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The chromatic polynomial

George Birkhoff, 1912

Graph G = (V ,E)

Colouring/Coloring: a map κ : V → {1,2,3, . . .}

Proper coloring: adjacent vertices
get different colors.

Proper

1 2 1

Not Proper

1 1 2

Chromatic polynomial: χG(k) is the number of proper colorings of G
when k colors are available.

Example. χG(k) = k(k − 1)(k − 1)
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The chromatic symmetric function

Richard Stanley, 1995

Graph G = (V ,E)

V = {v1, v2, . . . , vn}

To a proper coloring κ, we associate the monomial in commuting
variables x1, x2, . . .

xκ(v1)xκ(v2) · · · xκ(vn).

1 3 1

x2
1 x3

1 3 2

x1x2x3

Chromatic symmetric function:

XG(x1, x2, . . .) = XG(x) =
∑

proper κ

xκ(v1)xκ(v2) · · · xκ(vn).

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 4



The chromatic symmetric function

Richard Stanley, 1995

Graph G = (V ,E)

V = {v1, v2, . . . , vn}

To a proper coloring κ, we associate the monomial in commuting
variables x1, x2, . . .

xκ(v1)xκ(v2) · · · xκ(vn).

1 3 1

x2
1 x3

1 3 2

x1x2x3

Chromatic symmetric function:

XG(x1, x2, . . .) = XG(x) =
∑

proper κ

xκ(v1)xκ(v2) · · · xκ(vn).

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 4



The chromatic symmetric function

Chromatic symmetric function:

XG(x) =
∑

proper κ

xκ(v1)xκ(v2) · · · xκ(vn).

Example. a b a

x2
a xb

a b c

xaxbxc

XG(x) =
∑
a 6=b

x2
a xb + 6

∑
a<b<c

xaxbxc

(= m21 + 6m111).

I XG(x) is a symmetric function (invariant when you permute the
colors/variables)

I Setting xi = 1 for 1 ≤ i ≤ k and xi = 0 otherwise yields χG(k).
e.g. k(k − 1) + 6

(k
3

)
= k(k − 1)2.
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Can XG(x) distinguish graphs?

XG(x) =
∑

proper κ

xκ(v1)xκ(v2) · · · xκ(vn).

Statement 1.

False Statement 1.

XG(x) distinguishes graphs.
In other words, if G and H are not isomorphic, then XG(x) 6= XH(x).

Stanley: these have the same XG(x)

Famous Conjecture 1 (Stanley as a question).
XG(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then XT (x) 6= XU(x).

[Aliste-Prieto, Crew, de Mier, Fougere, Heil, Ji, Loebl, Martin, Morin,
Orellana, Scott, Smith, Sereni, Spirkl, Tian, Wagner, Zamora, ...]
Remark. Stanley–Stembridge: another famous XG(x) conjecture.
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A little bit of (quasi)symmetric functions

x2y + y2x + x2z + z2x + y2z + z2y is a symmetric polynomial in
{x , y , z} because it doesn’t change when you permute the variables.∑
a 6=b

x2
a xb = x2

1 x2 + x2
2 x1 + x2

1 x3 + · · · is a symmetric function in x.

Denoted m21.

Now consider
∑
a<b

xax2
b = x1x2

2 + x1x2
3 + x2x2

3 + x1x2
4 + x2x2

4 + · · · .

It is not symmetric but it is quasisymmetric. Denoted M12.

Definition. A quasisymmetric function is a formal power series (over
Z, say) in x1, x2, . . . of bounded degree whose coefficients are shift
invariant meaning

coefficient of xα1
1 xα2

2 · · · x
αk
k = coefficient of xα1

a1
xα2

a2
· · · xαk

ak

whenever a1 < a2 < · · · < ak .
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M12 =
∑
a<b

xax2
b = x1x2

2 + x1x2
3 + x2x2

3 + x1x2
4 + · · · .

For a composition α = (α1, α2, . . . , αk ) the monomial quasisymmetric
function is:

Mα =
∑

a1<a2<···<ak

xα1
a1

xα2
a2
· · · xαk

ak
.

The Mα form a basis for the algebra QSym of quasisymmetric
functions.

QSym is a star of 21st century algebraic combinatorics.

A great basis: Gessel’s fundamental quasisymmetric functions

Fα =
∑

β refines α

Mβ.

Example.
F32 = M32 + M212 + M122 + M1112 + M311 + M2111 + M1211 + M11111.

(M221, for example, does not appear).
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph
−→
G = (V ,E).

Ascent of proper coloring κ: directed edge u → v with κ(u) < κ(v)
asc(κ): the number of ascents of κ.
Example. Colors a < b < c

v1 v2 v3

aaa bbb cccaaa bbb aaa

κ(v1) κ(v2) κ(v3) asc(κ)
a b c 1
a c b 2
b a c 0
b c a 2
c a b 0
c b a 1
a b a 2
b a b 0

Chromatic quasisymmetric function:

X−→
G
(x, t) =

∑
proper κ

tasc(κ)xκ(v1)xκ(v2) · · · xκ(vn).

Example. X−→
G
(x, t) = (2 + 2t + 2t2)M111 + t2M21 + M12.
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Can X−→G (x, t) distinguish graphs?

By setting t = 1, we see that X−→
G
(x, t) contains more information than

XG(x).

False Statement 2.

X−→
G
(x, t) distinguishes directed graphs.

i.e. if
−→
G and

−→
H are not isomorphic, then X−→

G
(x, t) 6= X−→

H
(x, t).

Motiviating Conjecture 2 (stated as a question by
Per Alexandersson and Robin Sulzgruber, 2021).
X−→

G
(x, t) distinguishes directed trees. In other words, if

−→
T and

−→
U are

non-isomorphic directed trees, then X−→
T
(x, t) 6= X−→

U
(x, t).

This conjecture was our original goal. Strategy: translate to posets.
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X−→
G
(x, t) =

∑
proper κ

tasc(κ)xκ(v1)xκ(v2) · · · xκ(vn).

Want to show: X−→
T
(x, t) 6= X−→

U
(x, t).

Key insight:
I Look at the coefficient of the highest power of t .
I It’s enough to show these coefficients are different for T and U.
I So just look at colorings where all edges are ascents

I Construct a poset P:
vi ≤P vj if there is a directed path from vi to vj .

I The corresponding coloring is a strict P-partition.

v4

v1 v5

v2

v3

2

1 5
3

1

v5

v4 v2

v1

v3

1

12
5

3
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Labeled posets

Labeled poset (P, ω): poset P with n elements and
a bijection ω : P → {1,2, . . . ,n}.

(P, ω) =

1

4

2 3 Not a (P, ω)-partition

5

5

6 8

Key definition (Stanley, 1971). A (P, ω)-partition is a map f from P
to the positive integers satisfying:
I f is ordering preserving, i.e. if a <P b then f (a) ≤ f (b);
I if a <P b and ω(a) > ω(b), then f (a) < f (b).

We use double edges to denote the strictness conditions
and then we can (usually) ignore the underlying labeling.
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Motivating examples for (P, ω)-partitions

1

2

2

5

1

2

3

5

1 4 2 1

I (P, ω) chain with all weak edges: get a partition
I (P, ω) chain with all strict edges: get a partition with distinct parts
I (P, ω) is an antichain: get a composition

General (P, ω)-partitions interpolate between these classical objects.
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The (P, ω)-partition enumerator

Example. Resrict to f (p) ∈ {1,2,3}.

1

1

2 2

x2
1 x2

2

1

1

3 3

x2
1 x2

3

2

2

3 3

x2
2 x2

3

1

1

2 3

x2
1 x2x3

1

1

3 2

x2
1 x2x3

1

2

3 3

x1x2x2
3

K(P,ω)(x1, x2, x3) = x2
1 x2

2 + x2
1 x2

3 + x2
2 x2

3 + 2x2
1 x2x3 + x1x2x2

3 .

In general, the (P, ω)-partition enumerator is by given by:

K(P,ω)(x) =
∑

(P,ω)-partition f

x#f−1(1)
1 x#f−1(2)

2 · · · .

Seem familiar?
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From X−→G (x, t) to K(P,ω)

colorings of
−→
G with all ascents←→ strict P-partitions

a < b < ca < b < ca < b < c

aaa bbb aaa

aaa ccc bbb

bbb ccc aaa

aaa

bbb

aaa

aaa

ccc

bbb

bbb

ccc

aaa

coefficient of t2 in X−→
G
(x, t) = M21 + 2M111 = K<

P (x).

For general trees, coefficient of t#E in X−→
G
(x, t) = K<

P (x).

Translation complete. Now study equality among K(P,ω)(x).
[Browning, Féray, Hasebe, Hopkins, Kelly, Liu, M., Tsujie, Ward,
Weselcouch]
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Can K(P,ω)(x) distinguish posets?

Statement 5.

Conjecture 3 (Stated as a question by Takahiro
Hasebe & Shuhei Tsujie, 2017).

K<
P (x) distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then K<
P (x) 6= K<

Q (x).

Key: this conjecture being true would imply Conjecture 2
(that X−→

G
(x, t) distinguishes directed trees).

False Statement 3 (mix strict and weak edges).
K(P,ω)(x) distinguishes labeled posets that are trees.
i.e. if labeled tree posets (P, ω) and (Q, τ) are not isomorphic, then
K(P,ω)(x) 6= K(Q,τ)(x).
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Can K(P,ω)(x) distinguish posets?

Statement 6.

Theorem 1 [Hasebe & Tsujie, 2017].

K<
P (x) distinguishes posets that are rooted trees.

i.e. if rooted tree posets P and Q are not isomorphic, then
K<

P (x) 6= K<
Q (x).

We’d like to allow a mixture of strict and weak edges

Conjecture 4 [Aval, Djenabou, M., 2022].
K(P,ω)(x) distinguishes labeled posets that are rooted trees.
i.e. if labeled rooted tree posets (P, ω) and (Q, τ) are not isomorphic,
then K(P,ω)(x) 6= K(Q,τ)(x).

Our main contribution sits between Theorem 1 and Conjecture 4.
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Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for
each vertex, its outgoing edges up to its children are either all strict or
all weak.

Example.

Definition. More generally, we define the set C of labeled posets
recursively by:

1. the one-element labeled poset [1] is in C;
2. C is closed under disjoint unions (P, ω) t (Q, ω′) is in C;
3. C is closed under the ordinal sums and (P, ω) ⇑ [1] ;
4. C is closed under the ordinal sums [1] ↑ (P, ω) and [1] ⇑ (P, ω).
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Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].
K(P,ω)(x) distinguishes elements of C, so in particular fair trees;
i.e. if (P, ω) and (Q, τ) are in C and not isomorphic, then
K(P,ω)(x) 6= K(Q,τ)(x).

First statement about K(P,ω)(x) distinguishing a class of posets with a
mixture of strict and weak edges.

Crux of the proof:
Proposition 1 [Aval, Djenabou, M., 2022]
If (P, ω) is a connected element of C then K(P,ω)(x) is irreducible as a
quasisymmetric function.

Irreducibility is also the crux for
I Hasebe & Tsujie;
I Ricki Ini Liu & Michael Weselcouch (K<

P (x) distinguishes
series-parallel posets; needs irreducibility for general connected
P with all strict edges, 2020).
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Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984:
K(P,ω)(x) expands beautifully in F -basis.

Example.

1

2

3

4

Linear extensions: L(P, ω) = {34

|||

12, 13

|||

24, 134

|||

2, 3

|||

124, 3

|||

14

|||

2}.

Descent compositions: comp(π) 22 22 31 13 121

K(P,ω) = 2F22 + F31 + F13 + F121.

Theorem [Gessel & Stanley]. For a labeled poset (P, ω),

K(P,ω) =
∑

π∈L(P,ω)

Fcomp(π).
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Some final conjectures

Recall Stanley’s
Famous Conjecture 1. XG(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then XT (x) 6= XU(x).

Surprising Conjecture 5 [Nick Loehr & Greg Warrington, 2022].
XG(1,q,q2, . . . ,qn−1) distinguishes trees with n vertices, i.e.
if T and U are non-isomorphic trees with n vertices, then

XT (1,q,q2, . . . ,qn−1) 6= XU(1,q,q2, . . . ,qn−1).
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Some final conjectures

Recall Conjecture 3. K<
P (x) distinguishes posets that are trees, i.e.

if tree posets P and Q are not isomorphic, then K<
P (x) 6= K<

Q (x).

Conjecture 6 [Aval, Djenabou, M., 2022].
K<

P (1,q,q2, . . . ,qn−1) distinguishes tree posets with n elements, i.e.
if T and U are non-isomorphic tree posets with n vertices, then

K<
P (1,q,q2, . . . ,qn−1) 6= K<

U (1,q,q2, . . . ,qn−1).

Remark. This specialization has a nice interpretation for K(P,ω): if

K(P,ω)(1,q,q2, . . . ,qk−1) =
∑
N≥0

a(N)qN ,

then we see that a(N) counts the number of (P, ω)-partitions
f : P → {0, . . . , k − 1} of N.

Thanks for your attention!
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