When do quasisymmetric functions know that trees are different?

Peter McNamara
Bucknell University, USA

Joint work with:
Jean-Christophe Aval
LaBRI, CNRS, Université de Bordeaux, France
Karimatou Djenabou
African Institute for Mathematical Sciences, South Africa
Discrete Mathematics Seminar, Xiamen University 30 November 2022
Slides and paper available from

http://www.unix.bucknell.edu/~pm040/

When do quasisymmetric functions know that trees are different?

Peter McNamara
Bucknell University, USA

Joint work with: Jean-Christophe Aval

LaBRI, CNRS, Université de Bordeaux, France
Karimatou Djenabou
African Institute for Mathematical Sciences, South Africa

Discrete Mathematics Seminar, Xiamen University 30 November 2022
Slides and paper available from

http://www.unix.bucknell.edu/~pm040/

Outline

- Chromatic (quasi)symmetric functions and the motivating conjectures
- Converting to a poset question; more conjectures
- Some old and new results

Outline

- Chromatic (quasi)symmetric functions and the motivating conjectures
- Converting to a poset question; more conjectures
- Some old and new results
- More conjectures

The chromatic polynomial

George Birkhoff, 1912

Graph $G=(V, E)$
Colouring/Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Not Proper

The chromatic polynomial

George Birkhoff, 1912

Graph $G=(V, E)$
Colouring/Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Not Proper

The chromatic polynomial

George Birkhoff, 1912

Graph $G=(V, E)$
Colouring/Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Not Proper

The chromatic polynomial
George Birkhoff, 1912
Graph $G=(V, E)$
Colouring/Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Not Proper

Chromatic polynomial: $\chi_{G}(k)$ is the number of proper colorings of G when k colors are available.

Example.

$$
\chi_{G}(k)=k(k-1)(k-1)
$$

The chromatic symmetric function
Richard Stanley, 1995
Graph $G=(V, E)$
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

To a proper coloring κ, we associate the monomial in commuting variables x_{1}, x_{2}, \ldots

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

The chromatic symmetric function
Richard Stanley, 1995
Graph $G=(V, E)$
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

To a proper coloring κ, we associate the monomial in commuting variables x_{1}, x_{2}, \ldots

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Chromatic symmetric function:

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

The chromatic symmetric function
Chromatic symmetric function:

$$
X_{G}(\mathbf{x})=\sum_{\operatorname{proper} \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Example.

The chromatic symmetric function
Chromatic symmetric function:

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Example.

$$
\begin{aligned}
& \stackrel{\mathrm{a}}{\mathrm{a}} \underset{x_{a}^{2} x_{b}}{\mathrm{~b}}{ }^{\mathrm{a}} \\
& X_{G}(\mathbf{x})=\sum_{a \neq b} x_{a}^{2} x_{b}+6 \sum_{a<b<c} x_{a} x_{b} x_{c} \\
& \left(=m_{21}+6 m_{111}\right) \text {. }
\end{aligned}
$$

The chromatic symmetric function
Chromatic symmetric function:

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Example.

$$
\begin{aligned}
& \begin{array}{ccc}
a & b & a \\
0 & 0 & 0
\end{array} \\
& x_{a}^{2} x_{b} \\
& x_{a} x_{b} x_{c} \\
& X_{G}(\mathbf{x})=\sum_{a \neq b} x_{a}^{2} x_{b}+6 \sum_{a<b<c} x_{a} x_{b} x_{c} \\
& \left(=m_{21}+6 m_{111}\right) .
\end{aligned}
$$

- $X_{G}(\mathbf{x})$ is a symmetric function (invariant when you permute the colors/variables)

The chromatic symmetric function

Chromatic symmetric function:

$$
X_{G}(\mathbf{x})=\sum_{\operatorname{proper} \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Example.

$$
\begin{aligned}
& \begin{array}{rrr}
a & b & a \\
0 & 0 & 0
\end{array} \\
& x_{a}^{2} x_{b} \\
& X_{G}(\mathbf{x})=\sum_{a \neq b} x_{a}^{2} x_{b}+6 \sum_{a<b<c} x_{a} x_{b} x_{c} \\
& \left(=m_{21}+6 m_{111}\right) .
\end{aligned}
$$

- $X_{G}(\mathbf{x})$ is a symmetric function (invariant when you permute the colors/variables)
- Setting $x_{i}=1$ for $1 \leq i \leq k$ and $x_{i}=0$ otherwise yields $\chi_{G}(k)$. e.g. $k(k-1)+6\binom{k}{3}=k(k-1)^{2}$.

Can $X_{G}(\mathbf{x})$ distinguish graphs?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

Statement 1.

$X_{G}(\mathbf{x})$ distinguishes graphs.
In other words, if G and H are not isomorphic, then $X_{G}(\mathbf{x}) \neq X_{H}(\mathbf{x})$.

Polls/Quizzes

Can $X_{G}(\mathbf{x})$ distinguish graphs?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

False Statement 1.

$X_{G}(\mathbf{x})$ distinguishes graphs.
In other words, if G and H are not isomorphic, then $X_{G}(\mathbf{x}) \neq X_{H}(\mathbf{x})$.
Stanley: these have the same $X_{G}(\mathbf{x})$

Can $X_{G}(\mathbf{x})$ distinguish graphs?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

False Statement 1.

$X_{G}(\mathbf{x})$ distinguishes graphs.
In other words, if G and H are not isomorphic, then $X_{G}(\mathbf{x}) \neq X_{H}(\mathbf{x})$. Stanley: these have the same $X_{G}(\mathbf{x})$

Statement 2.

$X_{G}(\mathbf{x})$ distinguishes trees. In other words,
if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.

Can $X_{G}(\mathbf{x})$ distinguish graphs?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

False Statement 1.

$X_{G}(\mathbf{x})$ distinguishes graphs.
In other words, if G and H are not isomorphic, then $X_{G}(\mathbf{x}) \neq X_{H}(\mathbf{x})$.
Stanley: these have the same $X_{G}(\mathbf{x})$

Famous Conjecture 1. (Stanley as a question) $X_{G}(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.

Can $X_{G}(\mathbf{x})$ distinguish graphs?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)}
$$

False Statement 1.

$X_{G}(\mathbf{x})$ distinguishes graphs.
In other words, if G and H are not isomorphic, then $X_{G}(\mathbf{x}) \neq X_{H}(\mathbf{x})$.
Stanley: these have the same $X_{G}(\mathbf{x})$

Famous Conjecture 1. (Stanley as a question)
$X_{G}(\mathbf{x})$ distinguishes trees. In other words,
if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.
[Aliste-Prieto, Crew, de Mier, Fougere, Heil, Ji, Loebl, Martin, Morin, Orellana, Scott, Smith, Sereni, Spirkl, Tian, Wagner, Zamora, ...] Remark. Steph van Willigenburg: another famous $X_{G}(\mathbf{x})$ conjecture.

A little bit of (quasi)symmetric functions

$x^{2} y+y^{2} x+x^{2} z+z^{2} x+y^{2} z+z^{2} y$ is a symmetric polynomial in $\{x, y, z\}$ because it doesn't change when you permute the variables.
$\sum_{a \neq b} x_{a}^{2} x_{b}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots$ is a symmetric function in \mathbf{x}.
Denoted m_{21}.

A little bit of (quasi)symmetric functions

$x^{2} y+y^{2} x+x^{2} z+z^{2} x+y^{2} z+z^{2} y$ is a symmetric polynomial in $\{x, y, z\}$ because it doesn't change when you permute the variables.
$\sum_{a \neq b} x_{a}^{2} x_{b}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots$ is a symmetric function in \mathbf{x}.
Denoted m_{21}.
Now consider $\sum_{a<b} x_{a} x_{b}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+x_{1} x_{4}^{2}+\cdots$.
It is not symmetric but it is quasisymmetric. Denoted M_{12}.

A little bit of (quasi)symmetric functions

$x^{2} y+y^{2} x+x^{2} z+z^{2} x+y^{2} z+z^{2} y$ is a symmetric polynomial in $\{x, y, z\}$ because it doesn't change when you permute the variables.
$\sum_{a \neq b} x_{a}^{2} x_{b}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+\cdots$ is a symmetric function in \mathbf{x}.
Denoted m_{21}.
Now consider $\sum_{a<b} x_{a} x_{b}^{2}=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+x_{1} x_{4}^{2}+\cdots$.
It is not symmetric but it is quasisymmetric. Denoted M_{12}.
For a composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ the monomial quasisymmetric function is:

$$
M_{\alpha}=\sum_{a_{1}<a_{2}<\cdots<a_{k}} x_{a_{1}}^{\alpha_{1}} x_{a_{2}}^{\alpha_{2}} \cdots x_{a_{k}}^{\alpha_{k}} .
$$

The span of the M_{α} is the vector space QSym of quasisymmetric functions.

In fact,

- the M_{α} form a basis for QSym;
- QSym is an algebra.

In fact,

- the M_{α} form a basis for QSym;
- QSym is an algebra.

A more important basis for us is Gessel's fundamental quasisymmetric functions:

$$
F_{\alpha}=\sum_{\beta \text { refines } \alpha} M_{\beta} .
$$

Example.

$$
F_{32}=M_{32}+M_{212}+M_{122}+M_{1112}+M_{311}+M_{2111}+M_{1211}+M_{11111} .
$$

(M_{221}, for example, does not appear).

In fact,

- the M_{α} form a basis for QSym;
- QSym is an algebra.

A more important basis for us is Gessel's fundamental quasisymmetric functions:

$$
F_{\alpha}=\sum_{\beta \text { refines } \alpha} M_{\beta} .
$$

Example.

$F_{32}=M_{32}+M_{212}+M_{122}+M_{1112}+M_{311}+M_{2111}+M_{1211}+M_{11111}$.
(M_{221}, for example, does not appear).

QSym is a star of 21 st century algebraic combinatorics.

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

Chromatic quasisymmetric function:

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

The chromatic quasisymmetric function

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

Chromatic quasisymmetric function:

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Example. $\quad X_{\vec{G}}(\mathbf{x}, t)=\left(2+2 t+2 t^{2}\right) M_{111}+t^{2} M_{21}+M_{12}$.

The chromatic quasisymmetric function

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

Chromatic quasisymmetric function:

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Example. $\quad X_{\vec{G}}(\mathbf{x}, t)=\left(2+2 t+2 t^{2}\right) M_{111}+t^{2} M_{21}+M_{12}$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting $t=1$, we see that $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting $t=1$, we see that $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.

Statement 3.

$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed graphs.
i.e. if \vec{G} and \vec{H} are not isomorphic, then $X_{\vec{G}}(\mathbf{x}, t) \neq X_{\vec{H}}(\mathbf{x}, t)$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting $t=1$, we see that $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.

False Statement 2.

$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed graphs.
i.e. if \vec{G} and \vec{H} are not isomorphic, then $X_{\vec{G}}(\mathbf{x}, t) \neq X_{\vec{H}}(\mathbf{x}, t)$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting $t=1$, we see that $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.
False Statement 2.
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed graphs.
i.e. if \vec{G} and \vec{H} are not isomorphic, then $X_{\vec{G}}(\mathbf{x}, t) \neq X_{\vec{H}}(\mathbf{x}, t)$.

Statement 4.
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees. In other words, if \vec{T} and \vec{U} are non-isomorphic directed trees, then $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting $t=1$, we see that $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.
False Statement 2.
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed graphs.
i.e. if \vec{G} and \vec{H} are not isomorphic, then $X_{\vec{G}}(\mathbf{x}, t) \neq X_{\vec{H}}(\mathbf{x}, t)$.

Motiviating Conjecture 2. (stated as a question by
Per Alexandersson and Robin Sulzgruber, 2021)
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees. In other words, if \vec{T} and \vec{U} are non-isomorphic directed trees, then $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{u}}(\mathbf{x}, t)$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting $t=1$, we see that $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.
False Statement 2.
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed graphs.
i.e. if \vec{G} and \vec{H} are not isomorphic, then $X_{\vec{G}}(\mathbf{x}, t) \neq X_{\vec{H}}(\mathbf{x}, t)$.

Motiviating Conjecture 2. (stated as a question by
Per Alexandersson and Robin Sulzgruber, 2021)
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees. In other words, if \vec{T} and \vec{U} are non-isomorphic directed trees, then $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
This conjecture was our original goal.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting $t=1$, we see that $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.
False Statement 2.
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed graphs.
i.e. if \vec{G} and \vec{H} are not isomorphic, then $X_{\vec{G}}(\mathbf{x}, t) \neq X_{\vec{H}}(\mathbf{x}, t)$.

Motiviating Conjecture 2. (stated as a question by
Per Alexandersson and Robin Sulzgruber, 2021)
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees. In other words, if \vec{T} and \vec{U} are non-isomorphic directed trees, then $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
This conjecture was our original goal. Strategy: translate to posets.

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for T and U.
- So just look at colorings where all edges are ascents

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)}
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for T and U.
- So just look at colorings where all edges are ascents
- Construct a partially ordered set (poset) P where $v_{i} \leq_{P} v_{j}$ if there a directed path from v_{i} to v_{j}.

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)}
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for T and U.
- So just look at colorings where all edges are ascents
- Construct a partially ordered set (poset) P where $v_{i} \leq_{P} v_{j}$ if there a directed path from v_{i} to v_{j}.

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$. Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for T and U.
- So just look at colorings where all edges are ascents
- Construct a partially ordered set (poset) P where $v_{i} \leq_{p} v_{j}$ if there a directed path from v_{i} to v_{j}.
- The corresponding coloring is a strict P-partition.

Labeled posets

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega: P \rightarrow\{1,2, \ldots, n\}$.

Labeled posets

Labeled poset (P, ω): poset P with n elements and a bijection $\omega: P \rightarrow\{1,2, \ldots, n\}$.

Key definition. A (P, ω)-partition is a map f from P to the positive integers satisfying:

- f is ordering preserving, i.e. if $a<p b$ then $f(a) \leq f(b)$;
- if $a<p b$ and $\omega(a)>\omega(b)$, then $f(a)<f(b)$.

Labeled posets

Labeled poset (P, ω): poset P with n elements and a bijection $\omega: P \rightarrow\{1,2, \ldots, n\}$.

Key definition. A (P, ω)-partition is a map f from P to the positive integers satisfying:

- f is ordering preserving, i.e. if $a<p b$ then $f(a) \leq f(b)$;
- if $a<p b$ and $\omega(a)>\omega(b)$, then $f(a)<f(b)$.

Labeled posets

Labeled poset (P, ω): poset P with n elements and a bijection $\omega: P \rightarrow\{1,2, \ldots, n\}$.

Key definition. A (P, ω)-partition is a map f from P to the positive integers satisfying:

- f is ordering preserving, i.e. if $a<p b$ then $f(a) \leq f(b)$;
- if $a<p b$ and $\omega(a)>\omega(b)$, then $f(a)<f(b)$.

Labeled posets

Labeled poset (P, ω): poset P with n elements and a bijection $\omega: P \rightarrow\{1,2, \ldots, n\}$.

Key definition. A (P, ω)-partition is a map f from P to the positive integers satisfying:

- f is ordering preserving, i.e. if $a<p b$ then $f(a) \leq f(b)$;
- if $a<p b$ and $\omega(a)>\omega(b)$, then $f(a)<f(b)$.

Labeled posets

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega: P \rightarrow\{1,2, \ldots, n\}$.

Key definition. A (P, ω)-partition is a map f from P to the positive integers satisfying:

- f is ordering preserving, i.e. if $a<p b$ then $f(a) \leq f(b)$;
- if $a<p b$ and $\omega(a)>\omega(b)$, then $f(a)<f(b)$.

We use double edges to denote the strictness conditions

Labeled posets

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega: P \rightarrow\{1,2, \ldots, n\}$.

Key definition. A (P, ω)-partition is a map f from P to the positive integers satisfying:

- f is ordering preserving, i.e. if $a<p b$ then $f(a) \leq f(b)$;
- if $a<p b$ and $\omega(a)>\omega(b)$, then $f(a)<f(b)$.

We use double edges to denote the strictness conditions and then we can (usually) ignore the underlying labeling.

Motivating examples for (P, ω)-partitions

$$
\begin{array}{llll}
1 & 4 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}
$$

- (P, ω) chain with all weak edges: get a partition
- (P, ω) chain with all strict edges: get a partition with distinct parts
- (P, ω) is an antichain: get a composition

General (P, ω)-partitions interpolate between these classical objects.

The (P, ω)-partition enumerator
Example. Resrict to $f(p) \in\{1,2,3\}$.

$x_{1}^{2} x_{2}^{2}$

$x_{1}^{2} x_{3}^{2}$

$$
K_{(P, \omega)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2} x_{3}^{2} .
$$

In general, the (P, ω)-partition enumerator is by given by:

$$
K_{(P, \omega)}(\mathbf{x})=\sum_{(P, \omega) \text {-partition } f} x_{1}^{\# f^{-1}(1)} x_{2}^{\# I^{-1}(2)} \cdots .
$$

The (P, ω)-partition enumerator
Example. Resrict to $f(p) \in\{1,2,3\}$.

$x_{1}^{2} x_{2}^{2}$

$x_{1}^{2} x_{3}^{2}$

$$
K_{(P, \omega)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+2 x_{1}^{2} x_{2} x_{3}+x_{1} x_{2} x_{3}^{2} .
$$

In general, the (P, ω)-partition enumerator is by given by:

$$
K_{(P, \omega)}(\mathbf{x})=\sum_{(P, \omega) \text {-partition } f} x_{1}^{\# f^{-1}(1)} x_{2}^{\# I^{-1}(2)} \cdots .
$$

Seem familiar?

From $X_{\vec{G}}(\mathbf{x}, t)$ to $K_{(P, \omega)}$

From $X_{\vec{G}}(\mathbf{x}, t)$ to $K_{(P, \omega)}$

colorings of \vec{G} will all ascents \longleftrightarrow strict P-partitions $a<b<c$

From $X_{\vec{G}}(\mathbf{x}, t)$ to $K_{(P, \omega)}$

colorings of \vec{G} will all ascents \longleftrightarrow strict P-partitions $a<b<c$

From $X_{\vec{G}}(\mathbf{x}, t)$ to $K_{(P, \omega)}$

colorings of \vec{G} will all ascents \longleftrightarrow strict P-partitions $a<b<c$

coefficient of t^{2} in $X_{\vec{G}}(\mathbf{x}, t)=M_{21}+2 M_{111}=K_{P}^{<}(\mathbf{x})$.

From $X_{\vec{G}}(\mathbf{x}, t)$ to $K_{(P, \omega)}$

colorings of \vec{G} will all ascents \longleftrightarrow strict P-partitions $a<b<c$

coefficient of t^{2} in $X_{\vec{G}}(\mathbf{x}, t)=M_{21}+2 M_{111}=K_{P}^{<}(\mathbf{x})$.
In general, coefficient of $t^{\# E}$ in $X_{\vec{G}}(\mathbf{x}, t)=K_{P}^{\subset}(\mathbf{x})$.

From $X_{\vec{G}}(\mathbf{x}, t)$ to $K_{(P, \omega)}$

colorings of \vec{G} will all ascents \longleftrightarrow strict P-partitions $a<b<c$

coefficient of t^{2} in $X_{\vec{G}}(\mathbf{x}, t)=M_{21}+2 M_{111}=K_{P}^{<}(\mathbf{x})$.
In general, coefficient of $t^{\# E}$ in $X_{\vec{G}}(\mathbf{x}, t)=K_{P}^{<}(\mathbf{x})$.
Translation complete. Now study equality among $K_{(P, \omega)}(\mathbf{x})$.

From $X_{\vec{G}}(\mathbf{x}, t)$ to $K_{(P, \omega)}$

colorings of \vec{G} will all ascents \longleftrightarrow strict P-partitions $a<b<c$

coefficient of t^{2} in $X_{\vec{G}}(\mathbf{x}, t)=M_{21}+2 M_{111}=K_{P}^{<}(\mathbf{x})$.
In general, coefficient of $t^{\# E}$ in $X_{\vec{G}}(\mathbf{x}, t)=K_{P}^{<}(\mathbf{x})$.
Translation complete. Now study equality among $K_{(P, \omega)}(\mathbf{x})$. [Browning, Féray, Hasebe, Hopkins, Kelly, Liu, M., Tsujie, Ward, Weselcouch]

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Statement 5.

$K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Conjecture 3 (Stated as a question by Takahiro Hasebe \& Shuhei Tsujie, 2017).
$K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Conjecture 3 (Stated as a question by Takahiro Hasebe \& Shuhei Tsujie, 2017).
$K_{P}^{¢}(\mathbf{x})$ distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Key: this conjecture being true would imply Conjecture 2 (that $X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees).

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Conjecture 3 (Stated as a question by Takahiro Hasebe \& Shuhei Tsujie, 2017).
$K_{P}^{¢}(\mathbf{x})$ distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Key: this conjecture being true would imply Conjecture 2 (that $X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees).

Statement 6. (mix strict and weak edges) $K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are trees. i.e. if labeled tree posets (P, ω) and (Q, τ) are not isomorphic, then $K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Conjecture 3 (Stated as a question by Takahiro Hasebe \& Shuhei Tsujie, 2017).
$K_{P}^{¢}(\mathbf{x})$ distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Key: this conjecture being true would imply Conjecture 2 (that $X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees).

False Statement 3.

$K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are trees.
i.e. if labeled tree posets (P, ω) and (Q, τ) are not isomorphic, then $K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Statement 7.

$K_{P}^{\subset}(\mathbf{x})$ distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Theorem 1 [Hasebe \& Tsujie, 2017].
$K_{P}^{\subset}(\mathbf{x})$ distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Theorem 1 [Hasebe \& Tsujie, 2017].
$K_{P}^{<}(\mathbf{x})$ distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then
$K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

We'd like to allow a mixture of strict and weak edges
Statement 8. (rooted, mix strict and weak edges)
$K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are rooted trees.
i.e. if labeled rooted tree posets (P, ω) and (Q, τ) are not isomorphic, then $K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Theorem 1 [Hasebe \& Tsujie, 2017].
$K_{P}^{<}(\mathbf{x})$ distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

We'd like to allow a mixture of strict and weak edges
Conjecture 4 [Aval, Djenabou, M., 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are rooted trees.
i.e. if labeled rooted tree posets (P, ω) and (Q, τ) are not isomorphic, then $K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Theorem 1 [Hasebe \& Tsujie, 2017].
$K_{P}^{\subset}(\mathbf{x})$ distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

We'd like to allow a mixture of strict and weak edges
Conjecture 4 [Aval, Djenabou, M., 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are rooted trees.
i.e. if labeled rooted tree posets (P, ω) and (Q, τ) are not isomorphic, then $K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.

Our main contribution sits between Theorem 1 and Conjecture 4.

Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.

Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.

Definition. More generally, we define the set \mathcal{C} of labeled posets recursively by:

1. the one-element labeled poset [1] is in \mathcal{C};
2. \mathcal{C} is closed under disjoint unions $(P, \omega) \sqcup\left(Q, \omega^{\prime}\right)$ is in \mathcal{C};
3. \mathcal{C} is closed under the ordinal sums $(P, \omega) \uparrow[1]$ and $(P, \omega) \Uparrow[1]$;
4. \mathcal{C} is closed under the ordinal sums $[1] \uparrow(P, \omega)$ and $[1] \Uparrow(P, \omega)$.

Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.

Definition. More generally, we define the $\operatorname{set} \mathcal{C}$ of labeled posets recursively by:

1. the one-element labeled poset [1] is in \mathcal{C};
2. \mathcal{C} is closed under disjoint unions $(P, \omega) \sqcup\left(Q, \omega^{\prime}\right)$ is in \mathcal{C};
3. \mathcal{C} is closed under the ordinal sums $(P, \omega) \uparrow[1]$ and $(P, \omega) \Uparrow[1]$;
4. \mathcal{C} is closed under the ordinal sums $[1] \uparrow(P, \omega)$ and $[1] \Uparrow(P, \omega)$.

Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.

Definition. More generally, we define the set \mathcal{C} of labeled posets recursively by:

1. the one-element labeled poset [1] is in \mathcal{C};
2. \mathcal{C} is closed under disjoint unions $(P, \omega) \sqcup\left(Q, \omega^{\prime}\right)$ is in \mathcal{C};
3. \mathcal{C} is closed under the ordinal sums and $(P, \omega) \Uparrow[1]$;
4. \mathcal{C} is closed under the ordinal sums $[1] \uparrow(P, \omega)$ and $[1] \Uparrow(P, \omega)$.

Our main theorem

Statement 9.

$K_{(P, \omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C}, so in particular fair trees;
i.e. if (P, ω) and (Q, τ) are in \mathcal{C} and not isomorphic, then
$K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.

Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C}, so in particular fair trees;
i.e. if (P, ω) and (Q, τ) are in \mathcal{C} and not isomorphic, then $K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.

First statement about $K_{(P, \omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C}, so in particular fair trees;
i.e. if (P, ω) and (Q, τ) are in \mathcal{C} and not isomorphic, then
$K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.
First statement about $K_{(P, \omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Crux of the proof:
Proposition 1 [Aval, Djenabou, M., 2022]
If (P, ω) is a connected element of \mathcal{C} then $K_{(P, \omega)}(\mathbf{x})$ is irreducible as a quasisymmetric function.

Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C}, so in particular fair trees;
i.e. if (P, ω) and (Q, τ) are in \mathcal{C} and not isomorphic, then
$K_{(P, \omega)}(\mathbf{x}) \neq K_{(Q, \tau)}(\mathbf{x})$.
First statement about $K_{(P, \omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Crux of the proof:
Proposition 1 [Aval, Djenabou, M., 2022]
If (P, ω) is a connected element of \mathcal{C} then $K_{(P, \omega)}(\mathbf{x})$ is irreducible as a quasisymmetric function.

Irreducibility is also the crux for

- Hasebe \& Tsujie;
- Ricki Ini Liu \& Michael Weselcouch ($K_{P}^{<}(\mathbf{x})$ distinguishes series-parallel posets; needs irreducibility for general P with all strict edges, 2020).

Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984: $K_{(P, \omega)}(\mathbf{x})$ expands beautifully in F-basis.

Example.

Linear extensions: $\quad \mathcal{L}(P, \omega)=\{3412,1324,1342,3124,3142\}$.

Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984: $K_{(P, \omega)}(\mathbf{x})$ expands beautifully in F-basis.

Example.

Linear extensions: $\quad \mathcal{L}(P, \omega)=\{34|12,1324,134| 2,3|124,3| 14 \mid 2\}$.

Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984: $K_{(P, \omega)}(\mathbf{x})$ expands beautifully in F-basis.

Example.

Linear extensions: $\quad \mathcal{L}(P, \omega)=\{34|12,1324,1342,3| 124,3 \mid 142\}$. Descent compositions: $\operatorname{comp}(\pi) \quad 22 \quad 22 \quad 31 \quad 13 \quad 121$

Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984: $K_{(P, \omega)}(\mathbf{x})$ expands beautifully in F-basis.

Example.

Linear extensions: $\quad \mathcal{L}(P, \omega)=\{34|12,1324,1342,3| 124,3|14| 2\}$. Descent compositions: $\operatorname{comp}(\pi) \quad 22 \quad 22 \quad 31 \quad 13 \quad 121$

$$
K_{(P, \omega)}=2 F_{22}+F_{31}+F_{13}+F_{121} .
$$

Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984:
$K_{(P, \omega)}(\mathbf{x})$ expands beautifully in F-basis.
Example.

Linear extensions: $\quad \mathcal{L}(P, \omega)=\{34|12,1324,1342,3| 24,314 \mid 2\}$.
Descent compositions: $\operatorname{comp}(\pi) \quad 22 \quad 22 \quad 31 \quad 13 \quad 121$

$$
K_{(P, \omega)}=2 F_{22}+F_{31}+F_{13}+F_{121} .
$$

Theorem [Gessel \& Stanley]. For a labeled poset (P, ω),

$$
K_{(P, \omega)}=\sum_{\pi \in \mathcal{L}(P, \omega)} F_{\operatorname{comp}(\pi)} .
$$

Recall Stanley's
Famous Conjecture 1. $X_{G}(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.

Recall Stanley's
Famous Conjecture 1. $X_{G}(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.

Surprising Conjecture 5 [Nick Loehr \& Greg Warrington, 2022]. $X_{G}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes trees with n vertices, i.e. if T and U are non-isomorphic trees with n vertices, then

$$
X_{T}\left(1, q, q^{2}, \ldots, q^{n-1}\right) \neq X_{U}\left(1, q, q^{2}, \ldots, q^{n-1}\right) .
$$

Some final conjectures

Recall Conjecture 3. $K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Some final conjectures

Recall Conjecture 3. $K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Conjecture 6 [Aval, Djenabou, M., 2022]. $K_{P}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes tree posets with n elements, i.e. if T and U are non-isomorphic trees with n vertices, then

$$
K_{P}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right) \neq K_{U}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right) .
$$

Some final conjectures

Recall Conjecture 3. $K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Conjecture 6 [Aval, Djenabou, M., 2022]. $K_{P}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes tree posets with n elements, i.e. if T and U are non-isomorphic trees with n vertices, then

$$
K_{P}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right) \neq K_{U}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right) .
$$

Remark. This specialization has a nice interpretation for $K_{(P, \omega)}$: if

$$
K_{(P, \omega)}\left(1, q, q^{2}, \ldots, q^{k-1}\right)=\sum_{N \geq 0} a(N) q^{N},
$$

then we see that $a(N)$ counts the number of (P, ω)-partitions $f: P \rightarrow\{0, \ldots, k-1\}$ of N.

Some final conjectures

Recall Conjecture 3. $K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Conjecture 6 [Aval, Djenabou, M., 2022]. $K_{P}^{\subset}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes tree posets with n elements, i.e. if T and U are non-isomorphic trees with n vertices, then

$$
K_{P}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right) \neq K_{U}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right) .
$$

Remark. This specialization has a nice interpretation for $K_{(P, \omega)}$: if

$$
K_{(P, \omega)}\left(1, q, q^{2}, \ldots, q^{k-1}\right)=\sum_{N \geq 0} a(N) q^{N},
$$

then we see that $a(N)$ counts the number of (P, ω)-partitions $f: P \rightarrow\{0, \ldots, k-1\}$ of N.

Thanks for your attention!

