP1
p1 p2

1

AP2 p1 p2

p3
2

AP2

p1 p2

p3

p4

p1 p2

p3

p4

p5

0

AP1

p1 p2

p3

p4

p5

p6

1

AP3

Figure 2.2. The recursive construction of Example 2.6.

equivalent, it does not matter which element we remove. Of course, care has to be
taken to make sure we invert AP3 correctly: see PA3 below.

Recall that Di(P ) denotes the strict downset of the elements at level i. Again,
the definition below parallels the corresponding one from Subsection 2.2.1, i.e., Def-
inition 2.3. Obviously, Figure 2.2 in reverse serves as an example of Definition 2.7.

Definition 2.7. Given P ∈ Posetsn, let i = `?(P ) and define remove(P ) ∈
Posetsn−1 in the following fashion.

PA1 If |Li| > 1 then let remove(P ) equal P with a maximal element at level i
removed.

PA2 If |Li| = 1 and i = `(P ) then obtain remove(P ) by deleting the unique
element at level i of P .

PA3 If |Li| = 1 and i < `(P ) then perform the following modifications to P to
form remove(P ). Let M = Di+1(P ) \ Di(P ). Make each element of M a
maximal element by deleting all relations x ≺ y with x ∈M. Then remove
the unique element that was at level i of P .

Now recursively define P (n) = P , and P (k) = remove(P (k+1)) for k ∈ [1, n). Let
ak = `?(P (k)) for i ∈ [1, n] and define fPA(P ) = (a1, . . . , an), which is an ascent se-
quence [3]. Note that in following this recursive procedure, the sequence (a1, . . . , an)
is constructed from right-to-left.

2.2.3. Matrices and posets. The bijections between matrices and posets are actually
simpler than those involving ascent sequences. To provide definitions for fMP and
fPM, it is is easier to work with labelled posets and remove the labels after the
construction, as is done in [10]. We begin with fPM.

Definition 2.8. Let P be a labelled (2+2)-free poset on the set {p1, . . . , pn}. The
poset is uniquely specified by the sets D(P ) and L(P ) defined in Subsection 2.1
since every element of Li has the set Di as its strict downset.
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For j ∈ [0, `(P )], let Kj(P ) = Dj+1(P )\Dj(P ) where D`(P )+1 := P . Let M ′ be
the matrix with entries M ′ij = Li−1(P ) ∩Kj−1(P ) for all i, j ∈ [1, `(P ) + 1], and
define fPM(P ) to be the matrix whose (i, j) entry is |M ′ij |.

Example 2.9. Let P be the (2+2)-free poset from the top-left of Figure 2.1 where

D(P ) = (∅, {p1, p2}, {p1, p2, p5}, {p1, p2, p3, p5})
L(P ) = ({p1, p2, p5}, {p6}, {p3}, {p4})

We have `(P ) = 3 and

K(P ) = (K0(P ),K1(P ),K2(P ),K3(P )) = ({p1, p2}, {p5}, {p3}, {p4, p6}).
From this

M ′ =


{p1, p2} {p5} ∅ ∅
∅ ∅ ∅ {p6}
∅ ∅ {p3} ∅
∅ ∅ ∅ {p4}

 (2.1)

and so fPM(P ) is the matrix M in the bottom-left of Figure 2.1.

To define fMP by inverting fPM, the first step is to construct the set-valued matrix
as in (2.1), but it is not clear which of the entries {p1, . . . , pn} should go where.
The key insight is that it doesn’t really matter because fMP(M) will ultimately be
an unlabelled poset.

Definition 2.10. Let M ∈ Matricesn and let P ′ = {p1, . . . , pn}. Replace each of
the zero entries in M with the empty set, and replace any non-zero integer a in M
with a subset of P ′ of size a while ensuring there are no duplicated elements in the
matrix. Given pi ∈ P ′, let c(pi) and r(pi) be the column and row indices of pi . Let
P = (P ′,�) be the poset whereby pi ≺ pj if and only if c(pi) < r(pj). Finally let
fMP(M) be the unlabelled version of the poset P . �

Example 2.11. Again using M from Figure 2.1, suppose we assign {p1, . . . , p6} as
follows:

M ′ =


{p1, p2} {p3} ∅ ∅
∅ ∅ ∅ {p4}
∅ ∅ {p5} ∅
∅ ∅ ∅ {p6}

 .

This gives the strict order relations p1, p2 ≺ p4, p5, p6 and p3 ≺ p5, p6 and p5 ≺ p6.
This is the same poset as in the top left of Figure 2.1 once all labels are removed.

2.2.4. Ascent sequences to permutations. For an ascent sequence a, we follow [3],
which used a technique systemised in [26], to recursively construct a permutation
fAS(a) ∈ Sn(2|31).

Given a 2|31-avoiding permutation π ∈ Sn−1, we wish to add the entry n to π
and get another 2|31-avoiding permutation. With this in mind, we say that the site
between positions i and i + 1 in π is active if πi = 1 or πi − 1 is to the left of πi.
The sites immediately before position 1 and immediately after position n − 1 are
always active. We leave it as an exercise to check that the active sites are exactly
those where inserting n into π will result in an element of Sn(2|31). We label the
active sites as subscripts from left to right beginning with 0. For example, the
permutation 521634 becomes 05211623344.

Recall that for an ascent sequence a = (a1, . . . , an), the prefix (a1, . . . , ak) is
denoted a(k).
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Definition 2.12. Given a = (a1, . . . , an) ∈ Ascn, we define fAS(a) recursively.
First, fAS(a(1)) = 1, a permutation of one element. For k ∈ (1, n], we let fAS(a(k))
be fAS(a(k−1)) with k inserted at the active site labelled ak. Then fAS(a) is defined
to be fAS(a(n)).

We leave it as an exercise to check that there will indeed exist an active site
labelled ak.

Example 2.13. Let a = (0, 0, 1, 2, 0, 1) as in Figure 2.1. We get the following
sequence of permutations, labelled according to their active sites, with the arrows
labelled by ak:

011
0−→ 0211

1−→ 021132
2−→ 02113243

0−→ 052113243
1−→ 05211623344 ,

consistent with Figure 2.1

2.2.5. Relationships among the bijections. Since the bijections between matrices
and posets are very different from those involving ascent sequences, it is not at
all clear that Figure 1.1 is a commutative diagram at the level of Posets, Asc and
Matrices. Since our maps are all bijections, this is equivalent to showing that
fPM = fAM ◦ fPA, the truth of which is given as a remark in [10]. The equivalent
statement fPM ◦ fAP = fAM can be checked using a careful induction argument.
The crux of the argument is that the ways in which AP1, AP2 and AP3 from
Definition 2.5 change the matrix fPM(P (k)) to fPM(P (k+1)) match exactly with the
effects of AM1, AM2 and AM3 respectively from Definition 2.1. In Theorem 4.3, we
will use the equivalent statement that fPA = fMA ◦ fPM.

We will also need a bijection fPS (see Subsection 4.2), and we will define it by
fPS = fAS ◦ fPA. A direct definition of fPS that bypasses ascent sequences appears
in [3, Sub. 4.2] but we choose not to include that background here since we do not
make heavy use of fPS.

3. Restricted sets

As we saw in the previous section, the bijection fAM (resp. fAP) becomes more
complicated when the case AM3 (resp. AP3) arises. In this section, we introduce
the subset of Asc for which these cases never arise, denoted RAsc, where the letter
R stands for “restricted.” There are two reasons for restricting our attention. First,
as we will show, the images of this subset under our various bijections have nice
definitions, and some of these images are combinatorially significant. Secondly, the
bijections’ behaviour becomes more tractable, allowing us to obtain results for these
restricted sets, as we will see in particular in Section 4.

We first must determine the conditions on an ascent sequence a that cause these
two troublesome cases to arise. Referring to Definition 2.1, we need to avoid the
situation when

ak+1 ∈ [mindex(M (k)),dim(M (k))). (3.1)

Let us translate this expression into properties of a. Looking at all three cases
in this definition, we see that mindex(M (k+1)) is nothing more than ak+1 + 1, so
mindex(M (k)) = ak +1. In addition, this observation implies that AM1 corresponds
to the case when ak is not an ascent in a. Moreover, observe that when AM1
applies, the dimension of the matrix does not change, but it increases by 1 for each
application of AM2 or AM3. Therefore, dim(M (k)) is exactly asc(a1, . . . , ak) + 1.
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Thus the condition (3.1) that invokes AM3 when constructing M (k+1) is equivalent
to

ak+1 ∈ (ak, asc(a1, . . . , ak)]. (3.2)

A similar analysis of Definition 2.5 shows that (3.2) is also exactly the condition
that causes AP3 to be used. Thus we are led to the following definition of a subset of
Asc, which was introduced in [3] under the name “self-modified” ascent sequences.

Definition 3.1. Let RAscn be the subset of Asc consisting of those ascent sequences
a = (a1, . . . , an) such that

ak ∈ [0, ak−1] ∪ {1 + asc(a1, . . . , ak−1)} for all k > 1. (3.3)

In other words, if ak is larger than ak−1, then ak must be the largest it can
be under the conditions on an ascent sequence. For example, (0, 1, 0, 2) is in RAsc
whereas (0, 1, 0, 1) is not. Taking these ideas a step further, we get the following
equivalent definition of RAsc, which will be useful later.

Lemma 3.2. RAscn is the subset of Asc consisting of those ascent sequences a =
(a1, . . . , an) such that

ak ∈ [0, ak−1] ∪ {1 + max(a1, . . . , ak−1)} for all k > 1. (3.4)

Proof. We argue by induction on the number of ascents. If the first ascent is at
position i1 so that 0 = ai1 < ai1+1 then we have

ai1+1 = 1 + asc(a1, . . . , ai1) = 1 + max(a1, . . . , ai1) = 1.

With the jth ascent at position ij , we assume

aij+1 = 1 + asc(a1, . . . , aij ) = 1 + max(a1, . . . , aij ).

Thus at the (j+ 1)st ascent, we have (note the subtle difference below between the
indices ij+1 and ij + 1)

aij+1+1 = 1 + asc(a1, . . . , aij+1)

= 1 + asc(a1, . . . , aij+1)

= 1 + asc(a1, . . . , aij ) + 1

= 1 + max(a1, . . . , aij ) + 1

= max(a1, . . . , aij+1) + 1

= max(a1, . . . , aij+1) + 1.

�

The rest of this section will be working towards proving Corollary 3.8, which
states that, under the classical bijections defined in the previous section, RAscn
maps to the sets we now define.

Definition 3.3.

◦ Let RMatricesn be the set of matrices in Matricesn all of whose diagonal
entries are positive.

◦ Let RPosetsn be the set of those posets in Posetsn that have a chain of
length `(P ).

◦ Let RPermsn = Sn(31524) (defined next).
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The set Sn(31524) is enumerated in [22, 23] (see also [21, A098569]) and appears
in [3] as the image fAS(RAscn). A permutation π is said to avoid the barred per-
mutation 31524 if every occurrence of the pattern 231 in π plays the role of 352 in
an occurrence of the pattern 31524 in π. In other words, if we have i < j < k with
πk < πi < πj , there must also exist ` and m such that i < ` < j < k < m and
πiπ`πjπkπm is an occurrence of 31524.

Since a poset P in Posets has `(P ) + 1 levels, the maximal possible length of a
chain is `(P ), so RPosetsn consists of those posets that have a chain that contains
an element from every level.

The following observation will be crucial for several results stated in this paper.
It not only gives the image of an element of RMatrices under fMA but, combined
with Corollary 3.8(a), shows that all elements of RAsc take a particular form. We
use ij to denote a sequence of j copies of i. From this point on, we will denote the
entry in row i and column j of the matrix M by mij or mi,j

Lemma 3.4. Suppose that M ∈ RMatrices with dim(M) = d. Then

fMA(M) = (0m11 , 1m22 , 0m12 , 2m33 , 1m23 , 0m13 , . . . , (d−1)mdd , (d−2)md−1 d , . . . , 0m1d).
(3.5)

Proof. This follows from the definition of fMA by considering how a = fMA(M) is
constructed from right-to-left in Definition 2.3. Since the diagonal entries of M are
all positive, we never have to apply MA3. �

Example 3.5. The matrix M =
(

2 0 1
0 1 0
0 0 1

)
is in bijection with the ascent sequence

a = (0, 0, 1, 2, 0).

The next lemma shows the essential condition for the desired bijection between
RAscn and RMatricesn.

Proposition 3.6. Let a = (a1, . . . , an) ∈ Ascn and M = fAM(a) with dim(M) = d.
There will be a zero on the diagonal of M if and only if there exists i ∈ [1, n − 1]
such that ai < ai+1 ≤ asc(a1, . . . , ai).

Proof. To show this we will consider Definition 2.1 and how the matrix entries
change during construction with respect to the rules AM1, AM2 and AM3.

Suppose that there exists i ∈ [1, n − 1] with ai < ai+1 ≤ asc(a1, . . . , ai). Re-
call from the second paragraph of this section that ai = mindex(M (i)) − 1 and
asc(a1, . . . , ai) = dim(M (i)) − 1. So when constructing M (i+1) from M (i), AM3

applies, and M
(i+1)
1+ai+1,1+ai+1

= 0. This entry is not in the rightmost column of the
matrix and cannot therefore be increased by any subsequent applications of AM1 or
AM2. Depending on the subsequent values in the ascent sequence, if AM3 is used
then the 0 at position (1 + ai+1, 1 + ai+1) may be permuted amongst the diagonal
entries but will never again be in the rightmost column, and therefore never again
accessible to change.

For the converse, suppose that for all i ∈ [1, n− 1],

ai+1 ∈ [0, ai] ∪ {1 + asc(a1, . . . , ai)}. (3.6)

The procedure for constructing M will begin with M (1) = (1), a 1-by-1 matrix.
Because of (3.6), only AM1 and AM2 will be needed to construct the subsequent
M (i). Since AM1 and AM2 both preserve the property of all diagonal entries being
strictly positive, M will also have that desired property. �

https://oeis.org/A098569
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We next provide a similarly essential ingredient for the desired bijection between
RPosets and RMatrices.

Proposition 3.7. Let P ∈ Posetsn and let M = fPM(P ) with dim(M) = `(P ) + 1.
All the entries on the diagonal of M will be non-zero if and only if P has a chain
of length `(P ).

Proof. Consider the construction of M from P as given in Definition 2.8, especially
the intermediate matrix M ′ given by

M ′ij = Li−1 ∩ (Dj\Dj−1)

for all i, j ∈ [1, `(P ) + 1]. Suppose mii 6= 0 for all i ∈ [1, `(P ) + 1]. We have that
mii 6= 0 if and only if M ′ii 6= ∅, which is equivalent to

Li−1 ∩ (Di\Di−1) 6= ∅. (3.7)

In other words, there exists at least one element wi ∈ Li−1 ∩ (Di\Di−1) for all
1 ≤ i ≤ `(P ) + 1. Therefore,

w1 ≺P w2 ≺P · · · ≺P w`(P ), (3.8)

and so P has a chain of length `(P ).
To show that if P has a chain of length `(P ) then M has only non-zero diagonal

entries, it suffices to show that the condition in (3.8) implies that in (3.7) for all i.
So consider the construction of P from M , as given in Definition 2.10. A chain in P
of length `(P ) must arise from a sequence of `(P )+1 nonempty entries in M ′, each
strictly southeast of the previous one. But since dim(M ′) = `(P ) + 1 by definition
of fPM, these nonempty entires in M ′ must all be along the diagonal, yielding (3.7)
for all i. �

Combining the previous two propositions gives the main result of this section,
which shows that RAsc, RMatrices, RPosets and RPerms are all in bijection, and the
bijections we need are exactly the restricted versions of the classical ones. Part (c)
of the theorem was already proved as [3, Prop. 10]

Corollary 3.8. The classical bijections among Ascn, Matricesn, Posetsn and Permsn
restrict to bijections among RAscn, RMatricesn, RPosetsn and RPermsn, Specifically,

(a) fAM maps RAscn bijectively to RMatricesn;
(b) fPM maps RPosetsn bijectively to RMatricesn;
(c) [3] fAS maps RAscn bijectively to RPermsn.

Proof. Part (a) follows from Prop. 3.6, the definitions of RAscn and RMatricesn,
and the fact that fAM : Ascn → Matricesn is a bijection.

Similarly, (b) follows from Prop. 3.7, the definitions of RPosetsn and RMatricesn,
and the fact that fPM : Posetsn → Matricesn is a bijection. �

4. Poset duality under the bijections

If a poset P is (2+2)-free, then it is clear that the dual poset P ∗ obtained by
reversing all its inequalities is also (2+2)-free. An open question in [11] asks how
a is related to a∗, where a and a∗ are the ascent sequences corresponding to P
and P ∗ respectively. While this question appears intractable for general (2+2)-free
posets, in this section we answer it for RPosets. In addition, we extend the answer
to give the corresponding notion of duality for RPerms. Combined with the duality
result for RMatrices given by [10, Theorem 10], we get a complete understanding of
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how poset duality acts on our four R-families according to our bijections. In fact,
one major motivation for our restriction to the R-families is their amenability to
adopting an analogue of poset duality.

In view of Corollary 3.8, we can abuse notation by using the same f notation for
our bijections even though our domains will now be R-families as opposed to the
domains of Asc, Matrices, Posets and Perms that we had before.

Definition 4.1. Let f : RPosets→ Struct be a bijection where Struct is a collection
of objects. Given P ∈ RPosets with f(P ) = s, we write s∗ for the unique object
f(P ∗), and we call s∗ the dual of s according to f .

Example 4.2. As a first example, we consider the dual of an element M = (mij)
of RMatrices according to the bijection fPM. Define flip(M) to be the reflection of
M through its antidiagonal, i.e., if dim(M) = d, then flip(M)ij = md+1−j, d+1−i.
Observe that M ∈ RMatricesn if and only if flip(M) ∈ RMatricesn. Theorem 10
from [10] states that M∗ = flip(M).

4.1. Duality for ascent sequences. We will use Example 4.2 as a basis for de-
termining the dual of an element of RAsc according to fPA.

Theorem 4.3. Let a ∈ RAscn. By Lemma 3.4, we have

a = (0m11 , 1m22 , 0m12 , 2m33 , 1m23 , 0m13 , . . . , (d− 1)mdd , (d− 2)md−1 d , . . . , 0m1d)
(4.1)

where M = fAM(a). The dual ascent sequence a∗ according to fPA is given by

a∗ = (0mdd , 1md−1 d−1 , 0md−1 d , 2md−2 d−2 , 1md−2 d−1 , 0md−2 d ,

. . . , (d− 1)m11 , (d− 2)m12 , . . . , 0m1d). (4.2)

Proof. Let P = fAP(a). We first observe that, since fPA = fMA ◦ fPM, we get
a∗ = fPA(P ∗) = fMA(flip(M)). Considering the definition of flip(M) and applying
Lemma 3.4 yields the result. �

Example 4.4. If a = (0, 0, 1, 2, 0), then M =
(

2 0 1
0 1 0
0 0 1

)
. Thus flip(M) =

(
1 0 1
0 1 0
0 0 2

)
,

and so a∗ = (0, 1, 2, 2, 0).

There is an alternative way to construct a∗ that avoids the need to write it out in
the form (4.1). This alternative uses a map pan that takes any sequence of numbers
as its input and returns an ascent sequence pan(a), which we call the panorama of
a. First, we need a preliminary definition.

Definition 4.5. Given a sequence (a1, a2, . . . , ak) of real numbers, the view vi of
the element ai is defined in the following recursive fashion:

(a) if j is the minimum index greater than i such that aj > ai, then define
vi = vj + 1;

(b) if no such j exists then vi := 0.

We can think of the view vi as counting left-to-right maxima starting at the
entry ai. For example, the sequence (0, 1, 2, 0, 4, 3, 1, 2) has (3, 2, 1, 1, 0, 0, 1, 0) as
its sequence of views.

Definition 4.6. Let a be a sequence of real numbers. We construct the panorama
sequence pan(a) of a in the following manner. Suppose the maximum value
of a occurs in positions i1, i2, . . . , ij . Begin pan(a) with the sequence of views
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(vi1 , vi2 , . . . , vij ). Now continue this process with the next highest value in a, con-
catenating the corresponding view values onto the right end of pan(a). Repeat this
process until the view of every element of a has been added to pan(a).

Example 4.7. For a = (0, 1, 2, 0, 4, 3, 1, 2) as above, pan(a) = (0, 0, 1, 0, 2, 1, 3, 1).

As promised, we get the following alternative construction of a∗.

Proposition 4.8. Let a ∈ RAsc and let a∗ be its dual according to fPA. Then
a∗ = pan(a).

Proof. Consider pan(a) with a as given in (3.5). By Corollary 3.8(a) and by defi-
nition of RMatricesn, we know that the diagonal entries mjj are all positive. With
this observation in mind, we see that the left-to-right maxima that determine the
view of the element ai come from those entries in a of the form jmj+1 j+1 with j > i
that appear to the right of ai. It follows that the panorama pan(a) is exactly the
sequence given in (4.2), as required. �

Observe that pan(a) in Example 4.7 is an ascent sequence, while Proposition 4.8
implies the same is true for all a ∈ RAsc; this is no coincidence. In fact, one can
show that pan(a) is an ascent sequence for any sequence of real numbers a. One
method of proof is to show pan(a) has a stronger property, originally defined in [16],
which we recall now. Another reason for introducing this natural stronger property
is that it will be useful in the next section.

Definition 4.9. A restricted growth function (RGF) is a sequence a of non-negative
integers such that each j > 0 that appears in a is preceded by an appearance of
j − 1. Equivalently, for all j > 0 that appear in a, the first appearance of j is
preceded by an appearance of every i satisfying 0 ≤ i < j.

For example, (0, 1, 0, 2, 1, 3) is an RGF whereas (0, 1, 0, 1, 3, 2) is not.

Lemma 4.10. RAsc ⊆ RGF ⊆ Asc and both containments are strict.

Proof. Both containments are trivial for sequences of length n = 1, so assume n > 1
and let a = (a1, . . . , an) ∈ RAscn. By (3.4), the first time j > 0 appears, it must
take the form 1 + max(a1, . . . , ai−1) for some i. Thus j − 1 appears before j, and a
is an RGF.

Next let a = (a1, . . . , an) be an RGF, and let l(j) denote the position in a
of the leftmost appearance of the number j, when such a position exists. Note
that to prove that a ∈ Asc, it suffices to show that al(j) ≤ 1 + asc(a1, . . . , al(j)−1)
for each j. By definition of RGFs, l(0) < l(1) < · · · < l(m), where m is the
maximum value in a. Hence position l(i) − 1 is always an ascent for 1 ≤ i ≤
m. Thus asc(a1, . . . , al(j)−1) ≥ j − 1, from which we conclude al(j) = j ≤ 1 +
asc(a1, . . . , al(j)−1), as required.

To see the strict containments, the shortest examples are (0, 1, 0, 1) ∈ RGF\RAsc
while (0, 1, 0, 1, 3) ∈ Asc \ RGF. �

Remark 4.11. Clearly, generalised ballot sequences (also known as Yamanouchi
words) are RGFs, and so we have (slightly) generalised the first author’s result [8]
that generalised ballot sequences are ascent sequences.

Remark 4.12. We leave it as an exercise for the reader to justify our earlier assertion
that pan(a) is an RGF and hence an ascent sequence for any sequence of real
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numbers a. (In fact, one can constructively prove the converse that every RGF
is a panorama sequence.) A harder exercise is to show there is another way in
which pan(a) is “nicer” than a: if a is an RGF, then pan(a) ∈ RAsc. Consequently,
pan2(a) ∈ RAsc for any sequence a of real numbers. Moreover, this latter fact
combined with Proposition 4.8 tells us that pan2(a) = a if and only if a ∈ RAsc.
This last observation gives an alternative definition of RAsc.

As we mentioned, we have not been able to answer in full the open question from
[11] by determining a∗ for all a ∈ Asc. However, we assert that RAsc is in some
sense the largest subset that behaves nicely with respect to poset duality. Indeed,
since (a∗)∗ = a by definition, the fact that pan2(a) = a if and only if a ∈ RAsc tells
us that a∗ can be as simple as pan(a) if and only if a ∈ RAsc.

4.2. Duality for permutations. For our one remaining notion of duality, we use
the definition of the dual of an ascent sequence to determine the dual π∗ of an
element π of RPerms = Sn(31524) according to fPS := fAS ◦ fPA.

Our definition of π∗ requires the use of what are perhaps the three best known
involutions on a permutation π = (π1, . . . , πn): its inverse π−1, its reverse rev(π) :=
(πn, . . . , π1), and its complement comp(π) := (n+1−π1, . . . , n+1−πn). Together,
these involutions allow us to state the result with the most technical proof of this
paper.

Theorem 4.13. Let π ∈ Sn(31524) = RPerms. The dual permutation according to
fPS is given by π∗ = (comp(rev(π)))−1.

Proof. Let a ∈ RAscn and let π = fAS(a) ∈ Sn(31524). See Example 4.14 below for
an example pertinent to the key elements of this proof; we will use the symbol X
in this proof to denote paragraphs or single statements that are demonstrated in
the example. Theorem 4.3 tells us how to construct a∗ from a: if

a = (0m11 , 1m22 , 0m12 , 2m33 , 1m23 , 0m13 , . . . , (d− 1)mdd , (d− 2)md−1 d , . . . , 0m1d)
(4.3)

then a∗ is given by

a∗ = (0mdd , 1md−1 d−1 , 0md−1 d , 2md−2 d−2 , 1md−2 d−1 , 0md−2 d ,

. . . , (d− 1)m11 , (d− 2)m12 , . . . , 0m1d).

Here, a = fMA(M) and a∗ = fMA(flip(M)) as shown in the proof of Theorem 4.3.
X.

In Definition 2.12, we saw a recursive definition of fAS(a). However, as shown in
[3, Cor. 9], when a ∈ RAsc, we have the following equivalent but simpler definition.
Let a = (a1, . . . ,an) ∈ RAscn and let k be the largest value in this sequence. Let
Wi(a) be the list of all positions j ∈ [1, n] such that aj = i written in decreasing
order. Define

fAS(a) = W0(a)W1(a) . . .Wk(a) =

k⊕
i=0

Wi(a) (4.4)

to be the concatenation of these lists X.
The proof will rely on several different ways to sum the mab values which we

now identify. The sums use three different ways to traverse the upper-triangular
entries of (mij).
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T traversal: (1, 1) → (2, 2) → (1, 2) → (3, 3) → (2, 3) → (1, 3) → . . . →
(2, d)→ (1, d).

R traversal: (1, d) → (2, d) → . . . → (d, d) → (1, d − 1) → . . . → (d − 1, d −
1)→ . . .→ (1, 1).

S traversal: (1, d) → (1, d − 1) → . . . → (1, 1) → (2, d) → . . . (2, 2) → . . . →
(d− 1, d)→ (d− 1, d− 1)→ (d, d).

Let Tij be the sum of mab using T traversal until we reach the pair (a, b) = (i, j).
Let Rij be the sum of mab using R traversal until we reach the pair (a, b) = (i, j).
Let Sij be the sum of mab using S traversal until we reach the pair (a, b) = (i, j).
The quantities T ′ij , R

′
ij , and S′ij are those where one sums m′ab’s in place of mab’s,

where the two are related via m′ij = md+1−j, d+1−i. In other words, the primed
versions of the sums are obtained by traversing in the prescribed orders but over
the entries of flip(M) instead of M X. Notice that we have the following identities:

Tij +Rij = n+mij (4.5)

T ′ij +R′ij = n+m′ij (4.6)

S′ij = Rd+1−j, d+1−i . (4.7)

Let us use the notation [x]a for the list (x, x− 1, . . . , x− a+ 1), and define [x]0
to be the empty list. Applying fAS(a) we find that Wi−1(a) = [Tid]mid

· · · [Tii]mii
.

This is due to the T traversal matching the order of the powers mij appearing
in (4.3). Thus

π = fAS(a) =

d⊕
i=1

i⊕
j=d

[Tij ]mij
(4.8)

where ⊕ denotes left-to-right concatenation of sequences, and where the index j in
the inner concatenation runs from d down to i X. Similarly, working with flip(M)
instead of M , we have

π∗ = fAS(a∗) =

d⊕
i=1

i⊕
j=d

[T ′ij ]m′ij X (4.9)

We now have bona fide expressions for both π and π∗. It remains to show that they
satisfy the equation stated in the theorem.

The value π(a) is obtained in the following way:

π(a) = Tij + Sij −mij + 1− a (4.10)

where (i, j) is the unique pair such that a ∈ (Sij−mij , Sij ] X. Indeed, to determine
π(a), we first have to determine which sequence [Tij ]mij from (4.8) will include the
ath entry of π. The order from left-to-right in which the [Tij ]mij appear matches
the S traversal, which is why we pick (i, j) in the stated way. Next we need the π(a)
values for a ∈ (Sij −mij , Sij ] to give the sequence [Tij ]mij

. Indeed, the smallest
such a is Sij − mij + 1, which gives π(a) = Tij in (4.10). As a increases all the
way to Sij , we get all the π(a) values decreasing all the way to Tij −mij + 1, as
required. This argument also makes it clear that the pair (i, j) is also the unique
pair such that b = π(a) ∈ (Tij −mij , Tij ] X.

The statement of the theorem is equivalent to showing π∗(a) = b if and only
if π(n + 1 − b) = n + 1 − a. Suppose that π∗(a) = b. Then we have π∗(a) =
T ′ij +S′ij −m′ij + 1− a where (i, j) is the unique pair such that a ∈ (S′ij −m′ij , S′ij ].
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Equivalently (i, j) is the unique pair such that b = π∗(a) ∈ (T ′ij −m′ij , T ′ij ]. The
rest of this proof will start with the statement that

T ′ij + S′ij −m′ij + 1− a = b, (4.11)

where (i, j) is the unique pair such that b ∈ (T ′ij −m′ij , T ′ij ] and consist of manip-
ulations to remove all primed terms with a view to recovering a statement that is
equivalent to π(n+ 1− b) = n+ 1− a.

From (4.5)–(4.7), we have T ′ij −m′ij = n− Sd+1−j, d+1−i , and

S′ij = Rd+1−j, d+1−i = n+md+1−j, d+1−i − Td+1−j, d+1−i .

The above equality (4.11) is therefore equivalent to

n− Sd+1−j, d+1−i + (n+md+1−j, d+1−i − Td+1−j, d+1−i) + 1− b = a.

Subtract both sides of this equation from n+ 1 to yield

Td+1−j, d+1−i + Sd+1−j, d+1−i −md+1−j, d+1−i + 1− (n+ 1− b) = n+ 1− a
where, again, (i, j) is the unique pair such that b ∈ (T ′ij −m′ij , T ′ij ]. Notice that

b ∈ (T ′ij −m′ij , T ′ij ]
⇐⇒ T ′ij −m′ij < b ≤ T ′ij
⇐⇒ n+ 1− T ′ij +m′ij > n+ 1− b ≥ n+ 1− T ′ij
⇐⇒ n− T ′ij +m′ij ≥ n+ 1− b > n− T ′ij
⇐⇒ R′ij ≥ n+ 1− b > R′ij −m′ij
⇐⇒ Sd+1−j, d+1−i ≥ n+ 1− b > Sd+1−j, d+1−i −md+1−j, d+1−i

⇐⇒ n+ 1− b ∈ (Sd+1−j, d+1−i −md+1−j, d+1−i, Sd+1−j, d+1−i].

Thus we now have that

Td+1−j, d+1−i + Sd+1−j, d+1−i −md+1−j, d+1−i + 1− (n+ 1− b) = n+ 1− a
where (i, j) is the unique pair such that

n+ 1− b ∈ (Sd+1−j, d+1−i −md+1−j, d+1−i, Sd+1−j, d+1−i].

Changing the variables to I := d+ 1− j and J := d+ 1− i, we get

TI,J + SI,J −mI,J + 1− (n+ 1− b) = n+ 1− a
where (I, J) is the unique pair such that n + 1 − b ∈ (SI,J − mI,J , SI,J ]. By
comparing with (4.10), we see that we have arrived at a statement that is equivalent
to π(n+ 1− b) = n+ 1− a, as required. �

Example 4.14. Let

a = (0, 0, 0, 1, 1, 0, 2, 2, 2, 2, 0, 3, 1, 1)

and so

π = fAS(a) = (11, 6, 3, 2, 1 | 14, 13, 5, 4 | 10, 9, 8, 7 | 12)

where the vertical bars separate each Wi(a) from Wi+1(a). We have a = fMA(M)
where

M =


3 1 1 0
0 2 0 2
0 0 4 0
0 0 0 1
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by (4.3). Thus

flip(M) =


1 0 2 0
0 4 0 1
0 0 2 1
0 0 0 3


from which we can read off

a∗ = (0, 1, 1, 1, 1, 2, 2, 0, 0, 3, 3, 3, 2, 1),

yielding

π∗ = (9, 8, 1 | 14, 5, 4, 3, 2 | 13, 7, 6 | 12, 11, 10)

which does indeed equal (comp(rev(π)))−1.
From here on, we give examples of other items appearing in the proof. First, we

have T33 = 3+2+1+4 = 10, R33 = 2+1+1+4 = 8, S33 = 1+1+3+2+2+4 = 13,
T ′33 = 1+4+2 = 7, R′33 = 1+1+3+2+2 = 9, and S′33 = 2+1+1+4+1+2 = 11.
Next, consistent with (4.8) and (4.9), we have

π = [14]0[11]1[6]1[3]3 | [14]2[10]0[5]2 | [12]0[10]4 | [12]1.

and

π∗ = [14]0[9]2[5]0[1]1 | [14]1[7]0[5]4 | [13]1[7]2 | [12]3.

Finally, let us give some examples of (4.10), starting with a = 10. To determine
π(10) we find that 10 ∈ (S33 −m33, S33] = (9, 13]. We thus obtain π(10) = T33 +
S33 −m33 + 1 − 10 = 10 + 13 − 4 + 1 − 10 = 10. As a increases to 11, 12, 13, the
only term that changes on the right-hand side of (4.10) is a, and we get 9, 8, 7 for
the respectively values of π(a). Notice that the four values we obtained here for
π(a) are exactly the elements of [T33]m33

.

5. A Catalan restriction and series-parallel posets

In this section, we consider subsets of the R-families whose cardinalities are
given by the Catalan numbers; we thus use the C prefix for naming these subsets.
The study of these subsets is also motivated by the results of applying our bijec-
tions to these subsets, which allow us to draw connections between some natural
families: pattern-avoiding ascent sequences, pattern-avoiding permutations, and
series-parallel (2+2)-free posets. Pattern avoidance in ascent sequences is studied
from an enumerative perspective in [12].

A sequence is said to be abab-avoiding if it is both 0101-avoiding and 1010-
avoiding.

Proposition 5.1. Let a be a sequence of non-negative integers. The following are
equivalent:

(a) a is a 101-avoiding ascent sequence;
(b) a is an abab-avoiding ascent sequence;
(c) a is a 0101-avoiding ascent sequence;
(d) a is an abab-avoiding RGF.

Consequently, the number of sequences of length n satisfying these conditions is the
Catalan number Cn.
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Proof. That (a) implies (b) is immediate, as is the implication from (b) to (c). That
(a) and (c) are equivalent is [12, Theorem 2.5]. Lemma 4.10 gives that (d) implies
(b), while [12, Lemma 2.4] gives that both (a) or (c) imply (d).

The last assertion is shown in [12, Theorem 2.5] and also follows from the fact
that the number of sequences a of length n satisfying (d) is shown to be Cn in [24,
Exer. 88]. �

Definition 5.2. Let CAscn denote the set of those sequences of length n consisting
of non-negative integers that satisfy the conditions of Proposition 5.1.

As an example, of the 15 ascent sequences of length 4, the only one containing
abab is 0101. Thus 14 = C4 = |CAsc4|.

It is certainly not the case that CAscn = RAscn since 01021 ∈ RAscn \ CAscn.
However, we do have the following relationship.

Proposition 5.3. CAscn ⊆ RAscn.

Proof. Let a = (a1, . . . , an) be an ascent sequence that is not in RAscn. We will
show that a violates one of the characterizations of CAscn from Proposition 5.1.
By definition of RAscn, there exists i such that ai−1 < ai < 1 + asc(a1, . . . , ai−1).
If ai = aj for some j < i− 1, then ajai−1ai is an occurrence of 101 in a, violating
Proposition 5.1(a). If aj > ai for some j < i−1, then the RGF property implied by
Proposition 5.1(d) would again imply the appearance of the subsequence aiai−1ai
in a. Thus we can assume that aj < ai for all j with 1 ≤ j ≤ i− 1.

If a ∈ CAscn, we know a is an RGF, so the first appearance aj of any
non-zero element of (a1, . . . , ai−1) results in position j − 1 contributing +1 to
asc(a1, . . . , ai−1). Because aj < ai, the combined contribution of these first ap-
pearances to asc(a1, . . . , ai−1) is at most ai − 1. Since ai − 1 < asc(a1, . . . , ai−1),
there must then be a value aj that results in at least two ascents, i.e., there must
be exist j and k such that 1 < j < k ≤ i − 1 with aj = ak such that both j − 1
and k − 1 are ascents. Consequently, ajak−1ak is an occurrence of 101 in a, again
violating Proposition 5.1(a). �

We next turn to determining the image of CAscn under our bijections. We begin
with posets since this case is perhaps the most interesting. Recall from Figure 1.1
that CPosetsn denotes the series-parallel posets in Posetsn. In other words, CPosetsn
consists of those posets with n elements that are both (2 + 2)-free and N-free.

Proposition 5.4. fAP : CAscn → CPosetsn, and fAP is a bijection.

Proof. Since fAP : Ascn → Posetsn is a bijection and since CAscn and CPosetsn
both have size Cn by Proposition 5.1 and [24, Exer. 182], it suffices to prove that
fAP(a) ∈ CPosetsn for any a = (a1, . . . , an) ∈ CAscn. So suppose fAP(a) = P
contains an N. Since a ∈ RAscn by Proposition 5.3, we know that only rules AP1
and AP2 from Definition 2.5 are used in constructing P . Let i, j, k, l be distinct
positions in a that result (under fAP) in the elements e, f, g, h, respectively, of
P which form an N as, for example, in Figure 5.1. Since a ∈ CAscn ⊆ RAscn,
applying [3, Lem. 7] tells us that e, f, g, h appear at levels ai, aj , ak, al respectively
of P . Comparing strict downsets, we see that al > ak > aj , ai. There are two cases
to consider depending on the relative values of the positions k and l.

We first consider the case l > k. Since a is an RGF by Proposition 5.1, in
constructing P , the first time an element was added at level al it must have been
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elevel ai

flevel aj

glevel ak

hlevel al

Figure 5.1. For ease of reference of notation, we give one possible
configuration of the N-subposet of P from the proof of Proposi-
tion 5.4. This is just one of two possible configurations, since there
is no mathematical reason why level ai should appear below level
aj .

added as a top element using the rule AP2. But since h 6>P g, there must be some
element h′ at level al that was added before g (and so also before h). Thus we have
alakal appearing in a, contradicting Proposition 5.1(a).

It remains to consider the case l < k. With the same reasoning as the previous
paragraph, there exists an element g′ at level ak that was added as a top element.
Since e 6∈ Dg and g and g′ are at the same level, we know e 6∈ Dg′ . Thus g′ was
added to P before e. On the other hand, since h >P e, we know h was added
to P after e, and hence so was g. Thus we have akaiak appearing in a, again
contradicting Proposition 5.1(a). �

We follow Jeĺınek [18] to define the family CMatricesn.

Definition 5.5. An SE-pair of a matrix M ∈ Matrices is a pair of non-zero entries
mij and mi′j′ such that i < i′, j < j′ and i′ ≤ j. We say that M is SE-free if it
contains no SE-pair.

In [18, Lem. 1.2], Jeĺınek shows that P ∈ Posets is series-parallel if and only if
fPM(P ) is SE-free.

Definition 5.6. Define CMatricesn to be the subset of Matricesn consisting of those
elements that are SE-free.

Finally, we determine the C-family for permutations. The answer is quite ap-
pealing, namely CPerms = Sn(231).

Remark 5.7. At this point, it is worth clarifying the containment relations of
Figure 1.1. We already showed in Proposition 5.3 that if a ∈ Asc, then a being
101-avoiding automatically implies that a is self-modified. That the analogous
implications hold for the other three C-families follows from Theorem 5.9, but can
also be checked directly as follows:

◦ If π ∈ Sn(231) then π ∈ Sn(31524) by definition of Sn(31524).
◦ If M ∈ Matrices is a k-by-k matrix that is SE-free, then it must have only

positive diagonal entries. To see this, suppose mii = 0 for some i. By



22 MARK DUKES AND PETER R.W. MCNAMARA

definition of Matrices, we have 2 ≤ i ≤ k − 1, and there must exist an
SE-pair formed by mai and mib where 1 ≤ a < i and i < b ≤ k.

◦ We leave it as an exercise to show that if P ∈ Posets is series-parallel, then
P has a chain of length `(P ).

Proposition 5.8. fAS maps CAscn bijectively to CPerms.

Proof. The definition of CAscn and the fact that fAS is a bijection tells us that
|fAS(CAscn)| = Cn. As is well known, Cn is also the cardinality of CPerms. Thus
it suffices to show that CPerms ⊆ fAS(CAscn). Crucial to our proof is that, from
Propositions 5.1(a) and 5.3, we have CAscn = RAscn(101).

Corollary 3.8(c) and the definition of RPerms give fAS(RAscn) = RPerms ⊇
CPerms. Thus if fAS(a) ∈ CPerms, then a ∈ RAscn. We wish to show the more
refined fact that a ∈ CAscn, i.e., that a avoids 101. So suppose that a contains a
101 pattern as (ai, aj , ak) = (d, c, d). Then in fAS(a), using the definition of fAS(a)
given in (4.4), j will be in Wc(a) which is to the left of Wd(a). In Wd(a), k will be
to the left of i since k > i. Thus (j, k, i) will be a 231 pattern in fAS(a), which is
the desired contradiction. �

We now have all the necessary ingredients to compile the following “Catalan”
refinement of Corollary 3.8

Corollary 5.9. The classical bijections among Ascn, Matricesn, Posetsn and Perms
restrict to bijections among CAscn, CMatricesn, CPosetsn and CPerms. Specifically,

(a) fAP maps CAscn bijectively to CPosetsn;
(b) [18] fPM maps CPosetsn bijectively to CMatricesn;
(c) fAS maps CAscn bijectively to CPerms.

6. Open problems

Comparing our bijections, the definition of those between Matrices and Posets are
perhaps the simplest, which helps with our understanding of that correspondence.
In particular, although we determined in Section 4 the effect of poset duality on
just the R-families, the result from [10] that M∗ = flip(M) given in Example 4.2
holds for all M ∈ Matrices. At the other extreme, the bijections fAM, fAP, and their
inverses are the most complicated, especially because of the cases AM3 and AP3.
It is not surprising, therefore, that our open problems all involve ascent sequences.

As we have already mentioned, we have not answered the following question of
[11] for a ∈ Asc \ RAsc.

Problem 6.1. Given P ∈ Posets with fPA(P ) = a, how do we obtain fPA(P ∗) from
a?

The following problem has already been considered in [19, 20].

Problem 6.2. Under fAP, which ascent sequences give rise to posets that are both
(2+2)-free and (3+1)-free?

Posets that are both (2+2)- and (3+1)-free are known as semiorders or unit
interval orders, and it is well known that they are counted by the Catalan numbers.
Analogous to Problem 6.2, a question already answered by [10, Prop. 16] is to
determine those M ∈ Matrices that map under fMP to semiorders. The answer is
those M such that there does not exist i > i′ and j < j′ with mijmi′j′ 6= 0. For
example, in Figure 2.1, m33m24 6= 0 while {p3, p4, p5, p6} form a (3+1) in P .
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Obtaining sets in bijection with semiorders can be motivated by a famous prob-
lem in symmetric functions: a conjecture of Stanley and Stembridge [25] states
that the chromatic symmetric functions of incomparability graphs of (3+1)-free
posets are e-positive. Guay-Paquet [15] has reduced this conjecture to the case of
semiorders. So perhaps an alternative characterization of semiorders would give
insight into the conjecture. For example, we have a characterization of semiorders
in terms of matrices M in the previous paragraph, and [10, Lem. 15] tells us an
easy way to identify which elements of fMP(M) are incomparable.

Finally, Proposition 5.4 suggests the following modification of Problem 6.2.

Problem 6.3. Under fAP, which ascent sequences give rise to posets that are
(2+2)-free, (3+1)-free and N-free?
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