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» Chromatic (quasi)symmetric functions and the motivating
conjectures

» Converting to a poset question; more conjectures
» Some old and new results

» More conjectures
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The chromatic polynomial

George Birkhoff, 1912

Graph G= (V,E)
Colouring/Coloring: amap x: V — {1,2,3,...}

Proper coloring: adjacent vertices
get different colors.

Proper Not Proper

o—0—0 o—0—0
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The chromatic polynomial
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Graph G= (V,E)
Colouring/Coloring: amap x: V — {1,2,3,...}

Proper coloring: adjacent vertices
get different colors.

Proper Not Proper
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The chromatic polynomial

George Birkhoff, 1912

Graph G=(V,E)
Colouring/Coloring: amap x: V — {1,2,3,...}

Proper coloring: adjacent vertices
get different colors.

Proper Not Proper
o—0—=0 o—0—0
1 2 1 1 1 2

Chromatic polynomial: xg(k) is the number of proper colorings of G
when k colors are available.

Example. xa(k) = k(k —1)(k—1)
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The chromatic symmetric function
Richard Stanley, 1995

Graph G= (V,E)
V={vy,vo,..., v}
To a proper coloring , we associate the monomial in commuting
variables xi, xo, . ..

Xie(vi) X(v) * " X(vn)+

1 3 1 1 3 2
o—O0—-0O0 o—0—-0
X2x3 X1 X2X3
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The chromatic symmetric function
Richard Stanley, 1995

Graph G= (V,E)

V={vy,vo,..., v}

To a proper coloring , we associate the monomial in commuting
variables xi, xo, . ..
Xie(v1) Xia(v2) "+ " Xia(vn)-

1 3 1 1 3 2
o—O0—-0O0 o—0—-0
X2x3 X1 X2X3

Chromatic symmetric function:

Xa(x1,x2,...) = Xg(X) = Z Xi(v)Xr(va) " " Xk(vn)-

proper x
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The chromatic symmetric function

Chromatic symmetric function:

Xg(x) = Z Xi(v1) Xk(vo) *** Xig(vn)-

proper x
Example. a b a a b
Oo—0—©O oO—O0—O
X2Xp XaXpXc
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The chromatic symmetric function

Chromatic symmetric function:

Xg(x) = Z Xi(v1) Xk(vo) *** Xig(vn)-

proper x
Example. a b a a b
o0—0—oO0
X2Xp XaXpXc

Xa(X) =D XExp+6 D XaXpXe

a#b a<b<c

(= Moy + 6myq4).
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The chromatic symmetric function

Chromatic symmetric function:

Xa(x) = Z Xi(v1) Xk(vo) *** Xig(vn)-

proper
Example. a b a a b c
Oo—0—o0
X2Xp XaXpXc

Xa(X) =D XExp+6 D XaXpXe

a#b a<b<c

(= Moy + 6myq4).

> Xg(x) is a symmetric function (invariant when you permute the
colors/variables)
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The chromatic symmetric function

Chromatic symmetric function:

Xa(x) = Z Xi(v1) Xk(vo) *** Xig(vn)-

proper
Example. a b a a b c
Oo—0—o0
X2Xp XaXpXc

Xa(X) =D XExp+6 D XaXpXe

a#b a<b<c
(= Moy + 6myq4).
> Xg(x) is a symmetric function (invariant when you permute the
colors/variables)
» Setting x; = 1 for 1 </ < k and x; = 0 otherwise yields xg(k).
e.g. k(k —1)+6(5) = k(k — 1)%.
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Can Xg(x) distinguish graphs?

Xa(X) = D Xeu)Xa(wa) - Xu(va):
proper k
Statement 1.
Xg(x) distinguishes graphs.
In other words, if G and H are not isomorphic, then Xg(x) # Xy (X).
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Can Xg(x) distinguish graphs?

Xa(X) = D Xeu)Xa(wa) - Xu(va):

proper

False Statement 1.
Xg(x) distinguishes graphs.
In other words, if G and H are not isomorphic, then Xg(x) # Xy(X).

Stanley: these have the same Xg(X)

NN ]
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Can Xg(x) distinguish graphs?

Xa(X) = D Xeu)Xa(wa) - Xu(va):

proper

False Statement 1.
Xg(x) distinguishes graphs.
In other words, if G and H are not isomorphic, then Xg(x) # Xy(X).

Stanley: these have the same Xg(X)

Statement 2.

Xg(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then Xr(x) # Xy(x).
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Can Xg(x) distinguish graphs?

Xa(X) = D Xeu)Xa(wa) - Xu(va):

proper

False Statement 1.
Xg(x) distinguishes graphs.
In other words, if G and H are not isomorphic, then Xg(x) # Xy(X).

Stanley: these have the same Xg(X)

NN ]

Famous Conjecture 1 (Stanley as a question).
Xg(x) distinguishes trees. In other words,
if T .and U are non-isomorphic trees, then Xr7(x) # Xy(x).
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Can Xg(x) distinguish graphs?

Xa(X) = D Xeu)Xa(wa) - Xu(va):
proper k
False Statement 1.
Xg(x) distinguishes graphs.
In other words, if G and H are not isomorphic, then Xg(x) # Xy (X).

Stanley: these have the same Xg(X)

NN ]

Famous Conjecture 1 (Stanley as a question).
Xg(x) distinguishes trees. In other words,
if T .and U are non-isomorphic trees, then Xr7(x) # Xy(x).

[Aliste-Prieto, Crew, de Mier, Fougere, Heil, Ji, Loebl, Martin, Morin,
Orellana, Scott, Smith, Sereni, Spirkl, Tian, Wagner, Zamora, ...]
Remark. Stanley—Stembridge: another famous Xg(x) conjecture.
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A little bit of (quasi)symmetric functions
X2y + y2x + x?z + 2%x + y?z + 7%y is a symmetric polynomial in
{x,y,z} because it doesn’t change when you permute the variables.

> XExp = XEXp + X5 X1 + X7 x5 + - -+ is @ symmetric function in X.
a#b

Denoted moy.
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A little bit of (quasi)symmetric functions

X2y + y2x 4+ x?z + z°x + y?z + z%y is a symmetric polynomial in
{x,y,z} because it doesn’t change when you permute the variables.

> XExp = XEXp + X5 X1 + X7 x5 + - -+ is @ symmetric function in X.
a#b

Denoted moy.
Now consider Y~ XaX§ = X1 X5 + X1 X5 + XoX5 + X1 Xz + XoX§ + -+ .

a<b
It is not symmetric but it is quasisymmetric. Denoted M;».
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A little bit of (quasi)symmetric functions

X2y + y2x 4+ x?z + z°x + y?z + z%y is a symmetric polynomial in
{x,y,z} because it doesn’t change when you permute the variables.

> XExp = XEXp + X5 X1 + X7 x5 + - -+ is @ symmetric function in X.
a#b
Denoted moy.

Now consider Y~ XaX§ = X1 X5 + X1 X5 + XoX5 + X1 Xz + XoX§ + -+ .

a<b
It is not symmetric but it is quasisymmetric. Denoted M;».

Definition. A quasisymmetric function is a formal power series (over
Z, say) in xy, X2, . .. of bounded degree whose coefficients are shift
invariant meaning

coefficient of xf“ xg‘z e x,f‘k = coefficient of x‘;’j1 ng e xf;kk

whenever a; < a < -+ < .
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Miz = XaXp = X1 X5 + X1X5 + XoX5 + X1 X + -+ .
a<b
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Miz = XaXp = X1 X5 + X1X5 + XoX5 + X1 X + -+ .
a<b

For a composition a = (a1, ag, . . ., ax) the monomial quasisymmetric
function is:
(6% Q (0%
Ma = Z Xa11 Xa22 e Xakk-
ar<ap<---<ag
The M, form a basis for the algebra QSym of quasisymmetric
functions.
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Miz = XaXp = X1 X5 + X1X5 + XoX5 + X1 X + -+ .
a<b

For a composition a = (a1, ag, . . ., ax) the monomial quasisymmetric
function is:
(6% Q (6%
Ma = Z Xa11 Xa22 e Xakk-
ar<ap<---<ag
The M, form a basis for the algebra QSym of quasisymmetric
functions.

QSym is a star of 21st century algebraic combinatorics.
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Miz = XaXp = X1 X5 + X1X5 + XoX5 + X1 X + -+ .

a<b
For a composition a = (a1, ag, . . ., ax) the monomial quasisymmetric
function is:
(6% Q (6%
Ma = Z Xa11 Xa22 e Xakk-

ar<ap<---<ag
The M, form a basis for the algebra QSym of quasisymmetric
functions.
QSym is a star of 21st century algebraic combinatorics.
A great basis: Gessel’s fundamental quasisymmetric functions

Fo= > Mz

B refines a
Example.

Fao = Mzp + Mo12 + Moz + Mit12 + Ma11 + Maq11 + Mi211 + Miq114.
(Ma2o4, for example, does not appear).
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph 8 =(V,E).

Ascent of proper coloring «: directed edge u — v with x(u) < k(v)
asc(k): the number of ascents of «.

Example. Colorsa< b<c s(v1)  k(va)  r(vs) | asc(x)
a b c 1
a c b 2
b a c 0
c a b 0
c b a 1
a b a 2
b a b 0
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph 8 =(V,E).

Ascent of proper coloring «: directed edge u — v with x(u) < k(v)
asc(k): the number of ascents of «.

Example. Colorsa< b<c s(v1)  k(va)  r(vs) | asc(x)
a b c 1
a c b 2
a b c b a c 0
c a b 0
c b a 1
a b a 2
b a b 0
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph 8 =(V,E).

Ascent of proper coloring «: directed edge u — v with x(u) < k(v)
asc(k): the number of ascents of «.

Example. Colorsa< b<c k(vi) k() w(vs) | asc(x)
a b c 1
a c b 2
a b a b a c 0
c a b 0
c b a 1
a b a 2
b a b 0
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph 8 =(V,E).

Ascent of proper coloring «: directed edge u — v with x(u) < k(v)
asc(k): the number of ascents of «.

Example. Colorsa< b<c k(vi) k() w(vs) | asc(x)
a b c 1
a c b 2
b a c 0
c a b 0
c b a 1
a b a 2
b a b 0

Chromatic quasisymmetric function:

Xgx. )= D X0 X)Xl

proper &
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph 8 =(V,E).

Ascent of proper coloring «: directed edge u — v with x(u) < k(v)
asc(k): the number of ascents of «.

Example. Colorsa< b<c k(vi) k() w(vs) | asc(x)
a b c 1
a c b 2
b a c 0
c a b 0
c b a 1
a b a 2
b a b 0

Chromatic quasisymmetric function:

Xgx. )= D X0 X)Xl

proper &

Example. XE(X, t) = (2 + 2t + 21’2),\/’111 + t2M21 + M.
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph 8 =(V,E).

Ascent of proper coloring «: directed edge u — v with x(u) < k(v)
asc(k): the number of ascents of «.

Example. Colorsa< b<c w(vi) K(v2) w(vs) | asc(x)
a b c 1
a c b 2
a b a b a c 0
c a b 0
c b a 1
a b a 2
b a b 0

Chromatic quasisymmetric function:

Xgx )= > 200 X X(wn)-

proper &

Example. XE(X, t) = (2 + 2t + 21’2)M111 + t2M21 + M.
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Can Xz(x, t) distinguish graphs?

By setting t = 1, we see that Xz(x, t) contains more information than
XG(X).

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara
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Can Xz(x, t) distinguish graphs?

By setting t = 1, we see that Xz(x, t) contains more information than
XG(X).

Statement 3.

Xg(x, t) distinguishes directed graphs.

i.e. if 8 and H are not isomorphic, then Xz (x, t) # X5 (X, 1).
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Can Xz(x, t) distinguish graphs?

By setting t = 1, we see that Xz(x, t) contains more information than
XG(X).

False Statement 2.

Xaz(x t) dlstlngwshes directed graphs.

i.e. if 8 and H are not isomorphic, then Xg (x, 1)

5 5 S
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Can Xz(x, t) distinguish graphs?

By setting t = 1, we see that Xz(x, t) contains more information than
XG(X).

False Statement 2.

Xaz(x t) dlstlngwshes directed graphs.

i.e. if 8 and H are not isomorphic, then Xg (x, 1)

5 5 S

Statement 4.

Xz(x, 1) distinguishes directed trees. In other words, if T and U are
non-isomorphic directed trees, then X=:(x, t) # X3 (X, ).
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Can Xz(x, t) distinguish graphs?

By setting t = 1, we see that Xz(x, t) contains more information than
XG(X).

False Statement 2.

Xaz(x t) dlstlngwshes directed graphs.

i.e. if 8 and H are not isomorphic, then Xg (x, 1)

5 5 S

Motiviating Conjecture 2 (stated as a question by
Per Alexandersson and Robin Sulzgruber, 2021).

Xz(x, 1) distinguishes directed trees. In other words, if T and U are
non-isomorphic directed trees, then X=:(x, t) # X3 (X, ).
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Can Xz(x, t) distinguish graphs?

By setting t = 1, we see that Xz(x, t) contains more information than
XG(X).

False Statement 2.

Xaz(x t) dlstlngwshes directed graphs.

ie. if 8 and H are not isomorphic, then Xg (x, 1)

5 5 S

Motiviating Conjecture 2 (stated as a question by

Per Alexandersson and Robin Sulzgruber, 2021).

Xz(x, 1) distinguishes directed trees. In other words, if T and U are
non-isomorphic directed trees, then X=:(x, t) # X3 (X, ).

This conjecture was our original goal.
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Can Xz(x, t) distinguish graphs?

By setting t = 1, we see that Xz(x, t) contains more information than
XG(X).

False Statement 2.

Xaz(x t) dlstlngwshes directed graphs.

ie. if 8 and H are not isomorphic, then Xg (x, 1)

5 5 S

Motiviating Conjecture 2 (stated as a question by

Per Alexandersson and Robin Sulzgruber, 2021).

Xz(x, 1) distinguishes directed trees. In other words, if T and U are
non-isomorphic directed trees, then X=:(x, t) # X3 (X, ).

This conjecture was our original goal. Strategy: translate to posets.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara
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X260 = > PUIX ) Xw)  Xa(un):

proper
Wan.t tq show: Xz(x, t) # X5 (x, 1).
Key insight:
» Look at the coefficient of the highest power of ¢.
» It's enough to show these coefficients are different for T and U.
» So just look at colorings where all edges are ascents
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Xgx )= > 20X Xau)  Xa(un)-
proper
Wan.t tq show: Xz(x, t) # X5 (x, 1).
Key insight:
» Look at the coefficient of the highest power of ¢.
» It's enough to show these coefficients are different for T and U.
» So just look at colorings where all edges are ascents

» Construct a poset P:
v; <p v; if there is a directed path from v; to v;.
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proper
Wan.t tq show: Xz(x, t) # X5 (x, 1).
Key insight:
» Look at the coefficient of the highest power of ¢.
» It's enough to show these coefficients are different for T and U.
» So just look at colorings where all edges are ascents

» Construct a poset P:
v; <p v; if there is a directed path from v; to v;.
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Xgx )= > 20X Xau)  Xa(un)-
proper

Wan.t tq show: Xz(x, t) # X5 (x, 1).
Key insight:

» Look at the coefficient of the highest power of ¢.

» It's enough to show these coefficients are different for T and U.

» So just look at colorings where all edges are ascents

» Construct a poset P:

v; <p v; if there is a directed path from v; to v;.
» The corresponding coloring is a strict P-partition.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 11



Labeled posets

Labeled poset (P,w): poset P with n elements and

Y

a bijectionw : P — {1,2,...,n}.

Q. &
Pw= @
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Labeled posets

Labeled poset (P,w): poset P with n elements and

Y

a bijectionw : P — {1,2,...,n}.

Q. &
Pw= @

Key definition (Stanley, 1971). A (P, w)-partition is a map f from P
to the positive integers satisfying:

» fis ordering preserving, i.e. if a <p b then f(a) < f(b);

» if a<p bandw(a) > w(b), then f(a) < f(b).
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Labeled posets

Labeled poset (P,w): poset P with n elements and

Y

a bijectionw : P — {1,2,...,n}.

6(2) (3)8
(P,w) = (4)5

(D5

Key definition (Stanley, 1971). A (P, w)-partition is a map f from P
to the positive integers satisfying:

» fis ordering preserving, i.e. if a <p b then f(a) < f(b);

» if a<p bandw(a) > w(b), then f(a) < f(b).
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Labeled posets

Labeled poset (P,w): poset P with n elements and

)

a bijectionw : P — {1,2,...,n}.

5K(2) (3)8

(P,w) = (4)5  Nota (P,w)-partition

(D5

Key definition (Stanley, 1971). A (P, w)-partition is a map f from P
to the positive integers satisfying:

» fis ordering preserving, i.e. if a <p bthen f(a) < f(b);

» if a<p bandw(a) > w(b), then f(a) < f(b).
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Labeled posets

Labeled poset (P,w): poset P with n elements and

Y

a bijectionw : P — {1,2,...,n}.

6(2) (3)8
(P,w) = (4)5

(D5

Key definition (Stanley, 1971). A (P, w)-partition is a map f from P
to the positive integers satisfying:

» fis ordering preserving, i.e. if a <p b then f(a) < f(b);

» if a<p bandw(a) > w(b), then f(a) < f(b).

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara

12



Labeled posets

Labeled poset (P,w): poset P with n elements and

Y

a bijectionw : P — {1,2,...,n}.
6(2) 8
N /9
(Pw) = (4)5

(15
Key definition (Stanley, 1971). A (P, w)-partition is a map f from P
to the positive integers satisfying:
» fis ordering preserving, i.e. if a <p b then f(a) < f(b);
» if a<p bandw(a) > w(b), then f(a) < f(b).

We use double edges to denote the strictness conditions
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Labeled posets

Labeled poset (P,w): poset P with n elements and

Y

a bijectionw : P — {1,2,...,n}.

6 8
(P,w) = 5

5

Key definition (Stanley, 1971). A (P, w)-partition is a map f from P
to the positive integers satisfying:

» fis ordering preserving, i.e. if a <p b then f(a) < f(b);

» if a<p bandw(a) > w(b), then f(a) < f(b).

We use double edges to denote the strictness conditions
and then we can (usually) ignore the underlying labeling.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara
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Motivating examples for (P, w)-partitions

5 095

2H3 1 4 2 1
0o o o O

ZHZ

1 1

» (P,w) chain with all weak edges: get a partition
» (P,w) chain with all strict edges: get a partition with distinct parts
» (P,w) is an antichain: get a composition

General (P, w)-partitions interpolate between these classical objects.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 13



The (P, w)-partition enumerator

Example. Resrict to f(p) € {1,2,3}.

YYYYYY

X1 X2 X1 X3 X2 X3 X1 Xo X3 X1 Xo X3 X1 X2X3
2,2 2,2 2,2 2 2
}((P,w)(x1 , X2, XS) = X1X5 + Xj X3 + X5 X3 + 2X1 Xo X3 + X1 XoX3.

In general, the (P, w)-partition enumerator is by given by:

~1(1 =12
Kew® = > xmOxgr @
(P,w)-partition f
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The (P, w)-partition enumerator

Example. Resrict to f(p) € {1,2,3}.

YYYYYY

X1 X2 X1 X3 X2 X3 X1 Xo X3 X1 Xo X3 X1 X2X3
2,2 2,2 2,2 2 2
}((P,w)(x1 , X2, XS) = X1X5 + Xj X3 + X5 X3 + 2X1 Xo X3 + X1 XoX3.

In general, the (P, w)-partition enumerator is by given by:

~1(1 =12
Kew® = > xmOxgr @
(P,w)-partition f

Seem familiar?
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From Xz(x, t) to Kip )
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From Xz(x, t) to Kip )

colorings of 8 with all ascents <— strict P-partitions
a<b<c

a b a b
88«3 AN
a a
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From Xz(x, t) to Kip )

colorings of 8 with all ascents <— strict P-partitions

a<b<ec
a b
O
a a

a b
o O

Y
<N

o
A4
oo (0]
/N /N
o oo
o V)
N
P >
(o)
[\ o

oo

Y
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From Xz(x, t) to Kip )

colorings of 8 with all ascents <— strict P-partitions

a<b<ec
a b a b
O0——0—<«—0 /\
a a
c
g \ 2 y g /\
[ ao Ob
c
b c 5 7\
O0—>—0—~<—0 b a

coefficient of 2 in Xz(x,t) = May +2Mi1y = K5 (x).
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From Xz(x, t) to Kip )

colorings of 8 with all ascents <— strict P-partitions

a<b<ec

a b a b
88«3 AN
a a
a c b A

AN . W4
C/V\O ao Ob
c
b c a /\
O0—>—0—~<—0 b a

coefficient of 2 in Xz(x,t) = May +2Mi1y = K5 (x).

For general trees,  coefficient of t#£ in Xg(x, 1) = K5 ().
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From Xz(x, t) to Kip )

colorings of 8 with all ascents <— strict P-partitions

a<bx<ce

a b a b
88«3 AN
a a

c

g\fc\/g /\
7 ao Ob

c

b c a /\
O0—>—0—~<—0 b a

coefficient of 2 in Xz(x,t) = May +2Mi1y = K5 (x).

For general trees,  coefficient of t#£ in Xg(x, 1) = K5 ().
Translation complete. Now study equality among Kp.(X).

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 15



From Xz(x, t) to Kip )

colorings of 8 with all ascents <— strict P-partitions

a<b<ec
a b a b
O—>——0—~<—°0 /\
a a
c
g\fc\/g /\
T ao Ob
c
b c a /\
O0—>—0—~<—0 b a

coefficient of 2 in Xz(x,t) = May +2Mi1y = K5 (x).

For general trees,  coefficient of t#£ in Xg(x, 1) = K5 ().
Translation complete. Now study equality among Kp.(X).
[Browning, Féray, Hasebe, Hopkins, Kelly, Liu, M., Tsujie, Ward,
Weselcouch]
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Can K(p.)(X) distinguish posets?
Statement 5.

K5 (x) distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then K5 (x) # K5 (X).
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Can K(p.)(X) distinguish posets?

SN N/

Conjecture 3 (Stated as a question by Takahiro Hasebe & Shuhei
Tsujie, 2017).

K5 (x) distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then K5 (x) # K5(X).
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Can K(p.)(X) distinguish posets?

/\b\/oO%—O—%OO—%O%—O

Conjecture 3 (Stated as a question by Takahiro Hasebe & Shuhei
Tsujie, 2017).

K5 (x) distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then K5 (x) # K5(X).

Key: this conjecture being true would imply Conjecture 2
(that Xz(x, t) distinguishes directed trees).
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Can K(p.)(X) distinguish posets?

/\b\/oO%—O—%OO—%O%—O

Conjecture 3 (Stated as a question by Takahiro Hasebe & Shuhei
Tsujie, 2017).

K5 (x) distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then K5 (x) # K5(X).

Key: this conjecture being true would imply Conjecture 2
(that Xz(x, t) distinguishes directed trees).

False Statement 3 (mix strict and weak edges).

K(p..,)(X) distinguishes labeled posets that are trees.
i.e. if labeled tree posets (P,w) and (Q, 7) are not isomorphic, then

Kipw)(X) # Kia,r)(X).
N N
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Can K(p.)(X) distinguish posets?

Statement 6.

K5 (x) distinguishes posets that are rooted trees.

i.e. if rooted tree posets P and Q are not isomorphic, then
Kp (x) # K5 (x).
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Can K(p.)(X) distinguish posets?
Theorem 1 [Hasebe & Tsujie, 2017].

K5 (x) distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then

Kp (x) # K5 (X).

/.
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Can K(p.)(X) distinguish posets?

Theorem 1 [Hasebe & Tsujie, 2017].
K5 (x) distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then

Kp (x) # K5 (X).

Q

/.

We'd like to allow a mixture of strict and weak edges
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Can K(p.)(X) distinguish posets?

Theorem 1 [Hasebe & Tsujie, 2017].

K5 (x) distinguishes posets that are rooted trees.

i.e. if rooted tree posets P and Q are not isomorphic, then
Kp (x) # K5 (X).

Q

/.

We'd like to allow a mixture of strict and weak edges

Conjecture 4 [Aval, Djenabou, M., 2022].

K(p..,)(X) distinguishes labeled posets that are rooted trees.

i.e. if labeled rooted tree posets (P,w) and (Q, 7) are not isomorphic,
then Kip .)(X) # Ka,r)(X)-
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Can K(p.)(X) distinguish posets?

Theorem 1 [Hasebe & Tsujie, 2017].
K5 (x) distinguishes posets that are rooted trees.
i.e. if rooted tree posets P and Q are not isomorphic, then

Kp (x) # K5 (X).

Q

/.

We'd like to allow a mixture of strict and weak edges

Conjecture 4 [Aval, Djenabou, M., 2022].
K(p..,)(X) distinguishes labeled posets that are rooted trees.

i.e. if labeled rooted tree posets (P,w) and (Q, 7) are not isomorphic,

then Kip .)(X) # Ka,r)(X)-
Our main contribution sits between Theorem 1 and Conjecture 4.
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Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for
each vertex, its outgoing edges up to its children are either all strict or
all weak.
Example.

o]

O\
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Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for
each vertex, its outgoing edges up to its children are either all strict or
all weak.

Example.

Ly Y &S ™

Definition. More generally, we define the set C of labeled posets
recursively by:

1. the one-element labeled poset [1] is in C;

2. C is closed under disjoint unions (P,w) U (Q,«w') is in C;

3. C is closed under the ordinal sums (P,w) 1 [1] and (P,w) 1} [1] ;
4. Cis closed under the ordinal sums [1] 1 (P,w) and [1] 1/} (P,w).
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Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for
each vertex, its outgoing edges up to its children are either all strict or
all weak.

Example.

Ly Y &S ™

Definition. More generally, we define the set C of labeled posets
recursively by:

1. the one-element labeled poset [1] is in C;

2. C is closed under disjoint unions (P,w) U (Q,«w') is in C;

3. C is closed under the ordinal sums (P,w) 1 [1] and (P,w) 1} [1] ;
4. Cis closed under the ordinal sums [1] 1 (P,w) and [1] 1/} (P,w).
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Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].

K(p)(x) distinguishes elements of C, so in particular fair trees;
i.e. if (P,w)and (Q,7) are in C and not isomorphic, then
Kipw)(X) # Kar)(X)-

First statement about Kp ,,)(X) distinguishing a class of posets with a
mixture of strict and weak edges.
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Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].

K(p)(x) distinguishes elements of C, so in particular fair trees;
i.e. if (P,w)and (Q,7) are in C and not isomorphic, then
Kipw)(X) # Kar)(X)-

First statement about Kp ,,)(X) distinguishing a class of posets with a
mixture of strict and weak edges.

Crux of the proof:

Proposition 1 [Aval, Djenabou, M., 2022]

If (P,w) is a connected element of C then K(p ,,(X) is irreducible as a
quasisymmetric function.
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Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].

K(p)(x) distinguishes elements of C, so in particular fair trees;
i.e. if (P,w)and (Q,7) are in C and not isomorphic, then
Kipw)(X) # Kar)(X)-

First statement about Kp ,,)(X) distinguishing a class of posets with a
mixture of strict and weak edges.

Crux of the proof:

Proposition 1 [Aval, Djenabou, M., 2022]

If (P,w) is a connected element of C then K(p ,,(X) is irreducible as a
quasisymmetric function.

Irreducibility is also the crux for
» Hasebe & Tsujie;
> Ricki Ini Liu & Michael Weselcouch (K5 (x) distinguishes
series-parallel posets; needs irreducibility for general connected
P with all strict edges, 2020).
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Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984
K(p..,)(X) expands beautifully in F-basis.

Example. 9 e
O ©

Linear extensions: L(P,w) = {3412, 1324, 1342, 3124, 3142}.
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Example. 9 e
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Linear extensions: L(P,w) = {3412, 1324, 1342, 3124, 3142}.
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Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984
K(p..,)(X) expands beautifully in F-basis.

Example. 9 e
O ©

Linear extensions: L(P,w) = {3412, 1324, 1342, 3124, 3142}.
Descent compositions: comp(w) 22 22 31 13 121

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara

20



Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984
K(p..,)(X) expands beautifully in F-basis.

Example. 9 e
O ©

Linear extensions: L(P,w) = {3412, 1324, 1342, 3124, 3142}.
Descent compositions: comp(w) 22 22 31 13 121

Kpw) = 2F22 + F31 + F13 + Fi21.
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Main tool in this research area

Stanley, 1971 and Ira Gessel, 1984
K(p..,)(X) expands beautifully in F-basis.

Example.

Linear extensions: L(P,

w) = {3412, 1324, 1342, 3124, 3142}.

Descent compositions: comp(w) 22 22 31 13 121

Kpw) = 2F22 + F31 + F13 + Fi21.

Theorem [Gessel & Stanley]. For a labeled poset (P,w),

= Z Fcomp(w

meL(P,w)
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Some final conjectures

Recall Stanley’s
Famous Conjecture 1. Xg(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then X7(x) # Xy(x).
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Some final conjectures

Recall Stanley’s
Famous Conjecture 1. Xg(x) distinguishes trees. In other words,

if T and U are non-isomorphic trees, then X7(x) # Xy(x).
Surprising Conjecture 5 [Nick Loehr & Greg Warrington, 2022].
Xs(1,9,9%,...,q"") distinguishes trees with n vertices, i.e.

if T and U are non-isomorphic trees with n vertices, then

XT(‘I)qaqz)"'aqni‘I) #XU(17q7q27"‘7qn71)'
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Some final conjectures

Recall Conjecture 3. K5 (x) distinguishes posets that are trees, i.e.
if tree posets P and Q are not isomorphic, then K5 (x) # K5 (x).
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Some final conjectures

Recall Conjecture 3. K5 (x) distinguishes posets that are trees, i.e.
if tree posets P and Q are not isomorphic, then K5 (x) # K5 (x).

Conjecture 6 [Aval, Djenabou, M., 2022].
Ks(1,9,9%,...,9" ") distinguishes tree posets with n elements, i.e.
if T and U are non-isomorphic tree posets with n vertices, then

Ks(1,9.¢%,....a" ) £ K5(1,9.¢°,....9" ).
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Some final conjectures

Recall Conjecture 3. K5 (x) distinguishes posets that are trees, i.e.
if tree posets P and Q are not isomorphic, then K5 (x) # K5 (x).

Conjecture 6 [Aval, Djenabou, M., 2022].
Ks(1,9,9%,...,9" ") distinguishes tree posets with n elements, i.e.
if T and U are non-isomorphic tree posets with n vertices, then

Ks(1,9.¢%,....a" ) £ K5(1,9.¢°,....9" ).

Remark. This specialization has a nice interpretation for K. if

K(P,w)(1 4, q27 ceey qk_1) = Z a(N)qN>
N>0

then we see that a(N) counts the number of (P, w)-partitions
f:P—{0,....,k—1} of N.
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Some final conjectures

Recall Conjecture 3. K5 (x) distinguishes posets that are trees, i.e.
if tree posets P and Q are not isomorphic, then K5 (x) # K5 (x).

Conjecture 6 [Aval, Djenabou, M., 2022].
Ks(1,9,9%,...,9" ") distinguishes tree posets with n elements, i.e.
if T and U are non-isomorphic tree posets with n vertices, then

Ks(1,9.¢%,....a" ) £ K5(1,9.¢°,....9" ).

Remark. This specialization has a nice interpretation for K. if
K(P,w)(1 ) q7 q27 ] qk_1) = Z a(N)qN>
N>0

then we see that a(N) counts the number of (P, w)-partitions
f:P—{0,....,k—1} of N.

Thanks for your attention!
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