From Dyck Paths to Standard Young Tableaux

Peter McNamara
Bucknell University

Joint work with Juan Gil, Jordan Tirrell, and Michael Weiner
Workshop on Enumerative Combinatorics University College Dublin

9 February 2021
Slides and paper available from

```
http://www.unix.bucknell.edu/~pm040/
```


- Background, main question, classical example
- Hook shapes and flag shapes
- A much more elaborate example

Definitions: Dyck paths

Definition. A Dyck path of semilength n is a sequence of up steps $U=(1,1)$ and down steps $D=(1,-1)$ from $(0,0)$ to $(2 n, 0)$ that stays weakly above the x-axis.

Example. The five Dyck paths of semilength 3.

The number of Dyck paths of semilength n is the Catalan number C_{n}.

Definitions: Dyck paths

Definition. A Dyck path of semilength n is a sequence of up steps $U=(1,1)$ and down steps $D=(1,-1)$ from $(0,0)$ to $(2 n, 0)$ that stays weakly above the x-axis.

Example. The five Dyck paths of semilength 3.

The number of Dyck paths of semilength n is the Catalan number C_{n}.
Definition. An ascent of a Dyck path is a maximal consecutive sequence of up-steps, and it is a k-ascent if it has length k.

Definitions: standard Young tableaux

Definition. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of n, a Young diagram of shape λ is an array of boxes left- and topjustified with λ_{i} boxes in row i.

Example. $\lambda=(4,4,1)$

Definitions: standard Young tableaux

Definition. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of n, a Young diagram of shape λ is an array of boxes left- and topjustified with λ_{i} boxes in row i.

Example. $\lambda=(4,4,1)$

Definition. A standard Young tableau or SYT is a Young diagram whose n boxes are filled bijectively with $\{1, \ldots, n\}$ such that the entries increase along rows and down columns.

Definitions: standard Young tableaux

Definition. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of n, a Young diagram of shape λ is an array of boxes left- and topjustified with λ_{i} boxes in row i.

Example. $\lambda=(4,4,1)$

1	2	4	6
3	5	8	9
7			

Definition. A standard Young tableau or SYT is a Young diagram whose n boxes are filled bijectively with $\{1, \ldots, n\}$ such that the entries increase along rows and down columns.

Definitions: standard Young tableaux

Definition. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of n, a Young diagram of shape λ is an array of boxes left- and topjustified with λ_{i} boxes in row i.

Example. $\lambda=(4,4,1)$

1	2	4	6
3	5	8	9
7			

Definition. A standard Young tableau or SYT is a Young diagram whose n boxes are filled bijectively with $\{1, \ldots, n\}$ such that the entries increase along rows and down columns.

The number of SYT of shape λ is given by the hook-length formula.

The main question

In what ways can we add extra structure or restrictions to Dyck paths and/or SYT to yield equinumerous sets?

Want bijective proofs that preserve some statistics.

The main question

In what ways can we add extra structure or restrictions to Dyck paths and/or SYT to yield equinumerous sets?

Want bijective proofs that preserve some statistics.
We gave 9 ways to answer this question. Some favourites:
0 . the classical bijection;
$1,2,3$. Three with the same first step;
4. an elaborate bijection.

Bijection 0. The classical example

Bijection 0. The classical example

Theorem. Dyck paths of semilength n are in bijection with the SYT of shape (n, n).

Proof. Put indices of U steps in the first row and indices of D steps in the second row.

Example.

Bjections using modified tableaux

The next three bijections share crucial first two steps:
Dyck paths \longleftrightarrow nomincreasing set partitions \longleftrightarrow modified tableaux

Bjections using modified tableaux

The next three bijections share crucial first two steps:
Dyck paths \longleftrightarrow nomincreasing set partitions \longleftrightarrow modified tableaux
To label U steps:

1. Label the D steps $1, \ldots, n$ from left-to-right.
2. At each peak UD, give the U the same label as the D.
3. Going through the ascents from left-to-right, label the remaining U in a greedy fashion from top-to-bottom.

Bjections using modified tableaux

The next three bijections share crucial first two steps:
Dyck paths \longleftrightarrow nomincreasing set partitions \longleftrightarrow modified tableaux
To label U steps:

1. Label the D steps $1, \ldots, n$ from left-to-right.
2. At each peak UD, give the U the same label as the D.
3. Going through the ascents from left-to-right, label the remaining U in a greedy fashion from top-to-bottom.

Bjections using modified tableaux

The next three bijections share crucial first two steps:
Dyck paths \longleftrightarrow nomincreasing set partitions \longleftrightarrow modified tableaux
To label U steps:

1. Label the D steps $1, \ldots, n$ from left-to-right.
2. At each peak UD, give the U the same label as the D.
3. Going through the ascents from left-to-right, label the remaining U in a greedy fashion from top-to-bottom.

Bjections using modified tableaux

The next three bijections share crucial first two steps:
Dyck paths \longleftrightarrow nomincreasing set partitions \longleftrightarrow modified tableaux
To label U steps:

1. Label the D steps $1, \ldots, n$ from left-to-right.
2. At each peak UD, give the U the same label as the D.
3. Going through the ascents from left-to-right, label the remaining U in a greedy fashion from top-to-bottom.

Bjections using modified tableaux

The next three bijections share crucial first two steps:
Dyck paths \longleftrightarrow nomincreasing set partitions \longleftrightarrow modified tableaux
To label U steps:

1. Label the D steps $1, \ldots, n$ from left-to-right.
2. At each peak UD, give the U the same label as the D.
3. Going through the ascents from left-to-right, label the remaining U in a greedy fashion from top-to-bottom.

- Nomincreasing (set) partitions: in standard form, non-minimum entries in each block form an increasing sequence: 23789.

Bjections using modified tableaux

The next three bijections share crucial first two steps:
Dyck paths \longleftrightarrow nomincreasing set partitions \longleftrightarrow modified tableaux
To label U steps:

1. Label the D steps $1, \ldots, n$ from left-to-right.
2. At each peak UD, give the U the same label as the D.
3. Going through the ascents from left-to-right, label the remaining U in a greedy fashion from top-to-bottom.

- Nomincreasing (set) partitions: in standard form, non-minimum entries in each block form an increasing sequence: 23789.
- Modified tableaux: entries increase along first row and down columns; non-first-row entries increase left-to-right.

The main question

Recall the main question:
In what ways can we add extra structure or restrictions to Dyck paths and/or SYT to yield equinumerous sets?

Want bijective proofs that preserve some statistics.
0 . the classical bijection;
$1,2,3$. Three with the same first step;
4. an elaborate bijection.

The main question

Recall the main question:
In what ways can we add extra structure or restrictions to Dyck paths and/or SYT to yield equinumerous sets?

Want bijective proofs that preserve some statistics.
0 . the classical bijection;
$1,2,3$. Three with the same first step;
4. an elaborate bijection.

Note. In classical bijection, \#boxes = 2(semilength).
In remaining bijections, \#boxes = semilength.

Bijection 1. Hook shapes

Baby Theorem. For $1 \leq k \leq n$, Dyck paths of semilength n with k peaks and k returns are in bijection with SYT of hook shape $\left(k, 1^{n-k}\right)$. (1^{n-k} denotes a sequence of $n-k$ copies of 1.)

Bijection 1. Hook shapes

Baby Theorem. For $1 \leq k \leq n$, Dyck paths of semilength n with k peaks and k returns are in bijection with SYT of hook shape ($k, 1^{n-k}$). (1^{n-k} denotes a sequence of $n-k$ copies of 1 .)

Proof (by example).

Bijection 1. Hook shapes

Baby Theorem. For $1 \leq k \leq n$, Dyck paths of semilength n with k peaks and k returns are in bijection with SYT of hook shape ($k, 1^{n-k}$). (1^{n-k} denotes a sequence of $n-k$ copies of 1 .)

Proof (by example).

Bijection 1. Hook shapes

Baby Theorem. For $1 \leq k \leq n$, Dyck paths of semilength n with k peaks and k returns are in bijection with SYT of hook shape ($k, 1^{n-k}$). (1^{n-k} denotes a sequence of $n-k$ copies of 1 .)

Proof (by example).

Bijection 1. Hook shapes

Baby Theorem. For $1 \leq k \leq n$, Dyck paths of semilength n with k peaks and k returns are in bijection with SYT of hook shape ($k, 1^{n-k}$). (1^{n-k} denotes a sequence of $n-k$ copies of 1 .)

Proof (by example).

Bijection 1. Hook shapes

Baby Theorem. For $1 \leq k \leq n$, Dyck paths of semilength n with k peaks and k returns are in bijection with SYT of hook shape ($k, 1^{n-k}$). (1^{n-k} denotes a sequence of $n-k$ copies of 1 .)

Proof (by example).

Main idea for inverse direction: In this special situation, the columns of the modified tableau have increasing consecutive entries.

Bijection 1. Hook shapes

Baby Theorem. For $1 \leq k \leq n$, Dyck paths of semilength n with k peaks and k returns are in bijection with SYT of hook shape ($k, 1^{n-k}$). (1^{n-k} denotes a sequence of $n-k$ copies of 1 .)

Proof (by example).

Main idea for inverse direction: In this special situation, the columns of the modified tableau have increasing consecutive entries.

Corollary. The number of Dyck paths of semilength n with as many peaks as returns equals the number of SYT of hook shape with n boxes.

Bijection 2: Flag shapes

Definition. An SYT is of flag shape if its shape is $\left(k, k, 1^{n-2 k}\right)$ for some $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

1	3	4	45	59	910	\| 16
2	7		213	1314	1415	517
6						
8						
11						

Definition. An ascent is a singleton if it has length 1.

Bijection 2: Flag shapes

Definition. An SYT is of flag shape if its shape is $\left(k, k, 1^{n-2 k}\right)$ for some $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Definition. An ascent is a singleton if it has length 1.
Theorem. The number of Dyck paths of semilength n and no singletons equals the number of SYT of flag shape with n boxes.

These sets are enumerated by the Riordan numbers [A005043].

Theorem. The number of Dyck paths of semilength n without singletons equals the number of SYT of flag shape with n boxes.

Example. Let $n=5$.

Theorem. For $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, Dyck paths of semilength n with k peaks and no singletons are in bijection with SYT of shape ($k, k, 1^{n-2 k}$).

Bijection 2: Flag shapes

Theorem. For $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, Dyck paths of semilength n with k peaks and no singletons are in bijection with SYT of shape ($k, k, 1^{n-2 k}$). Proof. By defining modified tableaux, we've done the hard part.

Bijection 2: Flag shapes

Theorem. For $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, Dyck paths of semilength n with k peaks and no singletons are in bijection with SYT of shape ($k, k, 1^{n-2 k}$). Proof. By defining modified tableaux, we've done the hard part.

Bijection 2: Flag shapes

Theorem. For $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, Dyck paths of semilength n with k peaks and no singletons are in bijection with SYT of shape ($k, k, 1^{n-2 k}$).

Proof. By defining modified tableaux, we've done the hard part.

First two rows are fixed since there are no singletons.
For inverse, use: non-first-row entries increase from left-to-right.

Bijection 2: Flag shapes

Theorem. For $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, Dyck paths of semilength n with k peaks and no singletons are in bijection with SYT of shape ($k, k, 1^{n-2 k}$). Proof. By defining modified tableaux, we've done the hard part.

1	3	6	8	\longleftrightarrow	1	3	6	8
2	5	7	11		2	5	7	11
4		9			4			
		10			9			
					10			

First two rows are fixed since there are no singletons.
For inverse, use: non-first-row entries increase from left-to-right.
Corollary. The number of Dyck paths of semilength n without singletons equals the number of SYT of flag shape with n boxes.

Theorem. The number of Dyck paths of semilength n that avoid three consecutive up-steps equals the number of SYT with n boxes and at most 3 rows.

A proof via Motzkin paths already is well known.

Theorem. The number of Dyck paths of semilength n that avoid three consecutive up-steps equals the number of SYT with n boxes and at most 3 rows.

A proof via Motzkin paths already is well known.
Proof. Again starts with modified tableaux. Rest of bijection is quite intricate; see the paper.

Bijection 3: At most 3 rows

Theorem. The number of Dyck paths of semilength n that avoid three consecutive up-steps equals the number of SYT with n boxes and at most 3 rows.

A proof via Motzkin paths already is well known.

Proof. Again starts with modified tableaux. Rest of bijection is quite intricate; see the paper.

Example.

Bijection 3: At most 3 rows

Theorem. The number of Dyck paths of semilength n that avoid three consecutive up-steps equals the number of SYT with n boxes and at most 3 rows.

A proof via Motzkin paths already is well known.

Proof. Again starts with modified tableaux. Rest of bijection is quite intricate; see the paper.

Example.

Bijection 3: At most 3 rows

Theorem. The number of Dyck paths of semilength n that avoid three consecutive up-steps equals the number of SYT with n boxes and at most 3 rows.

A proof via Motzkin paths already is well known.

Proof. Again starts with modified tableaux. Rest of bijection is quite intricate; see the paper.

Example.

$$
\longleftrightarrow \begin{array}{|l|l|l|l|}
\hline 1 & 4 & 5 & 7 \\
\hline 2 & 6 & 9 & \\
\hline 3 & 8 & & \\
\cline { 1 - 3 }
\end{array}
$$

Bijection 4: All SYT

What if we want a bijection to all SYT?

What if we want a bijection to all SYT?
One answer. Use cm-labeled Dyck paths.
What is a cm-labeled Dyck path?

Bijection 4: All SYT

What if we want a bijection to all SYT?
One answer. Use cm-labeled Dyck paths.
What is a cm-labeled Dyck path?
Theorem. The number of cm-labeled Dyck paths of semilength n equals the number of SYT with n boxes.

Theorem. The number of cm -labeled Dyck paths of semilength n with s singletons and k-noncrossing labels equals the number of SYT with n boxes, s odd columns, and at most $2 k-1$ rows.

cm-labeled Dyck paths

Definition. A partial matching is connected if the arcs and points form a connected set as a subset of the plane.

Connected

4 connected components

Definition. A cm-labeled Dyck path is a Dyck path where each k-ascent is labeled by a connected matching of $[k]$, for every k.

Note. This is both a restriction and additional structure on Dyck paths (ascents lengths must be one or even, but ascents with length at least six have multiple possible labels).

k-noncrossing and k-nonnesting

Theorem. The number of cm-labeled Dyck paths of semilength n with s singletons and k-noncrossing labels equals the number of SYT with n boxes, s odd columns, and at most $2 k-1$ rows.

Definition. A k-crossing is a set of k arcs in a partial matching that are pairwise crossing.
We say a partial matching is k-noncrossing if it has no k-crossings. Similarly for k-nesting and k-nonnesting.

The matching (15)(28)(36)(47) has a 3-crossing (15)(36)(47) but is 4-noncrossing.
It has a 2-nesting (28)(36) or (28)(47) but is 3-nonnesting.

k-noncrossing and k-nonnesting

Theorem. The number of cm-labeled Dyck paths of semilength n with s singletons and k-noncrossing labels equals the number of SYT with n boxes, s odd columns, and at most $2 k-1$ rows.

Definition. A k-crossing is a set of k arcs in a partial matching that are pairwise crossing.
We say a partial matching is k-noncrossing if it has no k-crossings. Similarly for k-nesting and k-nonnesting.

The matching (15)(28)(36)(47) has a 3-crossing (15)(36)(47) but is 4-noncrossing.
It has a 2-nesting (28)(36) or (28)(47) but is 3-nonnesting.

k-noncrossing and k-nonnesting

Theorem. The number of cm-labeled Dyck paths of semilength n with s singletons and k-noncrossing labels equals the number of SYT with n boxes, s odd columns, and at most $2 k-1$ rows.

Definition. A k-crossing is a set of k arcs in a partial matching that are pairwise crossing.
We say a partial matching is k-noncrossing if it has no k-crossings. Similarly for k-nesting and k-nonnesting.

The matching (15)(28)(36)(47) has a 3-crossing (15)(36)(47) but is 4-noncrossing.
It has a 2-nesting (28)(36) or (28)(47) but is 3-nonnesting.

k-noncrossing and k-nonnesting

Theorem. The number of cm-labeled Dyck paths of semilength n with s singletons and k-noncrossing labels equals the number of SYT with n boxes, s odd columns, and at most $2 k-1$ rows.

Definition. A k-crossing is a set of k arcs in a partial matching that are pairwise crossing.
We say a partial matching is k-noncrossing if it has no k-crossings. Similarly for k-nesting and k-nonnesting.

The matching (15)(28)(36)(47) has a 3-crossing (15)(36)(47) but is 4-noncrossing.
It has a 2-nesting (28)(36) or (28)(47) but is 3-nonnesting.

Structure of the bijection

Bijectivity among bottom 4 blocks appears is due independently to Burrill-Courtiel-Fusy-Melczer-Mishna.

cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled Dyck path

cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled Dyck path
2. Label the down steps from left-to-right

cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled Dyck path
2. Label the down steps from left-to-right
3. Match down steps to up steps horizontally

cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled Dyck path
2. Label the down steps from left-to-right
3. Match down steps to up steps horizontally
4. The ascents form a
non-crossing set partition of [n]:
125679|34|8

cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled Dyck path
2. Label the down steps from left-to-right
3. Match down steps to up steps horizontally

4. The ascents form a non-crossing set partition of [n]: 125679|34|8
5. Add cm labels to get a partial matching

cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled Dyck path
2. Label the down steps from left-to-right
3. Match down steps to up steps horizontally

4. The ascents form a non-crossing set partition of [n]:

Note. Crossings and singletons preserved. 125679|34|8
5. Add cm labels to get a partial matching

cm-labeled Dyck paths to partial matchings

1. Start with a cm-labeled Dyck path
2. Label the down steps from left-to-right
3. Match down steps to up steps horizontally

4. The ascents form a non-crossing set partition of [n]: 125679|34|8
5. Add cm labels to get a partial matching

Note. Crossings and singletons preserved.

Inverse: Connected components give ascents. Steps 2-4 give a well-known bijection from unlabeled Dyck paths to non-crossing set partitions.

Structure of the bijection

Next: bottom bijection.

Involutions to SYT

First observation. Partial matchings are in bijection with involutions (self-inverse permutations):

Involutions to SYT

First observation. Partial matchings are in bijection with involutions (self-inverse permutations):

Robinson-Schensted-Knuth (RSK) Algorithm.
permutation $\pi \longleftrightarrow(T, R)$ two SYT of same shape.

Robinson, Schützenberger: $\pi^{-1} \longleftrightarrow(R, T)$.
So if π is an involution, $\pi \longleftrightarrow(T, T) \longleftrightarrow T$.

Involutions to SYT

First observation. Partial matchings are in bijection with involutions (self-inverse permutations):

Robinson-Schensted-Knuth (RSK) Algorithm.
permutation $\pi \longleftrightarrow(T, R)$ two SYT of same shape.
Robinson, Schützenberger: $\pi^{-1} \longleftrightarrow(R, T)$.
So if π is an involution, $\quad \pi \longleftrightarrow(T, T) \longleftrightarrow T$.
Other facts we need:

- Knuth: \# fixed points (singletons) in $\pi=$ \# odd columns in T.
- Schensted:

Length of longest decreasing subsequence in $\pi=\#$ rows in T.

Structure of the bijection

Structure of the bijection

Structure of the bijection

cm -labeled Dyck paths of semilength n
with k-noncrossing labels and s singletons

k-noncrossing partial match-
ings of $[n]$ with s singletons
§Chen-Deng-Du-Stanley-Yan

Standard Young tableaux of size n with
at most $2 k-1$ rows and s odd columns
We have:
cm-labeled Dyck paths \longleftrightarrow partial matchings \longleftrightarrow involutions \longleftrightarrow SYT.
s values carry through.
Difficulty. No connection between crossings and decreasing subseqences.
Nice connection between nestings and decreasing subseqences.
Next: k-nesting \Longleftrightarrow a decreasing subsequence of length at least $2 k$.

Structure of the bijection

We have:
cm-labeled Dyck paths \longleftrightarrow partial matchings \longleftrightarrow involutions \longleftrightarrow SYT.
s values carry through.
Difficulty. No connection between crossings and decreasing subseqences. Nice connection between nestings and decreasing subseqences.
Next: k-nesting \Longleftrightarrow a decreasing subsequence of length at least $2 k$.

Structure of the bijection

We have:
cm-labeled Dyck paths \longleftrightarrow partial matchings \longleftrightarrow involutions \longleftrightarrow SYT.
s values carry through.
Difficulty. No connection between crossings and decreasing subseqences. Nice connection between nestings and decreasing subseqences.
Next: k-nesting \Longleftrightarrow a decreasing subsequence of length at least $2 k$.

Final step. A bijection from k-noncrossing to k-nonnesting partial matchings of $[n]$ (which preserves singletons).
Chen-Deng-Du-Stanley-Yan: use oscillating tableaux.
We need to use weakly oscillating tableaux.
Overview of proof by example. Map the partial matching

to the weakly oscillating tableau

$$
(\emptyset, \square, \boxminus, \square, \boxminus, \boxminus, \boxminus, \square, \square, \emptyset)
$$

Take the transpose:

$$
(\emptyset, \square, \square, \square, \square \square, \square \square, \square, \square, \square, \emptyset) .
$$

and reverse the map:

The point. k-crossing $\longleftrightarrow k$-nesting.

Example details.

$$
M=\sqrt{23456789}
$$

j	0	1	2	3	4	5	6	7	8	9
T^{j}	\emptyset	1	1 2		1 2	1 2 	$\frac{2}{5}$	5	5	\emptyset

Example details.

$$
M=123456789
$$

j			1	2	3	4	5	6	7	8	9
T^{j})	1	1 2	1 3 2 	1 2	1 2 5	2 5	5	5	\emptyset
λ^{j})		-		\square	\square	\square	\square	\square	\emptyset

Example details.

$$
M=1 \dot{2} \div 5 \dot{6} \div \dot{8} 9
$$

j	0	1	2	3	4	5	6	7	8	9
T^{j}	\emptyset	1	1 2	1 3 2	1 2	1 2 5	2 5	5	5	\emptyset
λ^{j}	\emptyset	\square	\emptyset							
$\left(\lambda^{j}\right)^{t}$	\emptyset			\square			\square	\square	\square	\emptyset

Example details.

$$
M=123456789
$$

The end

The end

Thanks!

