
Discrete Morse theory for posets: the bare bones
with an example from generalized subword order
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Goal: compute µ(x, y) using DMT.

(1) Pick an ordering, denoted ≺, of the maximal chains of [x, y] that is a poset lexico-
graphic order (PLO). Note: chains are read from top to bottom.

(2) Identify the skipped intervals (SIs) of each maximal chain C, i.e., an interval I of C
such that C \ I ⊆ B for some maximal chain B ≺ C.

(3) Identify the minimal skipped intervals (MSIs) of C, i.e., the SIs that are minimal
with respect to containment.

(4) Remove overlaps among the MSIs of C in a certain precise fashion to obtain the set
J (C) of intervals.

(5) If the J (C) cover the interior of C, then C is critical.
(6) Compute the Möbius function:

µ(x, y) =
∑

critical chains C

(−1)|J (C)|−1.

“Definition”. An ordering C1 ≺ C2 ≺ · · · of the maximal chains of [x, y] is a poset lexi-
cographic order (PLO) if it satisfies the following (mild) property. Suppose that C and C ′

diverge from D and D′ at a certain point, while the divergence of C ′ from C and of D′ and
D happens later. In this situation we insist that C ≺ D if and only if C ′ ≺ D′.
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Example. The construction of the disjoint sets J (C) from the MSIs of a maximal chain C
is an iterative procedure illustrated in the table below. Suppose C is the maximal chain

y > c1 > c2 > · · · > c8 > x

and the MSIs from top to bottom are as given in the first line of the table.

MSIs I1 = {c1, c2} I2 = {c2, c3, c4} I3 = {c4, c5, c6} I4 = {c5, c6, c7, c8}

I1 disjoint J1J1J1 = {c1, c2} I ′2 = {c3, c4} I ′3 = {c4, c5, c6} I ′4 = {c5, c6, c7, c8}

I ′2 disjoint J1 = {c1, c2} J2J2J2 = {c3, c4} I ′′3 = {c5, c6} I ′′4 = {c5, c6, c7, c8}

J (C) J1 = {c1, c2} J2 = {c3, c4} J3J3J3 = {c5, c6} no longer minimal

Note that the J (C) no longer cover the interior of C, so C is not a critical chain.
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