Cylindric Skew Schur Functions

University of Minnesota Combinatorics Seminar

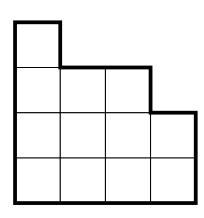
5 November 2004

Peter McNamara LaCIM, UQÀM

Slides and preprint available from www.lacim.uqam.ca/~mcnamara

Schur functions

- Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$.
- Example: (4, 4, 3, 1)



Schur functions

• Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$.

• Example: (4, 4, 3, 1)

 Semistandard Young tableau (SSYT)

Schur function s_{λ} in the variables

$$\mathbf{x} = (x_1, x_2, \ldots)$$
 defined by

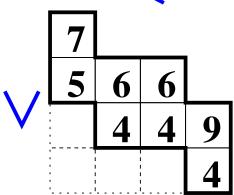
$$s_{\lambda}(\mathbf{x}) = \sum_{\text{SSYT } T} \mathbf{x}^{T} = \sum_{\text{SSYT } T} x_{1}^{\#1'\text{s in } T} x_{2}^{\#2'\text{s in } T} \cdots.$$

$$s_{4431}(\mathbf{x}) = x_1 x_3^2 x_4^4 x_5 x_6^2 x_7 x_9 + \cdots$$

Skew Schur functions

• Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$.

- μ fits inside λ : form λ/μ .
- Example: (4,4,3,1)/(3,1)
- Semistandard Young tableau (SSYT)



Skew Schur function $s_{\lambda/\mu}$ in the variables

$$\mathbf{x} = (x_1, x_2, \ldots)$$
 defined by

$$s_{\lambda/\mu}(\mathbf{x}) = \sum_{\text{SSYT } T} \mathbf{x}^T = \sum_{\text{SSYT } T} x_1^{\#1'\text{s in } T} x_2^{\#2'\text{s in } T} \cdots$$

$$s_{4431}(\mathbf{x}) = x_1 x_3^2 x_4^4 x_5 x_6^2 x_7 x_9 + \cdots$$

Do we care? For Schur!

- Schur functions are symmetric functions
- Schur functions s_{λ} form a basis for the symmetric functions.
- Arise in: representation theory of the symmetric group S_n .
- They are the characters of the irreducible representations of $GL(n, \mathbb{C})$.
- Correspond to Schubert classes in $H^*(Gr_{kn})$.

For skew Schur?

Skew Schur functions are symmetric functions

$$s_{\lambda/\mu}(\mathbf{x}) = \sum_{\nu} c^{\nu}_{\lambda\mu} s_{\nu}(\mathbf{x}).$$

 $c_{\lambda\mu}^{\nu}$: Littlewood-Richardson coefficients

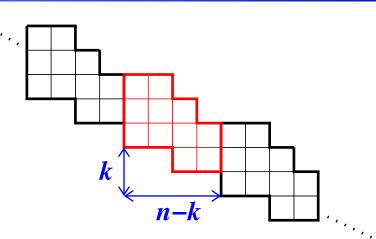
• Since $c_{\lambda\mu}^{\nu} \geq 0$, they are *Schur-positive*.

$$s_{4431/31} = s_{44} + 2s_{431} + s_{422} + s_{4211} + s_{332} + s_{3311}.$$

• Schur-positive symmetric functions are significant in the representation theory of S_n .

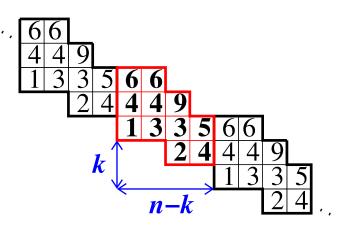
Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (x, y) and (x n + k, y + k).



Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (x, y) and (x n + k, y + k).



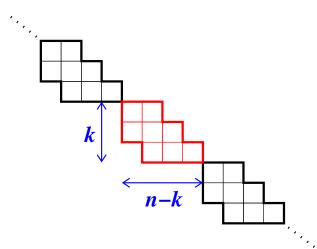
- Entries weakly increasing in each row Strictly increasing up each column
- Alternatively: SSYT with relations between entries in first and last columns

$$s_C(\mathbf{x}) = \sum_T \mathbf{x}^T = \sum_T x_1^{\#1'\text{s in } T} x_2^{\#2'\text{s in } T} \cdots$$

• s_C is a symmetric function

Cylindric skew Schur functions

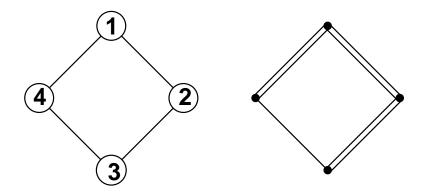
EXAMPLE



- Gessel, Krattenthaler: "Cylindric Partitions"
- Bertram, Ciocan-Fontanine, Fulton: "Quantum Multiplication of Schur Polynomials"
- Postnikov: "Affine Approach to Quantum Schubert Calculus" math.CO/0205165
- Stanley: "Recent Developments in Algebraic Combinatorics" math.CO/0211114

P: partially ordered set (poset) $\omega: P \to \{1, 2, \dots, |P|\}$

bijective labelling

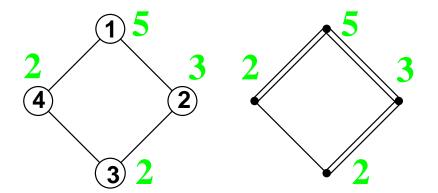


DEFINITION (R. Stanley) Given a labelled poset (P, ω) , a (P, ω) -partition is a map $f: P \to \mathbb{P}$ with the following properties:

- f is order-preserving: If $x \le y$ in P then $f(x) \le f(y)$
- If $x \lessdot y$ in P and $\omega(x) > \omega(y)$ then $f(x) \lessdot f(y)$

P: partially ordered set (poset)

$$|\omega:P \rightarrow \{1,2,\ldots,|P|\}$$
 bijective labelling

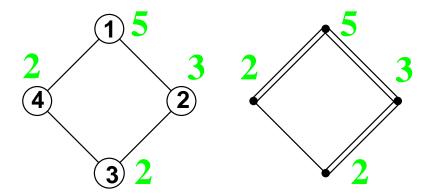


DEFINITION (R. Stanley) Given a labelled poset (P, ω) , a (P, ω) -partition is a map $f: P \to \mathbb{P}$ with the following properties:

- f is order-preserving: If $x \le y$ in P then $f(x) \le f(y)$
- If $x \lessdot y$ in P and $\omega(x) > \omega(y)$ then $f(x) \lessdot f(y)$

P: partially ordered set (poset)

$$|\omega:P \rightarrow \{1,2,\ldots,|P|\}$$
 bijective labelling



DEFINITION (R. Stanley) Given a labelled poset (P, ω) , a (P, ω) -partition is a map $f: P \to \mathbb{P}$ with the following properties:

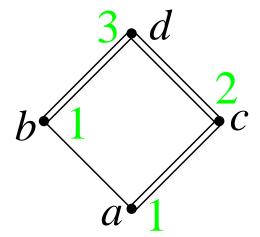
- f is order-preserving: If $x \le y$ in P then $f(x) \le f(y)$
- If $x \lessdot y$ in P and $\omega(x) > \omega(y)$ then $f(x) \lessdot f(y)$

$$K_{P,\omega}(\mathbf{x}) = \sum_{f} \mathbf{x}^{f} = \sum_{f} x_{1}^{\#f^{-1}(1)} x_{2}^{\#f^{-1}(2)} \cdots$$

A non-symmetric example

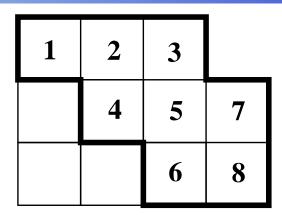
$$K_{P,\omega}(\mathbf{x}) = \sum_{f} \mathbf{x}^{T} = \sum_{f} x_{1}^{\#f^{-1}(1)} x_{2}^{\#f^{-1}(2)} \cdots$$

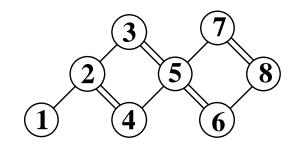
EXAMPLE



Coefficient of $x_1^2x_2x_3 = 1$ Coefficient of $x_1x_2x_3^2 = 0$ \Rightarrow not symmetric

Schur labelled skew shape posets and Stanley's *P*-partitions Conjecture



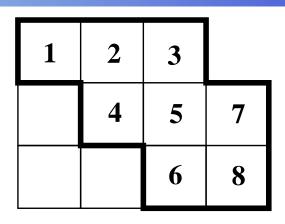


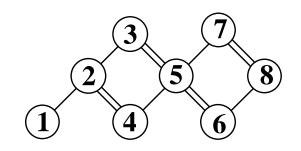
Bijection: SSYT of shape $\lambda/\mu \leftrightarrow (P,\omega)$ -partitions Furthermore,

$$K_{P,\omega}(\mathbf{x}) = s_{\lambda/\mu}(\mathbf{x}).$$

BIG QUESTION What other labelled posets (P, ω) have symmetric $K_{P,\omega}(x)$?

Schur labelled skew shape posets and Stanley's *P*-partitions Conjecture





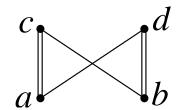
Bijection: SSYT of shape $\lambda/\mu \leftrightarrow (P,\omega)$ -partitions Furthermore,

$$K_{P,\omega}(\mathbf{x}) = s_{\lambda/\mu}(\mathbf{x}).$$

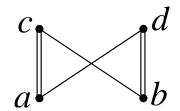
BIG QUESTION What other labelled posets (P, ω) have symmetric $K_{P,\omega}(x)$?

CONJECTURE (Stanley, c.1971) $K_{P,\omega}(\mathbf{x})$ is symmetric if and only if (P,ω) is isomorphic to a (Schur labelled) skew shape poset.

EXAMPLE



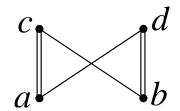
EXAMPLE



We can check that $K_{P,\omega}(x)$ is symmetric. So does it obey Stanley's conjecture?

a

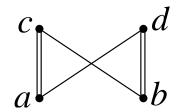
EXAMPLE



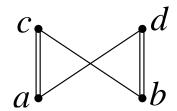
We can check that $K_{P,\omega}(x)$ is symmetric. So does it obey Stanley's conjecture?

a d

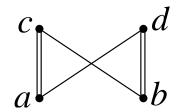
EXAMPLE



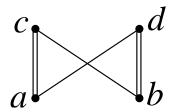
EXAMPLE

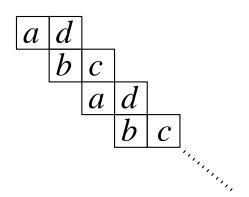


EXAMPLE

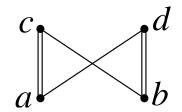


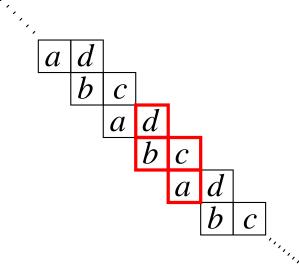
EXAMPLE



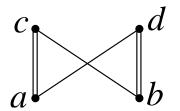


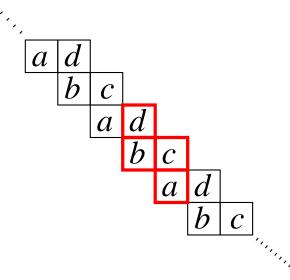
EXAMPLE





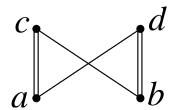
EXAMPLE



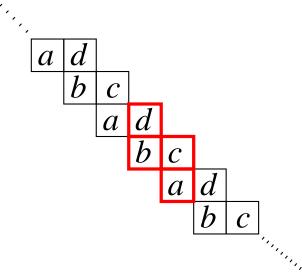


$$|\omega(a)>\omega(c)>\omega(b)>\omega(d)>\omega(a)$$
 Yikes!

EXAMPLE



We can check that $K_{P,\omega}(x)$ is symmetric. So does it obey Stanley's conjecture?



 $|\omega(a)>\omega(c)>\omega(b)>\omega(d)>\omega(a)$ Yikes! Oriented Poset

(P, O)-partitions

Labelled poset (P, ω) $K_{P,\omega}(\mathbf{x})$ skew shape posets skew Schur functions

Oriented poset (P, O) $K_{P,O}(\mathbf{x})$

skew shape posets cylindric skew shape posets skew Schur functions cylindric skew Schur functions



Malvenuto's reformulation

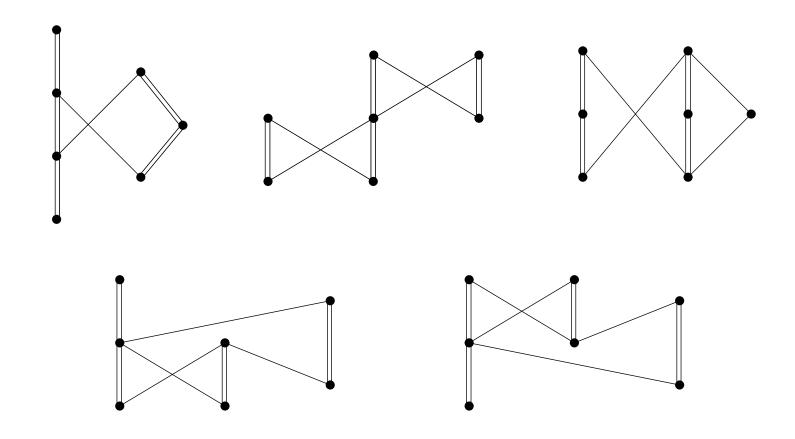
THEOREM (C. Malvenuto, c. 1995) A labelled poset is a skew shape poset if and only if every connected component has no forbidden convex subposets

THEOREM (McN.) An oriented poset is a cylindric skew shape poset if and only if every connected component has no forbidden convex subposets

Conjecture (Stanley) $K_{P,\omega}(\mathbf{x})$ is symmetric if and only if every connected component of (P,ω) is isomorphic to a skew shape poset.

Conjecture (Stanley's conjecture extended to oriented posets) $K_{P,O}(\mathbf{x})$ is symmetric if and only if every connected component of (P,O) is isomorphic to a cylindric skew shape poset.

Extended version is false!



Motivation 2: Positivity of Gromov-Witten invariants

$$\ln H^*(Gr_{kn}),$$

$$\sigma_{\lambda}\sigma_{\mu} = \sum_{\nu\subseteq k\times(n-k)} c^{\nu}_{\lambda\mu}\sigma_{\nu}.$$

$$\ln QH^*(Gr_{kn}),$$

$$\sigma_{\lambda}*\sigma_{\mu} = \sum_{d\geq 0} \sum_{\substack{\nu\vdash |\lambda|+|\mu|-dn\\ \nu\subseteq k\times(n-k)}} q^dC^{\nu,d}_{\lambda\mu}\sigma_{\nu}.$$

 $C_{\lambda\mu}^{\nu,d}=$ 3-point Gromov-Witten invariants

= $\#\{$ rational curves of degree d in Gr_{kn} that meet fixed generic translates of the Schubert varieties $\Omega_{\nu^{\vee}}$, Ω_{λ} and $\Omega_{\mu}\}$.

Key point: $C_{\lambda\mu}^{\nu,d} \geq 0$.

"Fundamental Open Problem":

Motivation 2: Positivity of Gromov-Witten invariants

$$\ln H^*(Gr_{kn}),$$

$$\sigma_{\lambda}\sigma_{\mu} = \sum_{\nu\subseteq k\times(n-k)} c^{\nu}_{\lambda\mu}\sigma_{\nu}.$$

$$\ln QH^*(Gr_{kn}),$$

$$\sigma_{\lambda}*\sigma_{\mu} = \sum_{d\geq 0} \sum_{\substack{\nu\vdash |\lambda|+|\mu|-dn\\ \nu\subseteq k\times(n-k)}} q^dC^{\nu,d}_{\lambda\mu}\sigma_{\nu}.$$

 $C_{\lambda u}^{\nu,d}=$ 3-point Gromov-Witten invariants

= #{rational curves of degree d in Gr_{kn} that meet fixed generic translates of the Schubert varieties $\Omega_{\nu^{\vee}}$, Ω_{λ} and Ω_{μ} }.

Key point: $C_{\lambda \mu}^{\nu,d} \geq 0$.

"Fundamental Open Problem": Find an algebraic or combinatorial proof of this fact.

What's cylindric got to do with it?

THEOREM (Postnikov)

$$s_{\lambda/d/\mu}(x_1,\ldots,x_k) = \sum_{\nu \subseteq k \times (n-k)} C_{\lambda\mu}^{\nu,d} s_{\nu}(x_1,\ldots,x_k).$$

Conclusion: Want to understand expansions of cylindric skew Schur functions into Schur functions.

What's cylindric got to do with it?

THEOREM (Postnikov)

$$s_{\lambda/d/\mu}(x_1,\ldots,x_k) = \sum_{\nu \subseteq k \times (n-k)} C_{\lambda\mu}^{\nu,d} s_{\nu}(x_1,\ldots,x_k).$$

Conclusion: Want to understand expansions of cylindric skew Schur functions into Schur functions.

COROLLARY $s_{\lambda/d/\mu}(x_1, x_2, \dots, x_k)$ is Schur-positive.

Known: $s_{\lambda/d/\mu}(x_1, x_2, ...)$ need not be Schur-positive.

Note: $s_{\lambda}(x_1, x_2, \dots, x_k) \neq 0 \Leftrightarrow \lambda$ has at most k rows.

Example: If $s_{\lambda/d/\mu} = s_{22} + s_{211} - s_{1111}$, then $s_{\lambda/d/\mu}(x_1, x_2, x_3) = s_{22} + s_{211}$ is Schur-positive.

When is a cylindric skew Schur function Schur-positive?

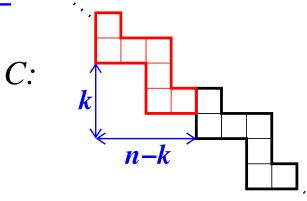
THEOREM (McN.) For any cylindric skew shape C,

 $s_C(x_1, x_2, ...)$ is Schur-positive $\Leftrightarrow C$ is a skew shape.

Equivalently, if C is a non-trivial cylindric skew shape, then $s_C(x_1, x_2, ...)$ is not Schur-positive.

Example: Cylindric ribbons

EXAMPLE

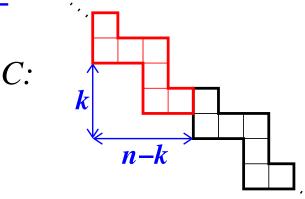


$$s_C(x_1, x_2, \dots) = \sum_{\nu \subseteq k \times (n-k)} c_{\nu} s_{\nu} + s_{n-k,1^k} - s_{n-k-1,1^{k+1}}$$

$$+ s_{n-k-2,1^{k+2}} - \dots + (-1)^{n-k} s_{1^n}.$$

Example: Cylindric ribbons

EXAMPLE



$$s_C(x_1, x_2, \dots) = \sum_{\nu \subseteq k \times (n-k)} c_{\nu} s_{\nu} + s_{n-k,1^k} - s_{n-k-1,1^{k+1}}$$

$$+ s_{n-k-2,1^{k+2}} - \dots + (-1)^{n-k} s_{1^n}.$$

Schur-positive with k+1 variables Not Schur-positive with $\geq k+2$ variables General cylindric skew shape: $\geq k+2+l$ variables Shapes in Postnikov's theorem: $\geq 2k+1$ variables

Bertram, Ciocan-Fontanine, Fulton:

- Nice description in terms of ribbons
- Only for certain shapes, certain terms

Gessel, Krattenthaler:

- Works for all cylindric skew shapes
- Not as nice a description

We can get the best of both worlds: A technique for expanding a cylindric skew Schur function in terms of skew Schur functions that Works for all cylindric skew shapes like G-K and has a nice description like B-CF-F

Formula of Bertram, Ciocan-Fontanine, Fulton

THEOREM (B-CF-F) For λ , μ , $\nu \subseteq k \times (n-k)$ with $|\mu| + |\nu| = |\lambda| + dn$ for some $d \ge 0$, we have

$$C_{\mu\nu}^{\lambda,d} = \sum_{\tau} \varepsilon(\tau/\lambda) c_{\mu\nu}^{\tau}$$

where the sum is over all τ with $\tau_1 \leq n - k$ that can be obtained from λ by adding d n-ribbons.

Formula of Bertram, Ciocan-Fontanine, Fulton

THEOREM (B-CF-F) For λ , μ , $\nu \subseteq k \times (n-k)$ with $|\mu| + |\nu| = |\lambda| + dn$ for some $d \ge 0$, we have

$$\sum_{v} C_{\mu\nu}^{\lambda,d} s_{\nu}(x_1,\ldots,x_k) = \sum_{v} \sum_{\tau} \varepsilon(\tau/\lambda) c_{\mu\nu}^{\tau} s_{\nu}(x_1,\ldots,x_k)$$

where the sum is over all τ with $\tau_1 \leq n-k$ that can be obtained from λ by adding d n-ribbons.

Formula of Bertram, Ciocan-Fontanine, Fulton

THEOREM (B-CF-F) For λ , μ , $\nu \subseteq k \times (n-k)$ with $|\mu| + |\nu| = |\lambda| + dn$ for some $d \ge 0$, we have

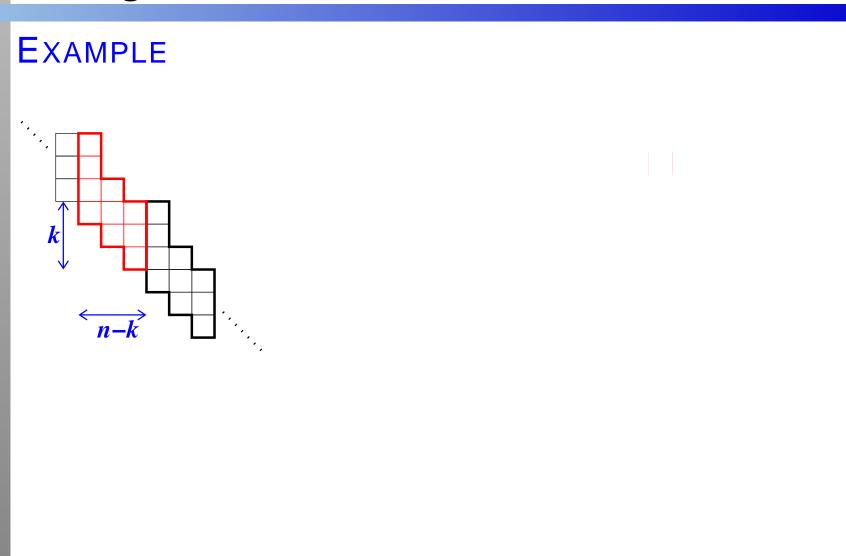
$$\sum_{v} C_{\mu\nu}^{\lambda,d} s_{\nu}(x_1,\ldots,x_k) = \sum_{v} \sum_{\tau} \varepsilon(\tau/\lambda) c_{\mu\nu}^{\tau} s_{\nu}(x_1,\ldots,x_k)$$

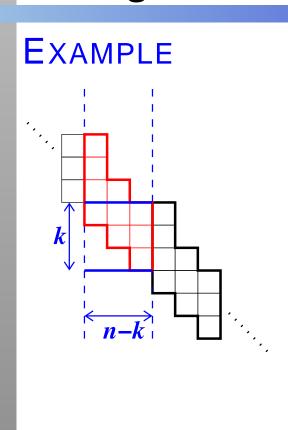
where the sum is over all τ with $\tau_1 \leq n - k$ that can be obtained from λ by adding d n-ribbons.

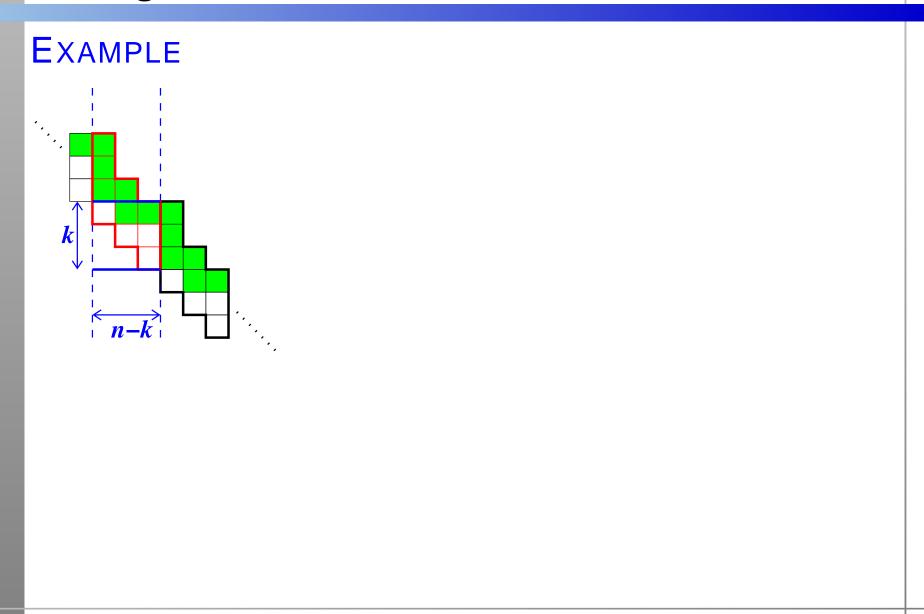
COROLLARY For any cylindric skew shape $\lambda/d/\mu$ with $\lambda, \mu \subseteq k \times (n-k)$, we have

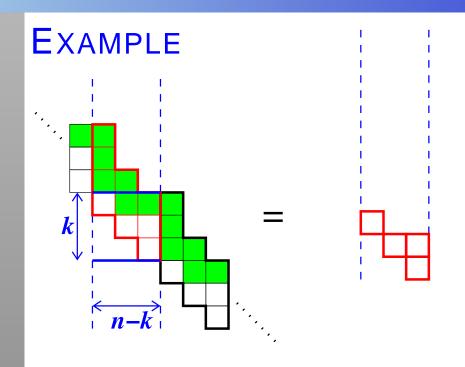
$$s_{\lambda/d/\mu}(x_1,\ldots,x_k) = \sum_{\tau} \varepsilon(\tau/\lambda) s_{\tau/\mu}(x_1,\ldots,x_k),$$

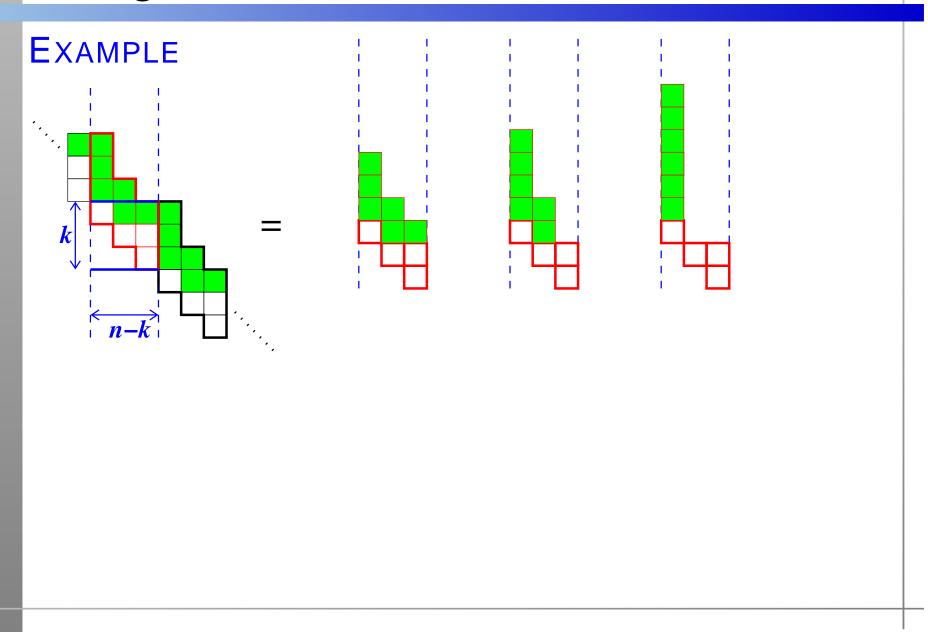
where the sum is over all τ with $\tau_1 \leq n - k$ that can be obtained from λ by adding d n-ribbons.

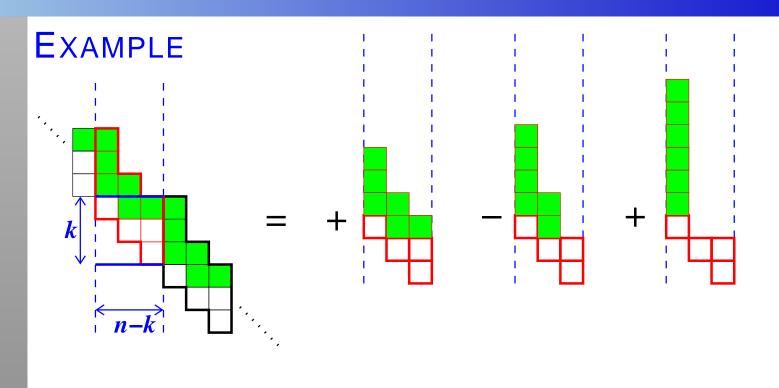


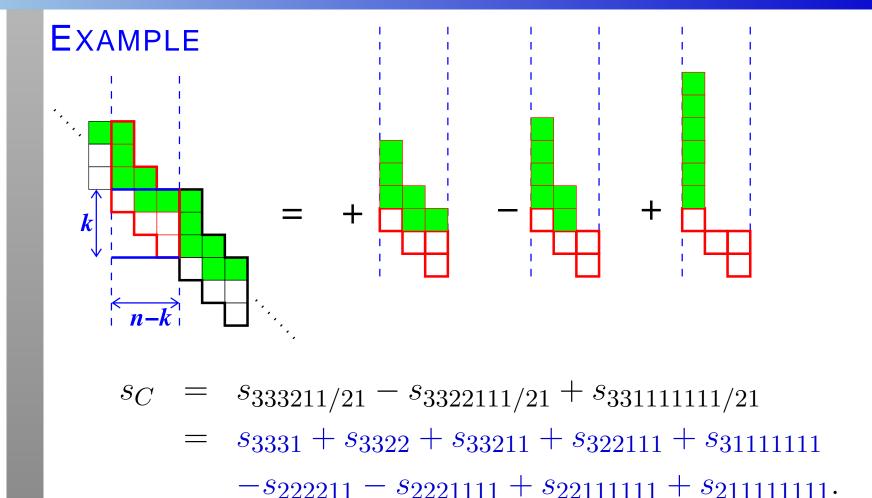




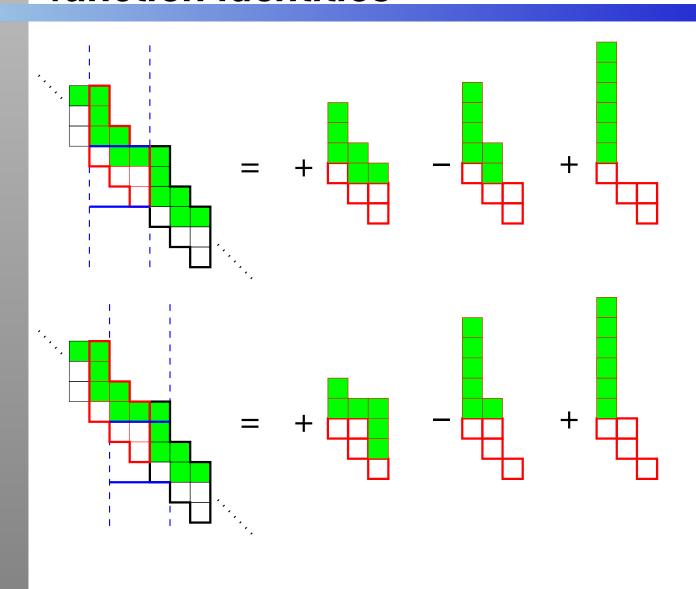




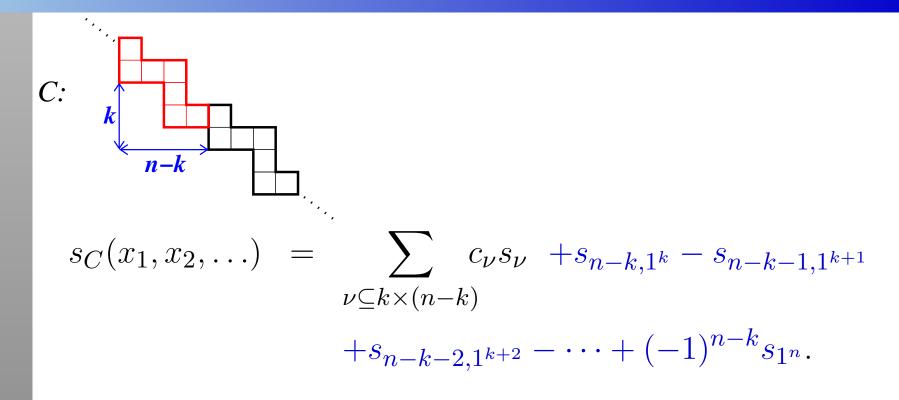




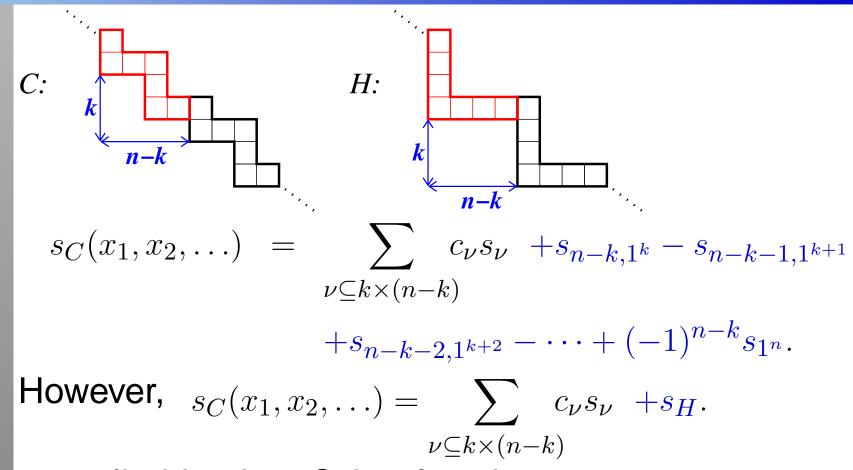
Consequence: Lots of skew Schur function identities



Example: Cylindric ribbons



Example: Cylindric ribbons



 s_C : cylindric skew Schur function

 s_H : cylindric Schur function

We say that s_C is cylindric Schur-positive.

A Conjecture

CONJECTURE For any cylindric skew shape C, s_C is cylindric Schur-positive.

A Conjecture

CONJECTURE For any cylindric skew shape C, s_C is cylindric Schur-positive.

THEOREM (McN.) The cylindric Schur functions corresponding to a given translation (-n+k,+k) are linearly independent.

THEOREM (McN.) If s_C can be written as a linear combination of cylindric Schur functions with the same translation as C, then s_C is cylindric Schur-positive.