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Definitions: Dyck paths

Definition. A Dyck path of semilength n is a sequence of up steps
U = (1,1) and down steps D = (1,−1) from (0,0) to (2n,0) that
stays weakly above the x-axis.

Example. The five Dyck paths of semilength 3.

The number of Dyck paths of semilength n is the Catalan number Cn.

Definition. An ascent of a Dyck path is a maximal consecutive
sequence of up-steps, and it is a k -ascent if it has length k .
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Definitions: standard Young tableaux

Definition. For a partition λ = (λ1, . . . , λ`) of n,
a Young diagram of shape λ is an array of boxes left- and top-
justified with λi boxes in row i .

Example. λ = (4,4,1)

Definition. A standard Young tableau or SYT is a Young diagram
whose n boxes are filled bijectively with {1, . . . ,n} such that the
entries increase along rows and down columns.

The number of SYT of shape λ is given by the hook-length formula.
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The main question

In what ways can we add extra structure or restrictions to Dyck paths
and/or SYT to yield equinumerous sets?

Want bijective proofs that preserve some statistics.

We gave 9 ways to answer this question. Some favourites:

0. the classical bijection;
1,2,3. Three with the same first step;

4. an elaborate bijection.
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Bijection 0. The classical example

Theorem. Dyck paths of semilength n are in bijection with the SYT of
shape (n,n).

Proof. Put indices of U steps in the first row and indices of D steps in
the second row.

Example.

1

2 3 4 5

6 7 8 ←→ 1 2 4 7
3 5 6 8
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Bjections using modified tableaux

The next three bijections share crucial first two steps:

Dyck paths←→ nomincreasing set partitions←→ modified tableaux

To label U steps:
1. Label the D steps 1, . . . ,n from left-to-right.
2. At each peak UD, give the U the same label as the D.
3. Going through the ascents from left-to-right, label the remaining

U in a greedy fashion from top-to-bottom.

1237|48|5|69←→ ←→
1
2
3
7

4
8

5 6
9

I Nomincreasing (set) partitions: in standard form, non-minimum
entries in each block form an increasing sequence: 23789.

I Modified tableaux: entries increase along first row and down
columns; non-first-row entries increase left-to-right.
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The main question

Recall the main question:

In what ways can we add extra structure or restrictions to Dyck paths
and/or SYT to yield equinumerous sets?

Want bijective proofs that preserve some statistics.

0. the classical bijection;
1,2,3. Three with the same first step;

4. an elaborate bijection.

Note. In classical bijection,
#boxes = 2(semilength).

In remaining bijections,
#boxes = semilength.
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Bijection 1. Hook shapes

Baby Theorem. For 1 ≤ k ≤ n, Dyck paths of semilength n with k
peaks and k returns are in bijection with SYT of hook shape (k ,1n−k ).

(1n−k denotes a sequence of n − k copies of 1.)

Proof (by example).

1
2 3 6

5
4 1

2
3 4

5
6

1
2
5
6

3 4

Main idea for inverse direction: In this special situation, the columns
of the modified tableau have increasing consecutive entries.

Corollary. The number of Dyck paths of semilength n with as many
peaks as returns equals the number of SYT of hook shape with n
boxes.
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Bijection 2: Flag shapes

Definition. An SYT is of flag shape if its shape is (k , k ,1n−2k ) for
some 1 ≤ k ≤ bn

2c.

1
2

3 4 5

6
7

8

9 10

11

12 13 14 15
16
17

Definition. An ascent is a singleton if it has length 1.

Theorem. The number of Dyck paths of semilength n and no
singletons equals the number of SYT of flag shape with n boxes.

These sets are enumerated by the Riordan numbers [A005043].
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Bijection 2: Flag shapes

Theorem. The number of Dyck paths of semilength n without
singletons equals the number of SYT of flag shape with n boxes.

Example. Let n = 5.

1 2
3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

1
2
3
4
5
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Bijection 2: Flag shapes

Theorem. For 1 ≤ k ≤ bn
2c, Dyck paths of semilength n with k peaks

and no singletons are in bijection with SYT of shape (k , k ,1n−2k ).

Proof. By defining modified tableaux, we’ve done the hard part.

4
2

1
5

3

10
9

7
6

11
8

←→ ←→
1
2
4

3
5

6
7
9

10

8
11

1
2
4
9

10

3
5

6
7

8
11

First two rows are fixed since there are no singletons.
For inverse, use: non-first-row entries increase from left-to-right.

Corollary. The number of Dyck paths of semilength n without
singletons equals the number of SYT of flag shape with n boxes.
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Bijection 3: At most 3 rows

Theorem. The number of Dyck paths of semilength n that avoid three
consecutive up-steps equals the number of SYT with n boxes and at
most 3 rows.

A proof via Motzkin paths already is well known.

Proof. Again starts with modified tableaux. Rest of bijection is quite
intricate; see the paper.

Example.

1
2

3
4

8
5

6
9

7

1

3
2

4
8

5

6
9

7

1
2
3

4
6
8

5
9

7
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Bijection 4: All SYT

What if we want a bijection to all SYT?

One answer. Use cm-labeled Dyck paths.

What is a cm-labeled Dyck path?

Theorem. The number of cm-labeled Dyck paths of semilength n
equals the number of SYT with n boxes.

Theorem. The number of cm-labeled Dyck paths of semilength n with
s singletons and k -noncrossing labels equals the number of SYT with
n boxes, s odd columns, and at most 2k − 1 rows.
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cm-labeled Dyck paths

Definition. A partial matching is connected if the arcs and points form
a connected set as a subset of the plane.

1 2 3 4 5 6 7 8

Connected
1 2 3 4 5 6 7 8
4 connected components

Definition. A cm-labeled Dyck path is a Dyck path where each
k -ascent is labeled by a connected matching of [k ], for every k .

Note. This is both a restriction and additional structure on Dyck paths
(ascents lengths must be one or even, but ascents with length at
least six have multiple possible labels).
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k -noncrossing and k -nonnesting

Theorem. The number of cm-labeled Dyck paths of semilength n with
s singletons and k -noncrossing labels equals the number of SYT with
n boxes, s odd columns, and at most 2k − 1 rows.

Definition. A k -crossing is a set of k arcs in a partial matching that
are pairwise crossing.
We say a partial matching is k -noncrossing if it has no k -crossings.
Similarly for k -nesting and k -nonnesting.

1 2 3 4 5 6 7 8

The matching (15)(28)(36)(47) has a 3-crossing (15)(36)(47) but is
4-noncrossing.
It has a 2-nesting (28)(36) or (28)(47) but is 3-nonnesting.
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Structure of the bijection

cm-labeled Dyck paths of semilength n
with k -noncrossing labels and s singletons

k -noncrossing partial match-
ings of [n] with s singletons

k -nonnesting partial match-
ings of [n] with s singletons

Involutions of [n] with decreasing
subsequences of length at most
2k − 1 and with s fixed points

Standard Young tableaux of size n with
at most 2k − 1 rows and s odd columns

Chen–Deng–Du–Stanley–Yan

RSK on involutions

Bijectivity among bottom 4 blocks appears is due independently to
Burrill–Courtiel–Fusy–Melczer–Mishna.
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cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled
Dyck path

2. Label the down steps
from left-to-right

3. Match down steps to
up steps horizontally

4. The ascents form a
non-crossing set
partition of [n]:
125679|34|8

5. Add cm labels to get a
partial matching

1

2

3

4

5

6

7 8

9

1

2

3

4

5

6

7 8

9

1 2 3 4 5 6 7 8 9

Note. Crossings and singletons
preserved.

Inverse: Connected components give
ascents. Steps 2–4 give a well-known
bijection from unlabeled Dyck paths to
non-crossing set partitions.
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Structure of the bijection

cm-labeled Dyck paths of semilength n
with k -noncrossing labels and s singletons

k -noncrossing partial match-
ings of [n] with s singletons

k -nonnesting partial match-
ings of [n] with s singletons

Involutions of [n] with decreasing
subsequences of length at most
2k − 1 and with s fixed points

Standard Young tableaux of size n with
at most 2k − 1 rows and s odd columns

Chen–Deng–Du–Stanley–Yan

RSK on involutions

Next: bottom bijection.
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Involutions to SYT

First observation. Partial matchings are in bijection with involutions
(self-inverse permutations):

1 2 3 4 5 6 7 8 9
←→ (15)(27)(34)(69)(8).

Robinson–Schensted–Knuth (RSK) Algorithm.

permutation π ←→ (T ,R) two SYT of same shape.

Robinson, Schützenberger: π−1 ←→ (R,T ).

So if π is an involution, π ←→ (T ,T )←→ T .

Other facts we need:
I Knuth: # fixed points (singletons) in π = # odd columns in T .
I Schensted:

Length of longest decreasing subsequence in π = # rows in T .
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Structure of the bijection
cm-labeled Dyck paths of semilength n

with k -noncrossing labels and s singletons

k -noncrossing partial match-
ings of [n] with s singletons

k -nonnesting partial match-
ings of [n] with s singletons

Involutions of [n] with decreasing
subsequences of length at most
2k − 1 and with s fixed points

Standard Young tableaux of size n with
at most 2k − 1 rows and s odd columns

Chen–Deng–Du–Stanley–Yan

RSK on involutions

5 91 2 3 4 6 7 8

←→ π = 876493215

We have:
cm-labeled Dyck paths←→ partial matchings←→ involutions←→ SYT.
s values carry through.

Difficulty. No connection between crossings and decreasing subseqences.
Nice connection between nestings and decreasing subseqences.
Next: k -nesting ⇐⇒ a decreasing subsequence of length at least 2k .
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Structure of the bijection
cm-labeled Dyck paths of semilength n

with k -noncrossing labels and s singletons

k -noncrossing partial match-
ings of [n] with s singletons

kkk -nonnesting partial match-
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Final step. A bijection from k -noncrossing to k -nonnesting partial
matchings of [n] (which preserves singletons).
Chen–Deng–Du–Stanley–Yan: use oscillating tableaux.
We need to use weakly oscillating tableaux.

Overview of proof by example. Map the partial matching

1 2 3 4 5 6 7 8 9
to the weakly oscillating tableau

(∅, , , , , , , , , ∅).
Take the transpose:

(∅, , , , , , , , , ∅).

and reverse the map:

1 2 3 4 5 6 7 8 9

The point. k -crossing←→ k -nesting.
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Example details.

1 2 3 4 5 6 7 8 9M =

j 0 1 2 3 4 5 6 7 8 9

T j ∅ 1 1
2

1 3
2

1
2

1
2
5

2
5 5 5 ∅

←−←−←−

λj ∅ ∅

(λj )t ∅ ∅

T̂ j ∅ 1 1 2 1 2
3 1 3 1 3 5 1 3 1 1 ∅

−→−→−→

M̂ j ∅ ∅ ∅ ∅ (2, 4) (2, 4) (2, 4)
(5, 6)

(2, 4)
(5, 6)
(3, 7)

(2, 4)
(5, 6)
(3, 7)

(2, 4)
(5, 6)
(3, 7)
(1, 9)

1 2 3 4 5 6 7 8 9M̂ =
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The end

cm-labeled Dyck paths of semilength n
with k -noncrossing labels and s singletons

k -noncrossing partial match-
ings of [n] with s singletons

k -nonnesting partial match-
ings of [n] with s singletons

Involutions of [n] with decreasing
subsequences of length at most
2k − 1 and with s fixed points

Standard Young tableaux of size n with
at most 2k − 1 rows and s odd columns

Chen–Deng–Du–Stanley–Yan

Post

RSK on involutions

Thanks!
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