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Abstract

Given a sequence (ak) = a0, a1, a2, . . . of real numbers, define a new se-
quence L(ak) = (bk) where bk = a2

k − ak−1ak+1. So (ak) is log-concave if and
only if (bk) is a nonnegative sequence. Call (ak) infinitely log-concave if Li(ak)
is nonnegative for all i ≥ 1. Boros and Moll [4] conjectured that the rows of
Pascal’s triangle are infinitely log-concave. Using a computer and a stronger
version of log-concavity, we prove their conjecture for the nth row for all
n ≤ 1450. We also use our methods to give a simple proof of a recent result of
Uminsky and Yeats [30] about regions of infinite log-concavity. We investigate
related questions about the columns of Pascal’s triangle, q-analogues, sym-
metric functions, real-rooted polynomials, and Toeplitz matrices. In addition,
we offer several conjectures.

1 Introduction

Let
(ak) = (ak)k≥0 = a0, a1, a2, . . .
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be a sequence of real numbers. It will be convenient to extend the sequence to
negative indices by letting ak = 0 for k < 0. Also, if (ak) = a0, a1, . . . , an is a finite
sequence then we let ak = 0 for k > n.

Define the L-operator on sequences to be L(ak) = (bk) where bk = a2
k−ak−1ak+1.

Call a sequence i-fold log-concave if Li(ak) is a nonnegative sequence. So log-
concavity in the ordinary sense is 1-fold log-concavity. Log-concave sequences arise
in many areas of algebra, combinatorics, and geometry. See the survey articles of
Stanley [25] and Brenti [8] for more information.

Boros and Moll [4, page 157] defined (ak) to be infinitely log-concave if it is i-fold
log-concave for all i ≥ 1. They introduced this definition in conjunction with the
study of a specialization of the Jacobi polynomials whose coefficient sequence they
conjectured to be infinitely log-concave. Kauers and Paule [16] used a computer
algebra package to prove this conjecture for ordinary log-concavity. Since the coeffi-
cients of these polynomials can be expressed in terms of binomial coefficients, Boros
and Moll also made the statement:

“Prove that the binomial coefficients are ∞-logconcave.”

We will take this to be a conjecture that the rows of Pascal’s triangle are infinitely
log-concave, although we will later discuss the columns and other lines. When
given a function of more than one variable, we will subscript the L-operator by
the parameter which is varying to form the sequence. So Lk

(
n
k

)
would refer to the

operator acting on the sequence
(
n
k

)
k≥0

. Note that we drop the sequence parentheses
for sequences of binomial coefficients to improve readability. We now restate the
Boros-Moll conjecture formally.

Conjecture 1.1. The sequence
(
n
k

)
k≥0

is infinitely log-concave for all n ≥ 0.

In the next section, we use a strengthened version of log-concavity and computer
calculations to verify Conjecture 1.1 for all n ≤ 1450. Uminsky and Yeats [30] set
up a correspondence between certain symmetric sequences and points in Rm. They
then described an infinite region R ⊂ Rm bounded by hypersurfaces and such that
each sequence corresponding to a point of R is infinitely log-concave. In Section 3,
we show how our methods can be used to give a simple derivation of one of their
main theorems. We investigate infinite log-concavity of the columns and other lines
of Pascal’s triangle in Section 4. Section 5 is devoted to two q-analogues of the
binomial coefficients. For the Gaussian polynomials, we show that certain analogues
of some infinite log-concavity conjectures are false while others appear to be true.
In contrast, our second q-analogue seems to retain all the log-concavity properties
of the binomial coefficients. In Section 6, after showing why the sequence (hk)k≥0

of complete homogeneous symmetric is an appropriate analogue of sequences of
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binomial coefficients, we explore its log-concavity properties. We end with a section
of related results and questions about real-rooted polynomials and Toeplitz matrices.

While one purpose of this article is to present our results, we have written it
with two more targets in mind. The first is to convince our audience that infinite
log-concavity is a fundamental concept. We hope that its definition as a natural
extension of traditional log-concavity helps to make this case. Our second aspiration
is to attract others to work on the subject; to that end, we have presented several
open problems. These conjectures each represent fundamental questions in the area,
so even solutions of special cases may be interesting.

2 Rows of Pascal’s triangle

One of the difficulties with proving the Boros-Moll conjecture is that log-concavity is
not preserved by the L-operator. For example, the sequence 4, 5, 4 is log-concave but
L(4, 5, 4) = 16, 9, 16 is not. So we will seek a condition stronger than log-concavity
which is preserved by L. Given r ∈ R, we say that a sequence (ak) is r-factor
log-concave if

a2
k ≥ rak−1ak+1 (1)

for all k. Clearly this implies log-concavity if r ≥ 1.
We seek an r > 1 such that (ak) being r-factor log-concave implies that (bk) =

L(ak) is as well. Assume the original sequence is nonnegative. Then expanding
rbk−1bk+1 ≤ b2k in terms of the ak and rearranging the summands, we see that this
is equivalent to proving

(r − 1)a2
k−1a

2
k+1 + 2ak−1a

2
kak+1 ≤ a4

k + rak−2ak(a
2
k+1 − akak+2) + ra2

k−1akak+2.

By our assumptions, the two expressions with factors of r on the right are non-
negative, so it suffices to prove the inequality obtained when these are dropped.
Applying (1) to the left-hand side gives

(r − 1)a2
k−1a

2
k+1 + 2ak−1a

2
kak+1 ≤

r − 1

r2
a4
k +

2

r
a4
k.

So we will be done if
r − 1

r2
+

2

r
= 1.

Finding the root r0 > 1 of the corresponding quadratic equation finishes the proof
of the first assertion of the following lemma, while the second assertion follows easily
from the first.
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Lemma 2.1. Let (ak) be a nonnegative sequence and let r0 = (3 +
√

5)/2. Then
(ak) being r0-factor log-concave implies that L(ak) is too. So in this case (ak) is
infinitely log-concave.

Now to prove that any row of Pascal’s triangle is infinitely log-concave, one
merely lets a computer find Lik

(
n
k

)
for i up to some bound I. If these sequences are

all nonnegative and LIk
(
n
k

)
is r0-factor log-concave, then the previous lemma shows

that this row is infinitely log-concave. Using this technique, we have obtained the
following theorem.

Theorem 2.2. The sequence
(
n
k

)
k≥0

is infinitely log-concave for all n ≤ 1450.

We note that the necessary value of I increases slowly with increasing n. As an
example, when n = 100, our technique works with I = 5, while for n = 1000, we
need I = 8.

Of course, the method developed in this section can be applied to any sequence
such that Li(ak) is r0-factor log-concave for some i. In particular, it is interesting to
try it on the original sequence which motivated Boros and Moll [4] to define infinite
log-concavity. They were studying the polynomial

Pm(x) =
m∑
`=0

d`(m)x` (2)

where

d`(m) =
m∑
j=`

2j−2m

(
2m− 2j

m− j

)(
m+ j

m

)(
j

`

)
.

Kauers [private communication] has used our method to verify infinite log-concavity
of the sequence (d`(m))`≥0 for m ≤ 129. For such values of m, L5

` applied to the
sequence is r0-factor log-concave.

3 A region of infinite log-concavity

Uminsky and Yeats [30] took a different approach to the Boros-Moll Conjecture as
described in the Introduction. Since they were motivated by the rows of Pascal’s
triangle, they only considered real sequences a0, a1, . . . , an which are symmetric (in
that ak = an−k for all k) and satisfy a0 = an = 1. Each such sequence corresponds
to a point (a1, . . . , am) ∈ Rm where m = bn/2c.

Their region, R, whose points all correspond to infinitely log-concave sequences,
is bounded by m parametrically defined hypersurfaces. The parameters are x and
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d1, d2, . . . , dm and it will be convenient to have the notation

sk =
k∑
i=1

di.

We will also need r1 = (1 +
√

5)/2. Note that r2
1 = r0. The kth hypersurface,

1 ≤ k < m, is defined as

Hk = {(xs1 , . . . , xsk−1 , r1x
sk , xsk+1+dk−dk+1 , . . . , xsm+dk−dk+1) :

x ≥ 1, 1 = d1 > · · · > dk > dk+2 > · · · > dm > 0},

while

Hm = {(xs1 , . . . , xsm−1 , cxsm−1) : x ≥ 1, 1 = d1 > · · · > dm−1 > 0},

where

c =

{
r1 if n = 2m,
2 if n = 2m+ 1.

Let us say that the correct side of Hk for 1 ≤ k ≤ m consists of those points in
Rm that can be obtained from a point on Hk by increasing the kth coordinate. Then
let R be the region of all points in Rm having increasing coordinates and lying on
the correct side of Hk for all k. We will show how our method of the previous section
can be used to give a simple proof of one of Uminsky and Yeats’ main theorems.
But first we need a modified version of Lemma 2.1 to take care of the case when
n = 2m+ 1.

Lemma 3.1. Let a0, a1, . . . , a2m+1 be a symmetric, nonnegative sequence such that

(i) a2
k ≥ r0ak−1ak+1 for k < m, and

(ii) am ≥ 2am−1.

Then L(ak) has the same properties, which implies that (ak) is infinitely log-concave.

Proof. Clearly L(ak) is still symmetric. To show that the other two properties per-
sist, note that in demonstrating Lemma 2.1 we actually proved more. In particular,
we showed that if equation (1) holds at index k of the sequence (ak) (with r = r0),
then it also holds at index k of the sequence L(ak) provided that the original sequence
is log-concave. Note that the assumptions of the current lemma imply log-concavity
of (ak): This is clear at indices k 6= m,m + 1 because of condition (i). Also, using
symmetry and multiplying condition (ii) by am gives a2

m ≥ 2am−1am = 2am−1am+1

(and symmetrically for k = m+ 1).
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So now we know that condition (i) is also true for L(ak). As for condition (ii),
using symmetry we see that we need to prove

a2
m − am−1am ≥ 2

(
a2
m−1 − am−2am

)
.

Rearranging terms and dropping one of them shows that it suffices to demonstrate

2a2
m−1 + am−1am ≤ a2

m.

But this is true because of (ii), and we are done.

Theorem 3.2 ([30]). Any sequence corresponding to a point of R is infinitely log-
concave.

Proof. It suffices to show that the sequence satisfies the hypotheses of Lemma 2.1
when n = 2m, or Lemma 3.1 when n = 2m+ 1.

Suppose first that k < m. Being on the correct side of Hk implies that there are
values of the parameters such that

a2
k ≥ (r1x

sk)2 = r2
1x

(sk−1+dk)+(sk+1−dk+1) = r0ak−1ak+1.

Thus we have the necessary inequalities for this range of k.
If k = m then we can use an argument as in the previous paragraph if n = 2m.

If n = 2m+ 1, then being on the correct side of Hm implies that

am ≥ 2xsm−1 = 2am−1.

This is precisely condition (ii) of Lemma 3.1, which finishes the proof.

4 Columns and other lines of Pascal’s triangle

While we have treated Boros and Moll’s statement about the infinite log-concavity
of the binomial coefficients to be a statement about the rows of Pascal’s triangle,
their wording also suggests an examination of the columns.

Conjecture 4.1. The sequence
(
n
k

)
n≥k is infinitely log-concave for all fixed k ≥ 0.

We will give two pieces of evidence for this conjecture. One is a demonstration
that various columns corresponding to small values of k are infinitely log-concave.
Another is a proof that Lin

(
n
k

)
is nonnegative for certain values of i and all k.

Proposition 4.2. The sequence
(
n
k

)
n≥k is infinitely log-concave for 0 ≤ k ≤ 2.
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Proof. When k = 0 we have, for all i ≥ 1,

Lin
(
n

0

)
= (1, 0, 0, 0, . . .).

For k = 1 we obtain

Ln
(
n

1

)
= (1, 1, 1, . . . )

so infinite log-concavity follows from the k = 0 case. The sequence when k = 2 is a
fixed point of the L-operator, again implying infinite log-concavity.

In what follows, we use the notation L(ak) for the kth element of the sequence
L(ak), and similarly for Lk and Ln.

Proposition 4.3. The sequence Lin
(
n
k

)
is nonnegative for all k and for 0 ≤ i ≤ 4.

Proof. By the previous proposition, we only need to check k ≥ 3. Using the expres-
sion for a binomial coefficient in terms of factorials, it is easy to derive the following
expressions:

Ln

(
n

k

)
=

1

n

(
n

k

)(
n

k − 1

)
and

L2
n

(
n

k

)
=

2

n2(n− 1)

(
n

k

)2(
n

k − 1

)(
n

k − 2

)
.

With a little more work, one can show that L3
n

(
n
k

)
can be expressed as a product

of nonnegative factors times the polynomial

(4k − 6)n2 − (4k2 − 10k + 6)n− k2.

To show that this is nonnegative, we write n = k +m for m ≥ 0 to get

(4k − 6)m2 + (4k2 − 2k − 6)m+ (3k2 − 6k).

But the coefficients of the powers of m are all positive for k ≥ 3, so we are done
with the case i = 3.

When i = 4, we follow the same procedure, only now the polynomial in m has
coefficients which are polynomials in k up to degree 7. For example, the coefficient
of m3 is

528k7 − 8k6 − 11,248k5 + 25,360k4 − 5888k3 − 24,296k2 + 16,080k − 1584.

To make sure this is nonnegative for integral k ≥ 3, one rewrites the polynomial as

(528k2 − 8k − 11,248)k5 + (25,360k2 − 5888k − 24,296)k2 + (16,080k − 1584),

finds the smallest k such that each of the factors in parentheses is nonnegative from
this value on, and then checks any remaining k by direct substitution.
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Kauers and Paule [16] proved that the rows of Pascal’s triangle are i-fold log-
concave for i ≤ 5. Kauers [private communication] has used their techniques to
confirm Proposition 4.3 and to also check the case i = 5 for the columns. For the
latter case, Kauers used a computer to determine

(L5
n

(
n
k

)
)(

n
k

)25 (3)

explicitly, which is just a rational function in n and k. He then showed that (3) is
nonnegative by means of cylindrical algebraic decomposition. We refer the interested
reader to [16] and the references therein for more information on such techniques.

More generally, we can look at an arbitrary line in Pascal’s triangle, i.e., con-
sider the sequence

(
n+mu
k+mv

)
m≥0

. The unimodality and (1-fold) log-concavity of such

sequences has been investigated in [3, 27, 28, 29]. We do not require that u and
v be coprime, so such sequences need not contain all of the binomial coefficients
in which a geometric line would intersect Pascal’s triangle, e.g., a sequence such as(
n
0

)
,
(
n
2

)
,
(
n
4

)
, . . . would be included. By letting u < 0, one can get a finite truncation

of a column. For example, if n = 5, k = 3, u = −1, and v = 0 then we get the
sequence (

5

3

)
,

(
4

3

)
,

(
3

3

)
which is not even 2-fold log-concave. So we will only consider u ≥ 0. Also(

n+mu

k +mv

)
=

(
n+mu

n− k +m(u− v)

)
so we can also assume v ≥ 0.

We offer the following conjecture, which includes Conjecture 1.1 as a special case.

Conjecture 4.4. Suppose that u and v are distinct nonnegative integers. Then(
n+mu
mv

)
m≥0

is infinitely log-concave for all n ≥ 0 if and only if u < v or v = 0.

We first give a quick proof of the “only if” direction. Supposing that u > v ≥ 1,
we consider the sequence (

0

0

)
,

(
u

v

)
,

(
2u

2v

)
, . . .

obtained when n = 0. We claim that this sequence is not even log-concave and that

log-concavity fails at the second term. Indeed, the fact that
(
u
v

)2
<
(
2u
2v

)
follows

immediately from the identity(
u

0

)(
u

2v

)
+

(
u

1

)(
u

2v − 1

)
+ · · ·+

(
u

v

)(
u

v

)
+ · · ·+

(
u

2v

)(
u

0

)
=

(
2u

2v

)
,
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which is a special case of Vandermonde’s Convolution.
The proof just given shows that subsequences of the columns of Pascal’s triangle

are the only infinite sequences of the form
(
n+mu
mv

)
m≥0

that can possibly be infinitely
log-concave. We also note that the previous conjecture says nothing about what
happens on the diagonal u = v. Of course, the case u = v = 1 is Conjecture 4.1.
For other diagonal values, the evidence is conflicting. One can show by computer
that

(
n+mu
mu

)
m≥0

is not 4-fold log-concave for n = 2 and any 2 ≤ u ≤ 500. However,

this is the only known value of n for which
(
n+mu
mu

)
m≥0

is not an infinitely log-concave
sequence for some u ≥ 1.

We conclude this section by offering considerable computational evidence in favor
of the “if” direction of Conjecture 4.4. Theorem 2.2 provides such evidence when
u = 0 and v = 1. Since all other sequences with u < v have a finite number of
nonzero entries, we can use the r0-factor log-concavity technique for these sequences
as well. For all n ≤ 500, 2 ≤ v ≤ 20 and 0 ≤ u < v, we have checked that

(
n+mu
mv

)
m≥0

is infinitely log-concave.

5 q-analogues

This section will be devoted to discussing two q-analogues of binomial coefficients.
For the Gaussian polynomials, we will see that the corresponding generalization of
Conjecture 1.1 is false, and we show one exact reason why it fails. In contrast,
the corresponding generalization of Conjecture 4.1 appears to be true. This shows
how delicate these conjectures are and may in part explain why they seem to be
difficult to prove. After introducing our second q-analogue, we conjecture that the
corresponding generalizations of Conjectures 1.1, 4.1 and 4.4 are all true. This
second q-analogue arises in the study of quantum groups; see, for example, the
books of Jantzen [15] and Majid [21].

Let q be a variable and consider a polynomial f(q) ∈ R[q]. Call f(q)
q-nonnegative if all the coefficients of f(q) are nonnegative. Apply the L-operator
to sequences of polynomials (fk(q)) in the obvious way. Call such a sequence q-log-
concave if L(fk(q)) is a sequence of q-nonnegative polynomials, with i-fold q-log-
concavity and infinite q-log-concavity defined similarly.

We will be particularly interested in the Gaussian polynomials. The standard
q-analogue of the nonnegative integer n is

[n] = [n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

Then, for 0 ≤ k ≤ n, the Gaussian polynomials or q-binomial coefficients are defined
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as [
n

k

]
=

[
n

k

]
q

=
[n]q!

[k]q![n− k]q!

where [n]q! = [1]q[2]q · · · [n]q. For more information, including proofs of the assertions
made in the next paragraph, see the book of Andrews [2].

Clearly substituting q = 1 gives
[
n
k

]
1

=
(
n
k

)
. Also, it is well known that the

Gaussian polynomials are indeed q-nonnegative polynomials. In fact, they have var-
ious combinatorial interpretations, one of which we will need. An (integer) partition
of n is a weakly decreasing positive integer sequence λ = (λ1, λ2, . . . , λ`) such that

|λ| def
=
∑

i λi = n. The λi are called parts . For notational convenience, if a part k
is repeated r times in a partition λ then we will denote this by writing kr in the
sequence for λ. We say that λ fits inside an s× t box if λ1 ≤ t and ` ≤ s. Denote the
set of all such partitions by P (s, t). It is well known, and easy to prove by induction
on n, that [

n

k

]
=

∑
λ∈P (n−k,k)

q|λ|. (4)

We are almost ready to prove that the sequence
([
n
k

])
k≥0

is not infinitely q-log-
concave. In fact, we will show it is not even 2-fold q-log-concave. First we need a
lemma. In it, we use mint f(q) to denote the nonzero term of least degree in f(q).

Lemma 5.1. Let Lk
([
n
k

])
= Bk(q). Then for k ≤ n/2,

mintBk(q) =

{
qk if k < n/2,
2qk if k = n/2.

Proof. SinceBk(q) =
[
n
k

]2−[ n
k−1

][
n
k+1

]
it suffices to prove, in view of (4), the following

two statements. If i ≤ k and

(λ, µ) ∈ P (n− k + 1, k − 1)× P (n− k − 1, k + 1)

with |λ|+ |µ| = i, then (λ, µ) ∈ P (n− k, k)2. Furthermore, the number of elements
in P (n− k, k)2 − P (n− k + 1, k − 1)× P (n− k − 1, k + 1) is 0 or 1 or 2 depending
on whether i < k or i = k < n/2 or i = k = n/2, respectively.

The first statement is an easy consequence of |λ|+ |µ| = i ≤ k ≤ n−k. A similar
argument works for the i < k case of the second statement. If i = k then the pair
((k), ∅) is in the difference and if i = k = n/2 then the pair (∅, (1k)) is as well.

Proposition 5.2. Let L2
k

([
n
k

])
= Ck(q). Then for n ≥ 2 and k = bn/2c we have

mintCk(q) = −qn−2.

Consequently,
([
n
k

])
k≥0

is not 2-fold q-log-concave.
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Proof. The proofs for n even and odd are similar, so we will only do the former. So
suppose n = 2k and consider

Ck(q) = Bk(q)
2 −Bk−1(q)Bk+1(q) = Bk(q)

2 −Bk−1(q)
2.

By the previous lemma mintBk(q)
2 = 4q2k and mintBk−1(q)

2 = q2k−2. Thus
mintCk(q) = −q2k−2 = −qn−2 as desired.

After what we have just proved, it may seem surprising that the following con-
jecture, which is a q-analogue of Conjecture 4.1, does seem to hold.

Conjecture 5.3. The sequence
([
n
k

])
n≥k is infinitely q-log-concave for all fixed k ≥

0.

As evidence, we will prove a q-analogue of Proposition 4.2 and comment on
Proposition 4.3 in this setting.

Proposition 5.4. The sequence
([
n
k

])
n≥k is infinitely q-log-concave for 0 ≤ k ≤ 2.

Proof. When k = 0 one has the same sequence as when q = 1.
When k = 1 we claim that

L
([
n

1

])
= (1, q, q2, q3, . . .).

Indeed,

[n]2 − [n− 1][n+ 1] =
(1− qn)2 − (1− qn−1)(1− qn+1)

(1− q)2

=
qn−1 − 2qn + qn+1

(1− q)2

= qn−1

(and recall that the sequence starts at n = 1). It follows that

Li
([
n

1

])
= (1, 0, 0, 0, . . .)

for i ≥ 2.
For k = 2, the manipulations are much like those in the previous paragraph.

Using induction on i, we obtain

Li
([
n

2

])
= q(2i−1)(n−2)

[
n

2

]
for i ≥ 0. This completes the proof of the last case of the proposition.
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If we now consider arbitrary k it is not hard to show, using algebraic manipula-
tions like those in the proof just given, that

Ln

([
n

k

])
=
qn−k

[n]

[
n

k

][
n

k − 1

]
. (5)

These are, up to a power of q, the q-Narayana numbers. They were introduced
by Fürlinger and Hofbauer [13] and are contained in a specialization of a result
of MacMahon [20, page 1429] which was stated without proof. They were further
studied by Brändén [5]. As shown in the references just cited, these polynomials are
the generating functions for a number of different families of combinatorial objects.
Thus they are q-nonnegative.

More computations show that

L2
n

([
n

k

])
=

q3n−3k[2]

[n]2[n− 1]

[
n

k

]2[
n

k − 1

][
n

k − 2

]
. (6)

It is not clear that these polynomials are q-nonnegative, although they must be if
Conjecture 5.3 is true. Furthermore, when q = 1, the triangle made as n and k
vary is not in Sloane’s Encyclopedia [24] (although it has now been submitted). We
expect that these integers and polynomials have interesting, yet to be discovered,
properties.

We conclude our discussion of the Gaussian polynomials by considering the se-
quence ([

n+mu

mv

])
m≥0

(7)

for nonnegative integers u and v, as we did in Section 4 for the binomial coefficients.
When u > v the sequence has an infinite number of nonzero entries. We can use (4)

to show that the highest degree term in
[
n+u
v

]2 − [n+2u
2v

]
has coefficient −1, so the

sequence (7) is not even q-log-concave. When u < v, it seems to be the case that
the sequence is not 2-fold q-log-concave, as shown for the rows in Proposition 5.2.
When u = v, the evidence is conflicting, reflecting the behavior of the binomial
coefficients. Since setting q = 1 in

[
n+mu
mu

]
yields

(
n+mu
mu

)
, we know that

([
2+mu
mu

])
m≥0

is not always 4-fold q-log-concave. It also transpires that the case n = 3 is not
always 5-fold q-log-concave. We have not encountered other values of n that fail to
yield a q-log-concave sequence when u = v.

While the variety of behavior of the Gaussian polynomials is interesting, it would
be desirable to have a q-analogue that better reflects the behavior of the binomial
coefficients. A q-analogue that arises in the study of quantum groups serves this
purpose. Let us replace the previous q-analogue of the nonnegative integer n with
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the expression

〈n〉 =
qn − q−n

q − q−1
= q1−n + q3−n + q5−n + · · ·+ qn−1.

From this, we obtain a q-analogue of the binomial coefficients by proceeding as for
the Gaussian polynomials: for 0 ≤ k ≤ n, we define〈

n

k

〉
=

〈n〉!
〈k〉!〈n− k〉!

where 〈n〉! = 〈1〉〈2〉 · · · 〈n〉.
Letting q → 1 in

〈
n
k

〉
gives

(
n
k

)
, and a straightforward calculation shows that〈
n

k

〉
=

1

qnk−k2

[
n

k

]
q2
. (8)

So
〈
n
k

〉
is, in general, a Laurent polynomial in q with nonnegative coefficients. Our

definitions of q-nonnegativity and q-log-concavity for polynomials in q extend to
Laurent polynomials in the obvious way.

We offer the following generalizations of Conjectures 1.1, 4.1 and 4.4.

Conjecture 5.5.

(a) The row sequence
(〈

n
k

〉)
k≥0

is infinitely q-log-concave for all n ≥ 0.

(b) The column sequence
(〈

n
k

〉)
n≥k is infinitely q-log-concave for all fixed k ≥ 0.

(c) For all integers 0 ≤ u < v, the sequence
(〈

n+mu
mv

〉)
m≥0

is infinitely q-log-concave
for all n ≥ 0.

Several remarks are in order. Suppose that for f(g), g(q) ∈ R[q, q−1], we say
f(q) ≤ g(q) if g(q)− f(q) is q-nonnegative. Then the proofs of Lemmas 2.1 and 3.1
work equally well if the ai’s are Laurent polynomials and we replace the term “log-
concave” by “q-log-concave.” Using these lemmas, we have verified Conjecture 5.5(a)
for all n ≤ 53. Even though (a) is a special case of (c), we state it separately since
(a) is the q-generalization of the Boros-Moll conjecture, the primary motivation for
this paper.

As evidence for Conjecture 5.5(b), it is not hard to prove the appropriate ana-
logue of Propositions 4.2 and 5.4, i.e. that the sequence

〈
n
k

〉
n≥k is infinitely q-log-

concave for all 0 ≤ k ≤ 2. To obtain the expressions for Ln
(〈

n
k

〉)
and L2

n

(〈
n
k

〉)
, take

equations (5) and (6), replace all square brackets by angle brackets and replace each
the terms qn−k and q3n−3k by the number 1.

13



Conjecture 5.5(c) has been verified for all n ≤ 24 with v ≤ 10. When u > v, we

can use (8) to show that the lowest degree term in
〈
n+u
v

〉2 − 〈n+2u
2v

〉
has coefficient

−1, so the sequence is not even q-log-concave. When u = v, the quantum groups
analogue has exactly the same behavior as we observed above for the Gaussian
polynomials.

6 Symmetric functions

We now turn our attention to symmetric functions. We will demonstrate that the
complete homogeneous symmetric functions (hk)k≥0 are a natural analogue of the
rows and columns of Pascal’s triangle. We show that the sequence (hk)k≥0 is i-
fold log-concave in the appropriate sense for i ≤ 3, but not 4-fold log-concave.
Like the results of Section 5, this result underlines the difficulties and subtleties of
Conjectures 1.1 and 4.1. In particular, it shows that any proof of Conjecture 1.1 or
Conjecture 4.1 would need to use techniques that do not carry over to the sequence
(hk)k≥0. For a more detailed exposition of the background material below, we refer
the reader to the texts of Fulton [12], Macdonald [19], Sagan [23] or Stanley [26].

Let x = {x1, x2, . . .} be a countably infinite set of variables. For each n ≥ 0, the
elements of the symmetric group Sn act on formal power series f(x) ∈ R[[x]] by
permutation of variables (where xi is left fixed if i > n). The algebra of symmetric
functions, Λ(x), is the set of all series left fixed by all symmetric groups and of
bounded (total) degree.

The vector space of symmetric functions homogeneous of degree k has dimension
equal to the number of partitions λ = (λ1, . . . , λ`) of k. We will be interested in
three bases for this vector space. The monomial symmetric function corresponding
to λ, mλ = mλ(x), is obtained by symmetrizing the monomial xλ1

1 · · ·x
λ`
` . The kth

complete homogeneous symmetric function, hk, is the sum of all monomials of degree
k. For partitions, we then define

hλ = hλ1 · · ·hλ`
.

Finally, the Schur function corresponding to λ is

sλ = det(hλi−i+j)1≤i,j≤`.

We remark that this determinant is a minor of the Toeplitz matrix for the sequence
(hk). We will have more to say about Toeplitz matrices in the next section.

Our interest will be in the sequence just mentioned (hk)k≥0. Let hk(1
n) denote

the integer obtained by substituting x1 = · · · = xn = 1 and xi = 0 for i > n into
hk = hk(x). Then hk(1

n) =
(
n+k−1

k

)
(the number of ways of choosing k things from
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n things with repetition) and so the above sequence becomes a column of Pascal’s
triangle. By the same token hk(1

n−k) =
(
n−1
k

)
and so the sequence becomes a row.

We will now collect the results from the theory of symmetric functions which we
will need. Partially order partitions by dominance where λ ≤ µ if and only if for
every i ≥ 1 we have λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi. Also, if {bλ} is any basis of Λ(x)
and f ∈ Λ(x) then we let [bλ]f denote the coefficient of the basis element bλ in the
expansion of f in this basis. First we have a simple consequence of Young’s Rule.

Theorem 6.1. For any partitions λ, µ we have [mµ]sλ is a nonnegative integer. In
particular,

[mµ]sλ =

{
1 if µ = λ,
0 if µ 6≤ λ.

Let λ+µ denote the componentwise sum (λ1 +µ1, λ2 +µ2, . . .). The next result
follows from the Littlewood-Richardson Rule and induction.

Theorem 6.2. For any partitions λ1, . . . , λr and µ we have [sµ]sλ1 · · · sλr is a non-
negative integer. In particular,

[sµ]sλ1 · · · sλr =

{
1 if µ = λ1 + · · ·+ λr,
0 if µ 6≤ λ1 + · · ·+ λr.

Because of this result we call λ1 + · · ·+ λr the dominant partition for sλ1 · · · sλr .
Finally, we need a result of Kirillov [17] about the product of Schur functions,

which was proved bijectively by Kleber [18] and Fulmek and Kleber [11]. This
result can be obtained by applying the Desnanot-Jacobi Identity—also known as
Dodgson’s condensation formula—to the Jacobi-Trudi matrix for skr+1 . Note that,
to improve readability, we drop the sequence parentheses when a sequence appears
as a subscript.

Theorem 6.3 ([11, 17, 18]). For positive integers k, r we have

(skr)2 − s(k−1)rs(k+1)r = skr−1skr+1 .

To state our results, we need a few more definitions. If bλ is a basis for Λ(x)
and f ∈ Λ(x) then we say f is bλ-nonnegative if [bλ]f ≥ 0 for all partitions λ.
Note that mλ-nonnegativity is the natural generalization to many variables of the
q-nonnegativity definition for R[q]. Also note that sλ-nonnegativity implies mλ-
nonnegativity by Theorem 6.1.

Theorem 6.4. The sequence Li(hk) is sλ-nonnegative for 0 ≤ i ≤ 3. But the
sequence L4(hk) is not mλ-nonnegative.
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Proof. From the definition of the Schur function we have

L0(hk) = hk = sk and L1(hk) = (hk)
2 − hk−1hk+1 = sk2 .

Now Theorem 6.3 immediately gives

L2(hk) = (sk2)2 − s(k−1)2s(k+1)2 = sksk3

which is sλ-nonnegative by the first part of Theorem 6.2. Using Theorem 6.3 twice
gives

L3(hk) = (sk)
2 (sk3)2 − sk−1s(k−1)3sk+1s(k+1)3

= (sk)
2 (sk3)2 − (sk)

2 s(k−1)3s(k+1)3

+ (sk)
2 s(k−1)3s(k+1)3 − sk−1s(k−1)3sk+1s(k+1)3

= (sk)
2 sk2sk4 + s(k−1)3sk2s(k+1)3

which is again sλ-nonnegative. This finishes the cases 0 ≤ i ≤ 3.
We now assume k ≥ 2. Computing L4(hk) from the expression for L3(hk) gives

the sum of the terms in the left column below. The right column gives the dominant
partition for each term, as determined by Theorem 6.2.

+(sk)
4(sk2)2(sk4)2 (8k, 4k, 2k, 2k)

+2(sk)
2(sk2)2sk4s(k−1)3s(k+1)3 (7k, 5k, 3k, k)

+(s(k−1)3)
2(sk2)2(s(k+1)3)

2 (6k, 6k, 4k)
−(sk−1)

2s(k−1)2s(k−1)4(sk+1)
2s(k+1)2s(k+1)4 (8k, 4k, 2k, 2k)

−(sk−1)
2s(k−1)2s(k−1)4sk3s(k+1)2s(k+2)3 (7k − 1, 5k + 1, 3k + 1, k − 1)

−s(k−2)3s(k−1)2sk3(sk+1)
2s(k+1)2s(k+1)4 (7k + 1, 5k − 1, 3k − 1, k + 1)

−s(k−2)3s(k−1)2(sk3)2s(k+1)2s(k+2)3 (6k, 6k, 4k)

Now consider λ = (7k + 1, 5k − 1, 3k − 1, k + 1), the dominant partition for the
penultimate term above. Observe that if µ is the dominant partition for any other
term, then λ 6≤ µ. So, by the second part of Theorem 6.2, sλ appears in the Schur-
basis expansion for L4(hk) with coefficient −1. It then follows from the second part
of Theorem 6.1, that the coefficient of mλ is −1 as well.

7 Real roots and Toeplitz matrices

We now consider two other (almost equivalent) settings where, in contrast to the
results of the previous section, Conjecture 1.1 does seem to generalize. In fact, this
may be the right level of generality to find a proof.
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Let (ak) = a0, a1, . . . , an be a finite sequence of nonnegative real numbers. It

was shown by Isaac Newton that if all the roots of the polynomial p[ak]
def
= a0 +

a1x + · · · anxn are real, then the sequence (ak) is log-concave. For example, since
the polynomial (1 + x)n has only real roots, the nth row of Pascal’s triangle is
log-concave. It is natural to ask if the real-rootedness property is preserved by
the L-operator. The literature includes a number of results about operations on
polynomials which preserve real-rootedness; for example, see [6, 7, 8, 22, 31, 32].

Conjecture 7.1. Let (ak) be a finite sequence of nonnegative real numbers. If p[ak]
has only real roots then the same is true of p[L(ak)].

This conjecture is due independently to Richard Stanley [private communica-
tion]. It is also one of a number of related conjectures made by Steve Fisk [10]. If
true, Conjecture 7.1 would immediately imply the original Boros-Moll Conjecture.
As evidence for the conjecture, we have verified it by computer for a large number of
randomly chosen real-rooted polynomials. We have also checked that p[Lik

(
n
k

)
] has

only real roots for all i ≤ 10 and n ≤ 40. It is interesting to note that Boros and
Moll’s polynomial Pm(x) in equation (2) does not have real roots even for m = 2.
So if the corresponding sequence is infinitely log-concave then it must be so for some
other reason.

Along with the rows of Pascal’s triangle, it appears that applying L to the other
finite lines we were considering in Section 4 also yields sequences with real-rooted
generating functions. So we make the following conjecture which implies the “if”
direction of Conjecture 4.4.

Conjecture 7.2. For 0 ≤ u < v, the polynomial p[Lim(
(
n+mu
mv

)
)] has only real roots

for all i ≥ 0.

We have verified this assertion for all n ≤ 24 with i ≤ 10 and v ≤ 10. In fact,
it follows from a theorem of Yu [33] that the conjecture holds for i = 0 and all
0 ≤ u < v. So it will suffice to prove Conjecture 7.1 to obtain this result for all i.

We can obtain a matrix-theoretic perspective on problems of real-rootedness via
the following renowned result of Aissen, Schoenberg and Whitney [1]. A matrix
A is said to be totally nonnegative if every minor of A is nonnegative. We can
associate with any sequence (ak) a corresponding (infinite) Toeplitz matrix A =
(aj−i)i,j≥0. In comparing the next theorem to Newton’s result, note that for a real-
rooted polynomial p[ak] the roots being nonpositive is equivalent to the sequence
(ak) being nonnegative.

Theorem 7.3 ([1]). Let (ak) be a finite sequence of real numbers. Then every root
of p[ak] is a nonpositive real number if and only if the Toeplitz matrix (aj−i)i,j≥0 is
totally nonnegative.
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To make a connection with the L-operator, note that

a2
k − ak−1ak+1 =

∣∣∣∣ ak ak+1

ak−1 ak

∣∣∣∣ ,
which is a minor of the Toeplitz matrix A = (aj−i)i,j≥0. Call such a minor adjacent
since its entries are adjacent in A. Now, for an arbitrary infinite matrix A =
(ai,j)i,j≥0, let us define the infinite matrix L(A) by

L(A) =

(∣∣∣∣ ai,j ai,j+1

ai+1,j ai+1,j+1

∣∣∣∣)
i,j≥0

.

Note that if A is the Toeplitz matrix of (ak) then L(A) is the Toeplitz matrix of
L(ak). Using Theorem 7.3, Conjecture 7.1 can now be strengthened as follows.

Conjecture 7.4. For a sequence (ak) of real numbers, if A = (aj−i)i,j≥0 is totally
nonnegative then L(A) is also totally nonnegative.

Note that if (ak) is finite, then Conjecture 7.4 is equivalent to Conjecture 7.1.
As regards evidence for Conjecture 7.4, consider an arbitrary n-by-n matrix A =
(ai,j)

n
i,j=1. For finite matrices, L(A) is defined in the obvious way to be the (n− 1)-

by-(n − 1) matrix consisting of the 2-by-2 adjacent minors of A. In [9, Theorem
6.5], Fallat, Herman, Gekhtman, and Johnson show that for n ≤ 4, L(A) is totally
nonnegative whenever A is. However, for n = 5, an example from their paper can
be modified to show that if

A =


1 t 0 0 0
t t2 + 1 2t t2 0
t2 t3 + 2t 1 + 4t2 2t3 + t 0
0 t2 2t3 + 2t t4 + 2t2 + 1 t
0 0 t2 t3 + t t2


then A is totally nonnegative for t ≥ 0, but L(A) is not totally nonnegative for
sufficiently large t (t ≥

√
2 will suffice). We conclude that the Toeplitz structure

would be important to any affirmative answer to Conjecture 7.4.
We finish our discussion of the matrix-theoretic perspective with a positive result

similar in flavor to Conjecture 7.4.

Proposition 7.5. If A is a finite square matrix that is positive semidefinite, then
L(A) is also positive semidefinite.

Proof. The key idea is to construct the second compound matrix C2(A) of A, which
is the array of all 2-by-2 minors of A, arranged lexicographically according to the
row and column indices of the minors [14].
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We claim that if A is positive semidefinite, then so is C2(A). Indeed, since the
compound operation preserves multiplication and inverses, the eigenvalues of C2(A)
are equal to the eigenvalues of C2(J), where J is the Jordan form of A. If J is
upper-triangular and has diagonal entries λ1, λ2, . . . , λn, then we see that C2(J) is
upper-triangular with diagonal entries λiλj for all i < j. Since the λi’s are all
nonnegative, so too are the eigenvalues of C2(J), implying that C2(A) is positive
semidefinite.

Finally, since L(A) is a principal submatrix of C2(A), L(A) is itself positive
semidefinite.

Acknowledgements. We thank Bodo Lass for suggesting that we approach Con-
jecture 1.1 from the point-of-view of real roots of polynomials. Section 7 also bene-
fited from interesting discussions with Charles R. Johnson.
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[5] Brändén, P. q-Narayana numbers and the flag h-vector of J(2×n). Discrete
Math. 281, 1-3 (2004), 67–81.
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