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Abstract. The product sµsν of two Schur functions is one of the most famous
examples of a Schur-positive function, i.e. a symmetric function which, when writ-
ten as a linear combination of Schur functions, has all positive coefficients. We ask
when expressions of the form sλsρ− sµsν are Schur-positive. This general question
seems to be a difficult one, but a conjecture of Fomin, Fulton, Li and Poon says
that it is the case at least when λ and ρ are obtained from µ and ν by redistributing
the parts of µ and ν in a specific, yet natural, way. We show that their conjecture
is true in several significant cases. We also formulate a skew-shape extension of
their conjecture, and prove several results which serve as evidence in favor of this
extension. Finally, we take a more global view by studying two classes of partially
ordered sets suggested by these questions.
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1. Introduction

It is not hard to become convinced that Schur functions form the most important
linear basis of the ring of symmetric functions. Not only do they play a fundamental
role in the theory of symmetric polynomials, but they also are of deep significance
in representation theory, algebraic geometry, as well as in many areas of mathe-
matical physics. At the heart of the manifold reasons for this deep role, one finds
the Littlewood-Richardson coefficients cθµν that appear as structure constants for the
multiplication of Schur functions:

sµsν =
∑

θ

cθµνsθ. (1)

F. Bergeron is supported in part by NSERC-Canada and FQRNT-Québec.
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Recall that Schur functions sλ are naturally indexed by partitions λ. As is usual, we
consider these as decreasing sequences of positive integers

λ1 ≥ λ2 ≥ . . . ≥ λk > 0,

of some length k. In Schur functions, as opposed to Schur “polynomials,” the variables
(omitted in the notation above) are infinite in number: x = x1, x2, . . .. To make the
presentation as self contained as possible, we will recall a combinatorial description of
Schur functions in Section 2. The Littlewood-Richardson rule gives an interpretation
for the cθµν ’s of (1) as the number of semistandard Young tableaux satisfying certain

conditions. In particular, it follows that cθµν is a non-negative integer. The product
of two Schur functions is thus one of the most famous examples of a Schur-positive
function, i.e. a symmetric function which, when written as a linear combination of
Schur functions, has all positive coefficients.

In general, we plan to investigate the Schur-positivity of expressions of the form

sτsσ − sµsν , (2)

with similar statements for skew Schur functions. In view of (1), the Schur-positivity
of (2) clearly translates into a set of inequalities for the respective Littlewood-
Richardson coefficients:

cθµν ≤ cθτσ.

It is well known that these are difficult problems stated in such generality. We
will concentrate on special cases of the following form. Given a pair of partitions
(µ, ν), what sort of operations can we apply to this pair to yield another pair (τ, σ)
such that (2) is Schur-positive? Two such interesting operations are considered by
Fomin, Fulton, Li and Poon in [3]. However, it is still conjectural that (2) actually
is Schur-positive in all of the instances they consider. One of their operations, called
the ∗-operation, has been studied in [1], where the pertinent conjecture is shown to
hold for general families and “asymptotically.” We will be interested in their other
operation, which we will refer to as the ∼-operation (“tilde operation”). It is defined
as follows. For a pair (µ, ν) of partitions, let

γ1 ≥ γ2 ≥ · · · ≥ γ2p (3)

be the decreasing rearrangement of the µi and νj ’s. Then, we set

(µ, ν)∼ := (λ, ρ), (4)

with

λ = (γ1, γ3, . . . , γ2p−1), and ρ = (γ2, γ4, . . . , γ2p).

The following conjecture serves as the starting point for our investigations:

Conjecture 1.1. (Fomin, Fulton, Li, Poon) For all µ and ν, if (λ, ρ) = (µ, ν)∼, then

sλsρ − sµsν

is Schur-positive.
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In other words, suppose we have a list γ : γ1 ≥ γ2 ≥ · · · ≥ γm of parts which we
wish to distribute between two partitions λ and ρ. At the (negligible) cost of adding
a zero part, we may as well suppose that m is even. We are interested in knowing
which distribution results in the “largest” expression sλsρ. The conjecture says that
the distribution that is like the usual dealing of cards is optimal.

Remark 1.2. At this stage, it is natural to ask what happens when we distribute
between more than two partitions. More specifically, after some investigation, it is
tempting to make the following seemingly more general conjecture:

Conjecture 1.3. For m ≥ 2, and a sequence of partitions µ1, . . . , µm, let

γ : γ1 ≥ γ2 ≥ · · · ≥ γmp ≥ 0

be the decreasing rearrangement of the µi
j’s (with zeroes appended, to make the length

of γ divisible by m). Define m new partitions µ̃1, . . . , µ̃m by

µ̃i := (γi, γi+m, . . . , γi+(p−1)m)

for i = 1, . . . , m. Then
seµ1seµ2 · · · seµm − sµ1sµ2 · · · sµm

is Schur-positive.

However, Conjecture 1.1 actually implies Conjecture 1.3. This is not obvious, but
one elegant way to show the implication is to use the “repainting” argument of [3,
Proof of Prop. 2.9]. Because of this, we will generally not make special mention of the
m-partition case in what follows. However, several of our proofs for the 2-partition
case, particularly those in Section 5, work equally well for the m-partition case. We
refer the interested reader to Remark 5.8 for further details.

Our exposition is organized as follows. After recalling some background in Section
2, we consider, in each of Sections 3 and 4, special cases of Conjecture 1.1. In Section
5, we formulate a skew shape generalization of Conjecture 1.1 and show it to be
true in some non-trivial special cases, as well as giving other evidence in its favor. In
Section 6, we discuss two classes of partially ordered sets (posets) that arise naturally
in our investigations. Finally, in Section 7 we show how one of these posets leads us
to consider the idea of an “exploded” Jacobi-Trudi matrix.

Before beginning in earnest, let us make one comment about numerical evidence.
Using software of A. Buch [2] and J. Stembridge [9], we have verified Conjecture 1.1
for all µ and ν such that |µ|+ |ν| ≤ 35.

2. Background and Notation

The usual notation and notions relating to partitions of integers and symmetric
functions are recalled here. Notice that we are using here the French outlook for
diagrams. For a partition µ, we respectively write |µ|, `(µ) and µ′ for the sum of the
parts, number of parts and conjugate of µ. In particular, µ′i denotes the length of the
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ith column of the Young diagram of µ. Recall that, for a given µ, this diagram, which
we also denote by µ, is the set of 1 by 1 squares, in N× N, with upper right corners

{(i, j) | 1 ≤ i ≤ µj}.

Thus the diagram of 6411 is geometrically represented as

.

When α is contained in µ as a diagram, written α ⊆ µ, we can consider the skew
shape, usually denoted µ/α, whose cells are those in the set difference µ \ α. Let us
denote by

µ ∪ ν := (γ1, γ2, · · · )

the partition obtained by taking the decreasing rearrangement of the µi and νj’s,
just as in (3). For instance, µ ∪ ν = 55444211, if µ = 5444 and ν = 5211. For any
partition µ and i ≥ `(µ), we consider µi be be zero. Also, we set

µ+ ν := (µ1 + ν1, . . . , µ` + ν`),

where ` = max{`(µ), `(ν)}. As is usual when |µ| = |ν|, we write µ � ν to denote
that µ is less than or equal to ν in dominance order. This means that we have all of
the inequalities

µ1 ≤ ν1

µ1 + µ2 ≤ ν1 + ν2

... (5)

µ1 + . . .+ µi ≤ ν1 + . . .+ νi

...

Conjugation is an anti-isomorphism with respect to dominance order; i.e. µ � ν ⇔
µ′ � ν ′. We use ak in the list of parts of a partition to denote a sequence of k parts
of the same size a. Thus, a partition of the form (j, 1k) has one part of size j and
k parts of size 1. Such shapes are called hooks. A semistandard Young tableau t of
shape µ is an integer filling

t : µ −→ {1, 2, . . .},

of the cells of µ, such that values are strictly increasing up the columns of µ, and
weakly increasing along rows. Thus

t(i, j) ≤ t(i+ 1, j), and t(i, j) < t(i, j + 1),

whenever these statements should make sense. For integers a < b < c, the following
are semistandard tableau of shape 21:

a
b
a a

b
b a

b
c a

c
b . (6)
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One naturally extends the notion of semistandard tableaux to skew shapes. Recall
that we say that the content of a tableau (or skew tableau) is λ if the tableau contains
λi copies of i, for all i.

To make our presentation self-contained, we now recall the usual basic definitions
regarding symmetric functions, with notation following [7]. To each tableau t of shape
µ (or skew shape µ/α), we associate the monomial

xt :=
∏

c∈µ

xt(c) .

Then, the Schur symmetric1 function can be defined as

sµ(x) :=
∑

t

xt, (7)

where the sum runs over the set of semistandard tableaux of shape µ. The skew
Schur function sµ/α is likewise defined. Considering (6), it is easy to see that

s21 =
∑

a<b

(x2
axb + xax

2
b) +

∑

a<b<c

2xaxbxc .

The complete homogeneous symmetric function, indexed by an integer n, is defined
to be

hn := sn =
∑

i1≤···≤in

xi1 · · ·xin . (8)

We further set

hµ := hµ1
· · ·hµk

,

for a partition µ. In a similar way, the elementary symmetric function indexed by an
integer n, is obtained by replacing the inequalities in (8) by strict inequalities:

en := s1n =
∑

i1<···<in

xi1 · · ·xin .

Just as before, we set

eµ := eµ1
· · · eµk

for a partition µ. We will denote by ω the the well-known involution defined by
ω(hµ) = eµ or, alternatively, by ω(sµ) = sµ′ . As one would hope, ω(sµ/α) = sµ′/α′ .

We finish this background section by recalling one of the (many) classical combi-
natorial descriptions of the Littlewood-Richardson coefficients. The reading word of
a (skew) tableau is obtained by reading the entries of the tableau starting with the
bottom row, from right to left, and going up the rows. For instance, 11221312 and
11221213 are the respective reading words of the skew semistandard tableaux

2
1 3

1 2 2
1 1

3
1 2

1 2 2
1 1 .

1It is not evident from this definition, but they are truly symmetric.
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Observe that both of these tableaux are of shape θ/µ = 4421/21, and content ν = 431.
A lattice permutation is a sequence of positive integers a1a2 · · ·an such that in any
initial factor a1a2 · · ·aj , the number of i’s is at least as great as the number of i+1’s,
for all i. A proof of the following assertion can be found in [4, 8].

Littlewood-Richardson Rule. The Littlewood-Richardson coefficient cθµν

is equal to the number of semistandard tableaux of shape θ/µ and content ν
whose reading word is a lattice permutation.

When a semistandard tableaux of shape θ/µ has a lattice permutation as its reading
word, we say that we have an LR-filling of the shape θ/µ. We observe that c442121,431 = 2
since we have exhibited above two LR-fillings of 4421/21 of content 431, and these
are easily seen to be the only possibilities.

As it turns out, we can also use the Littlewood-Richardson rule to expand skew
Schur functions in terms of Schur functions, since

sθ/µ =
∑

ν

cθµνsν . (9)

Therefore, the Schur expansion of sθ/µ can be read off from the contents of all the
LR-fillings of θ/µ. It follows readily from the definition of skew Schur functions that

sθ/µsπ/ν = s(θ/µ)∗(π/ν), (10)

with the skew shape (θ/µ) ∗ (π/ν) constructed as follows:

π/ν

θ/µ

.

Therefore, the coefficient of sλ in the product sθ/µsπ/ν is equal to the number of LR-
fillings of the shape (θ/µ) ∗ (π/ν) with content λ. Let us underline in passing that
the identity (10) is often applied from the right-hand side to the left-hand side. More
concretely, it states that if a skew shape consists of disjoint pieces, then its associated
skew Schur function is simply the product of the skew Schur functions associated to
the pieces.

3. Multiplicity-Free Products of Schur Functions

We are now going to underline how results from [3] and [10] combine to imply that
Conjecture 1.1 is true for several infinite classes of partition pairs. Our discussion
will be made simpler if we introduce, for any pair of partitions µ and ν, the notion of
the support Supp(µ, ν) as being the set of all partitions θ such that cθµν 6= 0. In other
words, Supp(µ, ν) consists of those partitions θ for which sθ appears with non-zero
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coefficient in the expansion of sµsν . In particular, all elements θ of Supp(µ, ν) satisfy
|θ| = |µ|+ |ν|. The following result appears as [3, Corollary 2.6]:

Proposition 3.1 (FFLP). Suppose we have (λ, ρ) = (µ, ν)∼. Then

Supp(µ, ν) ⊆ Supp(λ, ρ).

This immediately implies that Conjecture 1.1 follows for all pairs of partitions
(µ, ν) satisfying cθµν ≤ 1 for all θ. But the set of such multiplicity-free pairs has been
completely characterized by Stembridge in [10]. Before stating his result, we need
some terminology. A partition µ with at most one part size is said to be a rectangle.
If the Young diagram of µ then has either k rows, or k columns, we say that µ is
a k-line rectangle. A fat hook is a partition with exactly two part sizes, and if it is
possible to obtain a rectangle by deleting a single row or column from the fat hook
µ, then we say that µ is a near-rectangle. For example,

are all near-rectangles. Then, as shown in [10]:

Theorem 3.2 (Stembridge). The product sµsν is multiplicity-free if and only if

(i) µ or ν is a one-line rectangle, or

(ii) µ is a two-line rectangle and ν is a fat hook (or vice versa), or

(iii) µ is a rectangle and ν is a near-rectangle (or vice versa), or

(iv) µ and ν are rectangles.

While of a similar flavor, pairs of hooks are not multiplicity free since, for example,
c32121,21 = 2. However, we have the following result:

Proposition 3.3. Conjecture 1.1 holds when µ and ν are both hooks.

Proof. Suppose µ = (µ1, 1
r) and ν = (ν1, 1

s). Because of Theorem 3.2(i) above, we
can assume that r and s are non zero, and without loss of generality that µ1 ≥ ν1 ≥ 2.
Let u = d r+s

2
e and v = b r+s

2
c. From the definition, we have (λ, ρ) = (µ, ν)∼ with

λ = (µ1, 1
u), and ρ = (ν1, 1

v).

Now, fix a partition θ such that cθµν 6= 0. By the Littlewood-Richardson rule, cθµν is
equal to the number of Littlewood-Richardson fillings (LR-fillings) of θ/µ of content
ν. We wish to construct an injection f from the set of LR-fillings of θ/µ, of content
ν, to the set of LR-fillings of θ/λ, of content ρ. If r = s or r = s+ 1, then f can just
be the identity map. We will assume that r < s, with the case r > s being similar.
Consider an LR-filling t of θ/µ of content ν. Observe that the first and second rows
of θ/µ are the only ones that can have length greater than 1. Since t is an LR-filling,
we see that the s− v highest entries of t must all be together at the top of the first
column. Delete these entries and move all other entries of the first column of t up
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t :
1
3
4
5
6

2
1 1

7−→ f(t) :
1
3
4

2
1 1

Figure 1. Injection from LR-fillings of θ/µ to LR-fillings of θ/λ.

s − v squares. The result, denoted f(t), is clearly still an LR-filling, and it is not
difficult to see that f is an injection. Furthermore, f(t) has shape θ/λ and content
ρ, as required. �

This argument is illustrated in Figure 1 for the shape 62111111, which lies in both
of the support sets Supp(411, 311111) and Supp(411, 311111)∼ = Supp(41111, 3111).
We see here the resulting LR-filling f(t), of content ρ = 3111, for a given LR-filling
t, of content ν = 311111.

4. A γ-Independent Special Case

For our next special case, referring to the notation of Conjecture 1.1, we restrict
to partition pairs of the following form: for all i, 1 ≤ i ≤ p, we choose µi and νi so
that {µi, νi} = {γ2i−1, γ2i} as multisets. In other words, we take the parts of γ two at
a time, giving one to µ and the other to ν. Another way to express this is by saying
that µ+ ν = λ+ ρ.

Proposition 4.1. Suppose that (µ, ν)∼ = (λ, ρ), with µ+ ν = λ+ ρ. Then

sλsρ − sµsν

is Schur-positive.

Remark 4.2. In the setting of this proposition, we have µ+ν = λ+ρ and µ∪ν = λ∪ρ.
This is relevant to products of Schur functions because of the following observation,
which is not difficult to check: for any pair of partitions µ, ν, let θ ∈ Supp(µ, ν). In
dominance order, the following equation gives tight bounds on θ:

µ ∪ ν � θ � µ+ ν.

Therefore, the extreme elements of Supp(µ, ν) (in dominance order) are the same as
those of Supp(λ, ρ).

Our two main tools for proving Proposition 4.1 will be the Jacobi-Trudi identity
(11) and the Plücker relations (13), which we now state. In the form we need, the
Jacobi-Trudi identity says that, for any partition µ = (µ1, µ2, . . . , µp), we have

sµ = det(hµi−i+j)
p
i,j=1. (11)
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Here we allow µp = 0; and we set h0 := 1, and hj := 0 if j < 0. In other words, the
matrix involved in (11) has hk’s in the main diagonal, with indices equal to the parts
of µ: 



hµ1
∗ . . . ∗

∗ hµ2
. . . ∗

...
...

. . .
...

∗ ∗ . . . hµk


 , (12)

while rows are filled in such a way that indices increase by 1 from one column to the
next.

Now suppose we consider an arbitrary 2p × p matrix M . Let a = (a1, . . . , ap) be
a length p sequence of row indices, and write [a]M (or simply [a], if the underlying
matrix M is clear), for the p × p minor obtained by selecting (in the corresponding
order) the rows a1, . . . , ap of the matrix M . For instance, with M = (xij)i≤4,j≤2 we
have

[34] = det

[
x31 x32

x41 x42

]
, and [32] = det

[
x31 x32

x21 x22

]
.

Then, for any given k-subsequence2
c of a, 1 ≤ k ≤ p, the following Plücker relation

holds on p× p minors of M :

[a] [b] =
∑

d⊆kb

[a|c←d] [b|d←c] , (13)

with a = (1, . . . , p), b = (p + 1, . . . , 2p), and the summation indices running over all
k-subsequences d of b. Here, we have used a|c←d to denote the sequence obtained by
replacing in a each index ci, in c, by the index di, in d, in the position that ci appears
in a. For instance, with n = 4 and c = (1, 3), we have the relation

[1234] [5678] = [5264] [1378] + [5274] [1638] + [5284] [1673]

+[6274] [5138] + [6284] [5173] + [7284] [5613].

Before proving Proposition 4.1, we wish to state and prove a purely combinatorial
lemma. As usual, we define the inversions of a sequence a = (a1, a2, . . . , ap) of integers
to be the pairs (aj, ai) such that i < j and ai > aj . The number of inversions of a is
denoted inv(a).

Lemma 4.3. Suppose we have two sequences a = (a1, . . . , ap) and b = (b1, . . . , bp) of
integers satisfying

a1 ≥ b1 > a2 ≥ b2 > · · · > ap ≥ bp. (14)

Pick any two length k subsequences c and d, respectively of a and b. Then

inv(a|c←d) = inv(b|d←c),

if all entries of a|c←d (and of b|d←c) are distinct.

2In the present context, such subsequences always inherit the order of the larger sequence they
come from.
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Proof. Assume that all the entries of

a
′ = (a′1, . . . , a

′
p) := a|c←d

are distinct, as well as all the entries of

b
′ = (b′1, . . . , b

′
p) := b|d←c.

Our first step is to reduce the problem to the case when all the inequalities in (14)
are strict. Indeed, suppose am = bm for some m. Observe that this implies that am

and bm cannot be both in a
′ (or b

′), since the elements of a
′ are assumed distinct.

Then suppose we modify a and b, and hence a
′ and b

′, by adding 1 to all integers
in (14) that are strictly greater than am, and then by adding 1 to am itself. Thus,
the only relative ordering in (14) that is affected is that we now have am > bm.
Since the original am and bm could not both appear in the original a

′, the number of
inversions of the new a

′ is unaffected by the modification (similarly for b
′). Therefore,

we can assume from now on that all the inequalities of (14) are strict. Moreover, the
condition on entries of a

′ (or b
′) being distinct is automatically satisfied in this case.

We prove the result by induction on k, with the result being trivially true for
k = 0. Let a` = ck be the smallest integer in c, and bm = dk be the smallest in d. In
other words, these are the rightmost elements that are being switched. Undoing this
rightmost exchange, we get

a := a|c′←d′, and b := b|d′←c′,

with c
′ obtained by removing a` from c (similarly for d

′). Thus a` and bm are left
in their original spots, and the pair (a,b) corresponds to an instance of the lemma
with a smaller k. We need only consider he case when ` < m, since ` > m is similar.
Clearly, the only inversions of a

′ that are affected by the transition to a are those
that involve bm, who is sitting in position `. Among these, we can clearly restrict our
considerations to entries of a

′ with indices between 1 and m; and we get exactly one
such inversion for each x lying to the left of bm. Hence there are ` − 1 of these. By
comparison, among the inversions in a arising from indices between 1 and m, and
involving a`, we have the following. Each entry between 1 and m ( 6= `) gives rise to
an inversion, except for the entries of d with indices between ` and m− 1. Say there
are k of these, then we get m− 1− k inversions involving a`, among entries of a with
index between 1 and m. The difference in the number of inversion of a and a

′ is thus
m− `− k. All this is illustrated below.

a
′

` m
r r r r r r r r ru u u

P
P

P
P

P
P

P
P

P
PPqP

P
P

P
P

P
P

P
P

PPi H
H

H
H

H
H

HjH
H

H
H

H
H

HY XXXXXXXXXXXXXXzXXXXXXXXXXXXXXy

b
′

` m
r r r r r r r r ru u u

A similar counting argument shows that the number of inversions of b differs from
that of b

′ by exactly the same quantity. By the induction hypothesis, a and b have
the same number of inversion, hence so have a

′ and b
′. �
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Proof of Proposition 4.1. Let γ := µ∪ν. Without loss of generality, suppose that
µ1 = γ1. We intend to consider a Plücker relation of the form (13) on p× p minors
of the following matrix:

Hγ =




hγ1
∗ · · · ∗

∗ hγ3
· · · ∗

...
...

. . .
...

∗ ∗ · · · hγ2p−1

hγ2
∗ · · · ∗

∗ hγ4
· · · ∗

...
...

. . .
...

∗ ∗ · · · hγ2p




where rows are completed just as in (12). For this, we set c to be the increasing
sequence of indices in the set

{1 ≤ i ≤ p | µi 6= λi} ,

say of cardinality k. By the Jacobi-Trudi identity and definition (4), the left-hand
side of (13) is simply sλsρ. Consider the term of the right-hand side that occurs
when we choose the subsequence (c1 + p, . . . , ck + p). We see that this term is exactly
sµsν . Furthermore, all the other terms on the right-hand side are clearly of the form
±sαsβ, resulting in a formula taking the form

sλsρ − sµsν =
∑

α,β

±sαsβ . (15)

Each term in the right-hand side comes with a sign that depends on the order of the
rows in the minors considered. Since the product of two Schur functions is Schur-
positive, it remains to show that all these other terms appear with a plus sign, rather
than a minus sign.

Just as they appear in (13), we let a := (1, . . . , p), b := (p + 1, . . . , 2p). For all i,
1 ≤ i ≤ 2p, we define δ(i) by saying that the first term in row i of the matrix Hγ is
hδ(i). More precisely, we set

δ(i) :=

{
γ2i−1 − i+ 1, if 1 ≤ i ≤ p

γ2(i−p) − (i− p) + 1, if i > p.

Also note that, since γ1 ≥ γ2 ≥ · · · ≥ γ2p, we have that

δ(1) ≥ δ(p+ 1) > δ(2) ≥ δ(p+ 2) > · · · > δ(p) ≥ δ(2p).

Now, for any length k subsequence d of b, we get

[a|c←d] = ±sα,

for some partition α, if all the rows in this minor are distinct. The zero minors
have no impact on our discussion. While we don’t care specifically about α, we need
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to know the sign preceding sα. For any sequence c = (c1, . . . , ck), we consider the
sequence

δ(c) := (δ(c1), . . . , δ(ck)).

Then

[a′] = (−1)inv(δ(a′))sα,

with a
′ = a|c←d. Similarly,

[b′] = (−1)inv(δ(b′))sβ,

with b
′ = b|d←c. However, by Lemma 4.3, we know that inv(δ(a′)) = inv(δ(b′)), thus

we conclude that each sαsβ appears with a plus sign in (15). �

5. Skew-Shape Generalization

Inspired by a conjecture in [1], one might ask if it makes sense to generalize the
∼-operation to skew shapes. To ease our presentation, let us write

(α, β) ⊆ (µ, ν) whenever α ⊆ µ and β ⊆ ν.

The following lemma is readily checked, and is left as an exercise for the reader.

Lemma 5.1. If (α, β) ⊆ (µ, ν), then (α, β)∼ ⊆ (µ, ν)∼.

A proof of this lemma is made easier if one considers the following equivalent
column definition of the ∼-operation. Suppose (λ, ρ) = (µ, ν)∼. Let us add zero
parts µ′i = 0 to the conjugate µ′ = (µ′1, µ

′
2, . . .) of µ, whenever i is larger then the

length `(µ′) = µ1 of µ′. This will enable our statements to be length independent.
Recall that µ′i equals the number of rows of µ of length at least i. It follows easily
from our original definition of the ∼-operation that

µ′i + ν ′i = λ′i + ρ′i, and λ′i − ρ
′
i ∈ {0, 1}. (16)

Furthermore, the conditions in (16) are sufficient to characterize (λ, ρ) uniquely. In
fact, we have

λ′i =

⌈
µ′i + ν ′i

2

⌉
, and ρ′i =

⌊
µ′i + ν ′i

2

⌋
. (17)

Intuitively, the ∼-operation simply has the effect of “balancing out” the column
lengths, with a slight preference for λ. We will make much use of the column definition
in this section, where our main subject is evidence in favor of the conjecture below.

Given skew shapes µ/α and ν/β, Lemma 5.1 implies that it makes sense to set

(µ/α, ν/β)∼ = (λ/σ, ρ/τ),

where (µ, ν)∼ = (λ, ρ) and (α, β)∼ = (σ, τ). Considering the case when both α and β
are the empty partition, we see that this is indeed a generalization of the ∼-operation
for ordinary shapes. Computer experiments, together with results presented in the
remainder of this section, suggest that we state the following conjecture.
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Conjecture 5.2. For all µ/α and ν/β, if (µ/α, ν/β)∼ = (λ/σ, ρ/τ), then

sλ/σsρ/τ − sµ/αsν/β

is Schur-positive.

We should note that the skew shapes λ/σ and ρ/τ depend on the actual partitions
µ, ν, α and β involved; and not just on the “apparent” skew shapes µ/α and ν/β.
An example will be best to clarify this point. Let us consider the two skew shapes

21/1 = , 32/2 =

which, up to translation, have the same configuration of boxes. In the context of
skew Schur functions, we actually have

s21/1 = s32/2,

and it is usual to identify the two skew shapes, although they have different descrip-
tions. By contrast, in our context, we may get different results from the skew version
of the ∼-operation. For instance, we have

(
,

)∼
=

(
,

)
,

(
,

)∼
=

(
,

)
.

We will say that µ/α is a minimal pair description of a skew shape if both

1) αi < µi, for all 1 ≤ i ≤ `(α), and

2) α′j < µ′j, for all 1 ≤ j ≤ α1.

Thus, 21/1 is a minimal pair, while 32/21 is not. Using [2, 9], we have verified
Conjecture 5.2 for all minimal pairs µ/α and ν/β, with |µ/α| + |ν/β| ≤ 12. This
amounts to a total of almost 1 million pairs of skew shapes. We emphasize, however,
that in Conjecture 5.2, we do not require that µ/α and ν/β be minimal.

Recall that a horizontal strip is a skew shape whose diagram has at most one cell
in each column. Similarly, a vertical strip has at most one cell is each row. A ribbon
is a skew shape whose diagram is edgewise connected and contains no 2× 2 block of
cells. Removing the connectedness restriction, let us say that a weak ribbon is a skew
shape whose diagram contains no 2 × 2 block of cells. Finally, a skew shape of the
form µ/α, where µ and α are both non-empty hooks, will be called a skewed hook.

Notice that the ∼-operation does not preserve pairs of ribbons. For example,
(

,

)∼
=

(
,

)
.

On the other hand, we have the following result.

Proposition 5.3. The ∼-operation preserves the families of:
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row





 = , col





 =

′

= .

Figure 2. Row justification versus column justification.

(i) pairs of horizontal strips,

(ii) pairs of vertical strips,

(iii) pairs of weak ribbons,

(iv) pairs of skewed hooks.

Proof. Throughout, let (µ/α, ν/β) denote a pair of skew shapes of the designated
form, and set (λ/σ, ρ/τ) = (µ/α, ν/β)∼.

(i) We must show that λ′i − σ
′
i ≤ 1 and ρ′i − τ

′
i ≤ 1, for all i. From (17), we see

that

λ′i =

⌈
µ′i + ν ′i

2

⌉
and σ′i =

⌈
α′i + β ′i

2

⌉
.

But since µ/α and ν/β are horizontal strips, we know that µ′i+ν
′
i−(α′i+β

′
i) ≤ 2

and so λ′i − σ
′
i ≤ 1. Similarly, ρ′i − τ

′
i ≤ 1.

(ii) We must show that σ′i ≥ λ′i+1 for all i, and similarly for ρ/τ . Since µ/α and
ν/β are vertical strips, we know that α′i ≥ µ′i+1 and β ′i ≥ ν ′i+1. The result
now follows from (17).

(iii) We must show that σ′i ≥ λ′i+1 − 1, and similarly for ρ/τ . The argument is
similar to that for (ii).

(iv) This follows easily from the fact that the ∼-operation preserves pairs of hooks.
�

For any skew shape µ/α, let row(µ/α) (respectively col(µ/α)) denote the partition
whose multiset of parts equals the multiset of row (respectively column) lengths of
µ/α. In other words, if µ/α is a minimal pair, the partition row(µ/α) is obtained by
left justifying µ/α on the y axis and then reordering parts in decreasing order. This
is illustrated in Figure 2. The following result is central to the proofs of this section.

Lemma 5.4. Suppose (µ/α, ν/β)∼ = (λ/σ, ρ/τ). Then

(i) row(µ/α) ∪ row(ν/β) � row(λ/σ) ∪ row(ρ/τ),

(ii) col(µ/α) ∪ col(ν/β) � col(λ/σ) ∪ col(ρ/τ).

We postpone the proof until the end of this section. This lemma has a number of
important implications, as we now begin to explain.
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As for ordinary shapes, let us define the support, Supp(µ/α, ν/β), of µ/α and ν/β
to be the set of all partitions θ such that sθ appears, with non-zero coefficient, in the
product sµ/αsν/β. It is clear that a necessary condition for Conjecture 5.2 to be true
is that Supp(µ/α, ν/β) ⊆ Supp(λ/σ, ρ/τ). The following corollary of Lemma 5.4 says
that the extreme elements of the supports are consistent with Conjecture 5.2.

Corollary 5.5. For a pair of skew shapes (µ/α, ν/β), the set Supp(µ/α, ν/β) has
a unique maximum element and a unique minimum element in dominance order,
which we denote respectively by max Supp(µ/α, ν/β) and min Supp(µ/α, ν/β). If
(λ/σ, ρ/τ) = (µ/α, ν/β)∼ then we also have:

(i) max Supp(µ/α, ν/β) � max Supp(λ/σ, ρ/τ),

(ii) min Supp(µ/α, ν/β) � min Supp(λ/σ, ρ/τ).

Proof. Consider the filling of (µ/α) ∗ (ν/β) that results from filling the ith lowest
cell of each column with the number i. It is not difficult to see that this gives a semi-
standard tableau which is an LR-filling. It follows that π := (col(µ/α)∪ col(ν/β))′ ∈
Supp(µ/α, ν/β). Now consider any θ ∈ Supp(µ/α, ν/β) which results from an LR-
filling t of (µ/α) ∗ (ν/β). We have θ1 ≤ π1, since t can have at most one 1 in each
column. In general, θ1 + · · · + θi ≤ π1 + · · · + πi, since t can have at most i en-
tries less than or equal to i in each column. We conclude that max Supp(µ/α, ν/β)
exists and equals (col(µ/α) ∪ col(ν/β))′. Applying Lemma 5.4(ii), we get that
max Supp(µ/α, ν/β) � max Supp(λ/σ, ρ/τ), proving (ii).

To prove (i), we exploit the proof of (ii). Suppose θ ∈ Supp(µ/α, ν/β). Applying
the involution ω, we see that θ ∈ Supp(µ/α, ν/β) if and only if θ′ ∈ Supp(µ′/α′, ν ′/β ′).
It follows that

θ′ � (col(µ′/α′) ∪ col(ν ′/β ′))′

and so

θ � col(µ′/α′) ∪ col(ν ′/β ′)

= row(µ/α) ∪ row(ν/β).

Therefore, min Supp(µ/α, ν/β) exists and equals row(µ/α) ∪ row(ν/β). Applying
Lemma 5.4(i), we conclude (ii).

�

Theorem 5.6. Conjecture 5.2 holds when (µ/α, ν/β) is

(i) a pair of horizontal strips,

(ii) a pair of vertical strips,

(iii) a pair of skewed hooks.

Proof. (i) We first observe that, when µ/α is an horizontal strip, we have

sµ/α = hrow(µ/α).



16 FRANÇOIS BERGERON AND PETER MCNAMARA

Thus, when (µ/α, ν/β) is a pair of horizontal strips, sµ/αsν/β depends only on

row(µ/α) ∪ row(ν/β) = row((µ/α) ∗ (ν/β)).

By Proposition 5.3(i), (λ/σ, ρ/τ) = (µ/α, ν/β)∼ is also a pair of horizontal
strips. Therefore,

sλ/σsρ/τ − sµ/αsν/β = hrow(λ/σ)∪row(ρ/τ) − hrow(µ/α)∪row(ν/β).

Now, hθ − hπ is Schur-positive if and only if θ � π (see, for example, [7, p.
119]). Therefore, (i) follows from Lemma 5.4(i).

(ii) The proof is similar to that of (i), expect that we now use the fact that for
a vertical strip µ/α, sµ/α = ecol(µ/α). Also, applying the involution ω, we see
that the Schur-positivity of eθ−eπ is equivalent to that of hθ−hπ. Given these
two facts, we can use the argument of (i) to deduce (ii) from Lemma 5.4(ii).

(iii) Suppose µ = (M, 1m), ν = (N, 1n), α = (A, 1a) and β = (B, 1b). Without loss
of generality, suppose M ≥ N . Let us set

S := max{A,B}, T := min{A,B},

and

` :=

⌈
m+ n

2

⌉
, r :=

⌊
m+ n

2

⌋
, s :=

⌈
a + b

2

⌉
, t :=

⌊
a+ b

2

⌋
.

We easily see, from the definition, that we have (λ/σ, ρ/τ) = (µ/α, ν/β)∼,
with

λ = (M, 1`), ρ = (N, 1r), σ = (S, 1s), τ = (T, 1t).

Since α and β are non-empty by definition of skewed hooks, we get

sλ/σsρ/τ − sµ/αsν/β = hM−ShN−T e`−ser−t − hM−AhN−Bem−aen−b

= hM−ShN−T (e`−ser−t − em−aen−b)

+em−aen−b(hM−ShN−T − hM−AhN−B).

Now both terms in parentheses in this latter expression are Schur-positive.
Indeed, consider the pair of vertical strips ((1m)/(1a), (1n)/(1b)). From (ii),
we deduce that e`−ser−t − em−aen−b is Schur-positive. Similarly, considering
((M)/(A), (N)/(B)), we deduce from (i) that hM−ShN−T − hM−AhN−B is
Schur-positive. Thus sλ/σsρ/τ − sµ/αsν/β is Schur-positive, as required.

�

Before concluding this section with the proof of Lemma 5.4, we need two facts about
the dominance order. We first introduce some notation. We extend the addition
notation used for partitions to sequences of integers of the same length. We also
observe that the definition of the dominance order, exactly as it is as stated in (5),
can obviously be extended to weakly decreasing sequences of integers. For a sequence
of integers C, let C	 denote the sequence obtained by sorting the entries of C into
weakly decreasing order. In particular, if C consists of non-negative integers, we get
a partition.
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Lemma 5.7. (i) If µ and ν are partitions with µ � ν, then µ ∪ (d) � ν ∪ (d).

(ii) Let γ = (γ1, . . . , γ`) be a weakly decreasing sequence of integers, and δ =
(δ1, . . . , δ`) be a weakly increasing sequence of integers. Then, for any permu-
tation ε of the sequence δ, we have (γ + ε)	 � (γ + δ)	.

Proof. (i) Suppose (µ ∪ (d))r = d while (ν ∪ (d))s = d. The case r = s is simple to
show. Suppose r > s. We see easily that

j∑

i=1

(µ ∪ (d))i ≥

j∑

i=1

(ν ∪ (d))i

when j < s or when j ≥ r. Therefore, assume s ≤ j < r. We have

j∑

i=1

(µ ∪ (d))i ≥
s−1∑

i=1

(µ ∪ (d))i + (j − (s− 1))d

≥
s−1∑

i=1

(ν ∪ (d))i + (j − (s− 1))d

≥

j∑

i=1

(ν ∪ (d))i

as required. The case r < s is somewhat similar, yet the main idea is different enough
to warrant a demonstration. We know that

j∑

i=1

(µ ∪ (d))i ≥

j∑

i=1

(ν ∪ (d))i

when j < r or when j ≥ s. Therefore, assume r ≤ j < s. We have

j∑

i=1

(µ ∪ (d))i ≥
s∑

i=1

(µ ∪ (d))i − (s− j)d

≥
s∑

i=1

(ν ∪ (d))i − (s− j)d

≥

j∑

i=1

(ν ∪ (d))i

as required.

(ii) We proceed by induction on `, with the result being trivially true for ` = 1.
Suppose ε1 = δs, and define ζ = (δs, δ1, . . . , δs−1, δs+1, . . . , δ`). Our approach is to
show that

(γ + ε)	 � (γ + ζ)	 � (γ + δ)	.

We first show that (γ + ε)	 � (γ + ζ)	. Suppose that γ1 + ε1 = γ1 + ζ1 = d. Let
γ̄ := (γ2, . . . , γ`), with ε̄ and ζ̄ defined similarly. Now ζ̄ is weakly decreasing and ε̄ is



18 FRANÇOIS BERGERON AND PETER MCNAMARA

a permutation of ζ̄, so by the induction hypothesis, (γ̄ + ε̄)	 � (γ̄ + ζ̄)
	
. Applying

part (i) of this lemma, we deduce that (γ + ε)	 � (γ + ζ)	.

It remains to show that (γ + ζ)	 � (γ + δ)	. If there exists i ≤ ` such that
ζi = δi, then we can deduce the result by applying the same argument as in the
previous paragraph. Assume, therefore, that s = ` and so ζ = (δ`, δ1, . . . , δ`−1).

Supposing that the j largest elements of the sequence γ + δ are in positions

i1 < i2 < · · · < ij ,

we have

j∑

i=1

((γ + ζ)	)i ≥ (γ1 + δ`) + (γi2 + δi2−1) + (γi3 + δi3−1) + · · ·+ (γij + δij−1)

= (γi1 + δi1) + (γi2 + δi2) + · · · (γij + δij )

+(γ1 − γi1) + (δi2−1 − δi1) + (δi3−1 − δi2) + · · ·+ (δij−1 − δij−1
)

+(δ` − δij )

≥ (γi1 + δi1) + (γi2 + δi2) + · · ·+ (γij + δij )

=

j∑

i=1

((γ + δ)	)i .

�

Proof of Lemma 5.4. (i) Let γ = µ ∪ ν = λ ∪ ρ, which we suppose to be of length
`. Let δ be the weakly increasing sequence of integers with elements consisting of the
multiset {−(α∪β)i}

`
i=1. The reason for this somewhat contrived definition of δ is we

get that γ + δ = row(λ/σ) ∪ row(ρ/τ). Furthermore, row(µ/α) ∪ row(ν/β) = γ + ε,
where ε is some permutation of δ. We see that we are in exactly the situation
necessary to apply Lemma 5.7(ii). It follows that row(µ/α)∪ row(ν/β) � row(λ/σ)∪
row(ρ/τ), as required.

(ii) Consider the ith columns of µ/α and ν/β. They contribute the multiset Ai =
{µ′i − α

′
i, ν
′
i − β

′
i} to col(µ/α) ∪ col(ν/β). By (17), the ith columns of λ/σ and ρ/τ

contribute the multiset Bi to col(λ/σ) ∪ col(ρ/τ), where

Bi =

{⌈
µi + νi

2

⌉
−

⌈
αi + βi

2

⌉
,

⌊
µi + νi

2

⌋
−

⌊
αi + βi

2

⌋}
.

We claim that Ai
	 � Bi

	. Indeed, |Ai
	| = |Bi

	|. Therefore, it suffices to observe
that (Bi

	)1 − (Bi
	)2 ∈ {0, 1}.

By repeated applications of Lemma 5.7(i), we see that for any partitions λ, α and
β, if α � β, then α ∪ λ � β ∪ λ. Furthermore, for any σ � τ ,

α ∪ σ � α ∪ τ � β ∪ τ.
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Figure 3. P (5). Note that empty partitions are not displayed.

Repeatedly applying this to our partitions Ai
	 and Bi

	, we conclude that

col(µ/α) ∪ col(ν/β) =
⋃

i

Ai
	 �

⋃

i

Bi
	 = col(λ/σ) ∪ col(ρ/τ).

�

Remark 5.8. As mentioned in the introduction, all the results of this section hold
when we extend from pairs of partitions to m-tuples of partitions, for m ≥ 2. There
are two ways to see this. The first is to observe that all our proofs of results specific
to the m = 2 case also work in the extended case after minor modifications. Alterna-
tively, we can note that the repainting argument referred to in the introduction only
modifies a pair of partitions at each stage. Because of this, it can be used to extend
Lemma 5.1, Proposition 5.3 and Theorem 5.6 to the general m case.

6. Posets of Pairs of Partitions

In studying the ∗-operation and the ∼-operation, the main difficulty lies in under-
standing when an expression of form (2) is Schur-positive. To take a global approach
to this question, fix n and consider the set P (n) of all pairs of partitions (µ, ν) such
that |µ| + |ν| = n. For the purposes of the current discussion, we identify (µ, ν)
and (ν, µ). We make P (n) into a poset by saying that (µ, ν) ≤ (τ, σ) if sτsσ − sµsν

is Schur-positive. It is possible, but not necessarily easy, to see that ≤ is then an
antisymmetric relation. Figure 3 shows P (5).

While understanding this poset for general n may seem like a difficult task, it is
encouraging to look at the following similarly defined poset: say that (µ, ν) ≤ (τ, σ) if
hτhσ−hµhν is Schur-positive, where h denotes the complete homogeneous symmetric
functions. To maintain the poset structure, we identify all those pairs (µ, ν) and (τ, σ)
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Figure 4. The poset D(k3221), for k ≥ 5.

such that µ∪ ν = τ ∪σ, since in that case we evidently have hτhσ−hµhν = 0. As we
earlier observed, hα − hβ is Schur-positive if and only if α � β. Hence the resulting
poset is exactly the (self-dual) dominance lattice for partitions of n.

It is insightful to consider Conjecture 1.1 in terms of the posets P (n). Given a
partition γ = (γ1, γ2, · · · , γ2p), with |γ| = n and allowing 0 parts, we wish to know
which “dealing” of the parts of γ between two partitions µ and ν will result in a large
pair (µ, ν) in the poset P (n). Let D(γ) denote the subposet of P (n) consisting of
those pairs (µ, ν) that arise as a dealing of the parts of γ. Then Conjecture 1.1 states
that D(γ) has a unique maximal element for every γ, namely (λ, ρ), where

λ = (γ1, γ3, . . . , γ2p−1), ρ = (γ2, γ4, . . . , γ2p).

Figure 4 illustrates the poset D(53221). We label each element (µ, ν) by ν only, where
without loss of generality, we always take ν to be the partition which is smaller in
lexicographic order (3221 rather then 5), with no regard for the parts sum.

Interestingly, our investigations suggest that, in a large number of cases, D(γ) is
independent of the sizes of the parts of γ and only depends on the set of indices i such
that γi is strictly greater than γi+1. For example, there is a canonical isomorphism
from D(53221) to D(k3221) for any k ≥ 5. Actually, using our labeling convention
above, Figure 4 gives the poset associated to any partition of the form k3221 with
k ≥ 5. This will be a consequence of Proposition 6.1 below. On the other hand,
D(53221) is not isomorphic to the poset D(43221), which is illustrated in Figure 5.
Rather, as is readily seen, it is a weak subposet: i.e. the set of order relations in
D(53221) is a subset of the set of relations in D(43221).

Proposition 6.1. Let γ = (γ1, γ2, . . . , γm) be a partition with γ1 ≥ γ2 + γ3. Then

D(γ) ∼= D(γ1 + 1, γ2, . . . , γm).
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Figure 5. The poset D(43221).

Proof. Let (λ, µ) be an element of D(γ) where, without loss of generality, we take
λ1 ≥ µ1. For any partition ν, let (ν + 1) denote the partition obtained when the first
part of ν is increased by 1. Consider those partitions θ such that cθ(λ+1)µ > 0. We
have that

θ1 ≥ λ1 + 1 = γ1 + 1 ≥ γ2 + γ3 + 1 ≥ µ1 + λ2 + 1 > θ2,

where the last inequality can be seen by considering LR-fillings of θ/µ of content λ.
Therefore, θ = (ν + 1) for some ν, and we write ν = (θ − 1) when this is the case.
We claim that, for any θ such that cθ(λ+1)µ > 0 as above, there is a bijection:

LR-fillings of (θ − 1)/µ of content λ←→ LR-fillings of θ/µ of content (λ+ 1).

We see that the existence of such a bijection, ϕ, would imply the desired canonical
poset isomorphism. Given any LR-filling t, of shape (θ − 1)/µ and content λ, let
ϕ(t) be the semistandard tableau of θ/µ obtained from t simply by adding a 1 in
the first row to the right of the last entry of t. We easily see that this is indeed an
LR-filling of θ/µ, and has content (λ + 1) by construction. We must check that the
inverse map makes sense and has the required properties. If u is an LR-filling of θ/µ
of content (λ+ 1), then the inverse of ϕ corresponds to the deletion of the rightmost
1 in the first row of u. We see that this gives a semistandard tableau ϕ−1(u), with
content λ by construction. Hence, it only remains to check that ϕ−1(u) is actually
an LR-filling. The number of 1’s in the first row of ϕ−1(u) equals (θ1 − 1) − µ1. If
µ1 = γ2 then we have

(θ1 − 1)− µ1 ≥ λ1 − γ2 = γ1 − γ2 ≥ γ3 ≥ λ2.

Otherwise, µ1 ≤ γ3 and we get

(θ1 − 1)− µ1 ≥ λ1 − γ3 = γ1 − γ3 ≥ γ2 = λ2.

In either case, the number of 1’s in the first row of ϕ−1(u) is greater than or equal
to the total number of 2’s in ϕ−1(u), as required. Therefore, ϕ−1(u) is an LR-filling,
and this finishes the proof. �
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Figure 6. Poset D(x, a, b, c, d), when 10 ≥ x > a > b > c > d > 0.

There seems to be a natural chamber complex decomposition, of the space of par-
titions of length k, induced by isomorphism classes of associated posets. Proposition
6.1 is an example of results along these lines, since it states that

γ1 = γ2 + γ3

might be one of the defining hyperplanes of such a chamber complex. Various com-
putational experiments also confirm this impression. For instance, for all partition
of length 5, into distinct parts (all ≤ 10), we always get posets isomorphic to that of
Figure 6.

7. An Explicit Example with an Application

One interesting special case for which this general invariance, with respect to rel-
ative part size, of the poset D(γ) holds, is the following. As we will see, even this
special case implies nice identities.

Proposition 7.1. For all k and m, D(km) is isomorphic to a chain of length ` = bm
2
c.

Proof. The elements of D(km) are of the form dr := ((kr), (km−r)), with r ≤ `, and
we need to show that dr−1 < dr for r = 1, . . . , `. To show the proposition, we need
only construct, for each partition θ such that cθ(km−r+1),(kr−1) > 0, an injection

ψ : Lr−1 ↪→ Lr,

from the set Lr−1, of LR-fillings of θ/(km−r+1) with content (kr−1), to the set Lr

of LR-fillings of θ/(km−r) with content (kr). By definition, column entries of any
semistandard skew tableau of shape θ/(km−r) have to be strictly increasing. Thus, to
have content (kr−1), the maximal height of its columns has to be bounded by r − 1.
Moreover, any prefix of an LR-filling, is an LR-filling. Since m−r ≥ r, it follows that
an LR-filling t in Lr−1 consists of two disjoint “pieces”: an LR-filling of the shape
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Figure 7.

β
β

α α

(km−r+1) (km−r)

r r r r r
r r r

r
r

(a) (b)

α sitting to the right of the rectangle (km−r+1), and a filling of the shape β sitting
above this same rectangle. In view of the preceding argument, the number of parts
of both α and β are at most r− 1, . In particular, this also implies that β1 ≤ k. The
typical configuration is illustrated in Figure 7(a).

Now, we construct ψ(t) as follows. First, convert the top (length k) row of (km−r+1)
to a row r’s and reorder each column of the resulting tableau so that it is increasing
as we go up. The result is still a semistandard tableau. This process is illustrated
Figure 7(b). By construction, the tableau ψ(t) has shape θ/(km−r) and content (kr).
It remains to show that ψ(t) is indeed an LR-filling. Since the columns of ψ(t) are
strictly increasing, there can be at most one r − 1 in each column. Since there are k
entries of r− 1 in ψ(t), every r in ψ(t) must have a corresponding r− 1 below it and
weakly to the right. It follows that ψ(t) is an LR-filling.

Finally, let θ = ((2k)r, km−2r). Since

cθ(km−r+1),(kr−1) = 0, while cθ(km−r),(kr) = 1,

we get an explicit verification that dr−1 < dr. �

Remark 7.2. We have just seen3 that, for all k,

skaskb − ska+1skb−1

is Schur-positive whenever a ≥ b. Now when k = 1, this is nothing but the (dual)
Jacobi-Trudi identity:

s1as1b − s1a+1s1b−1 = ω(s(a,b)).

For general k, we see that

skaskb − ska+1skb−1 = ω

(∣∣∣∣
s(ak) s((a+1)k)

s((b−1)k) s(bk)

∣∣∣∣
)
, (18)

so the determinant in (18) is itself Schur-positive. This observation has lead us to
ask what happens if we take any Jacobi-Trudi determinant

sµ = det(sµi−i+j)
p
i,j=1

3The case a = b has previously been obtained by Kirillov [5]. See Kleber [6] for a nice proof.
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and consider the corresponding “exploded” Jacobi-Trudi determinant

det(s((µi−i+j)k))
p
i,j=1

for k ≥ 2. When is the result Schur-positive? When p = 3, we have systematically
verified that these exploded determinants are Schur-positive whenever the resulting
degree (as a formal power series) is at most 90. On the other hand, when p = 4,
there are simple examples of exploded Jacobi-Trudi determinants that are not Schur-
positive.
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