When do quasisymmetric functions know that trees are different?

Peter McNamara Bucknell University, USA

Joint work with:
Jean-Christophe Aval
LaBRI, CNRS, Université de Bordeaux, France
Karimatou Djenabou

African Institute for Mathematical Sciences, South Africa

UBC Discrete Mathematics Seminar 31 January 2023

Slides and paper available from

http://www.unix.bucknell.edu/~pm040/

When do quasisymmetric functions know that trees are different?

Peter McNamara

Bucknell University, USA

Joint work with: Jean-Christophe Aval

LaBRI, CNRS, Université de Bordeaux, France

Karimatou Djenabou

African Institute for Mathematical Sciences, South Africa

UBC Discrete Mathematics Seminar 31 January 2023

Slides and paper available from

http://www.unix.bucknell.edu/~pm040/

Outline

- Chromatic (quasi)symmetric functions and the motivating conjectures
- Converting to a poset question; more conjectures
- Some old and new results

Outline

- Chromatic (quasi)symmetric functions and the motivating conjectures
- Converting to a poset question; more conjectures
- Some old and new results
- More conjectures

George Birkhoff, 1912

Graph
$$G = (V, E)$$

Colouring/Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

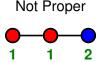
Proper coloring: adjacent vertices get different colors.

George Birkhoff, 1912

Graph
$$G = (V, E)$$

Colouring/Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

Proper coloring: adjacent vertices get different colors.



George Birkhoff, 1912

Graph
$$G = (V, E)$$

Colouring/Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

Proper coloring: adjacent vertices get different colors.

George Birkhoff, 1912

Graph
$$G = (V, E)$$

Colouring/Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

Proper coloring: adjacent vertices get different colors.

Not Proper

Chromatic polynomial: $\chi_G(k)$ is the number of proper colorings of G when k colors are available.

Example.
$$\chi_{G}(k) = k(k-1)(k-1)$$

Richard Stanley, 1995

Graph
$$G = (V, E)$$

$$V = \{v_1, v_2, \dots, v_n\}$$

To a proper coloring κ , we associate the monomial in commuting variables $x_1, x_2, ...$

$$X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_n)}.$$

Richard Stanley, 1995

Graph
$$G = (V, E)$$

$$V = \{v_1, v_2, \dots, v_n\}$$

To a proper coloring κ , we associate the monomial in commuting variables $x_1, x_2, ...$

$$X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_n)}.$$

Chromatic symmetric function:

$$X_G(x_1, x_2, \ldots) = X_G(\mathbf{x}) = \sum_{\text{proper } \kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Chromatic symmetric function:

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper}\ \kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}.$$

Example.

Chromatic symmetric function:

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper }\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Example.

$$\begin{array}{cccc}
\mathbf{a} & \mathbf{b} & \mathbf{a} \\
\mathbf{O} & \mathbf{O} & \mathbf{O} \\
& X_a^2 X_b
\end{array}$$

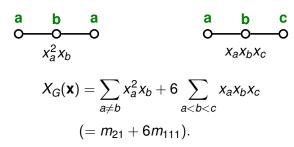
$$X_G(\mathbf{x}) = \sum_{a \neq b} x_a^2 x_b + 6 \sum_{a < b < c} x_a x_b x_c$$

$$(= m_{21} + 6m_{111}).$$

Chromatic symmetric function:

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper }\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Example.



 \succ $X_G(\mathbf{x})$ is a symmetric function (invariant when you permute the colors/variables)

Chromatic symmetric function:

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper}\ \kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Example.

$$X_G(\mathbf{x}) = \sum_{a \neq b} x_a^2 x_b + 6 \sum_{a < b < c} x_a x_b x_c$$

(= $m_{21} + 6 m_{111}$).

- \succ $X_G(\mathbf{x})$ is a symmetric function (invariant when you permute the colors/variables)
- Setting $x_i = 1$ for $1 \le i \le k$ and $x_i = 0$ otherwise yields $\chi_G(k)$. e.g. $k(k-1) + 6\binom{k}{3} = k(k-1)^2$.

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper }\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Statement 1.

 $X_G(\mathbf{x})$ distinguishes graphs.

In other words, if G and H are not isomorphic, then $X_G(\mathbf{x}) \neq X_H(\mathbf{x})$.

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper }\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

False Statement 1.

 $X_G(\mathbf{x})$ distinguishes graphs.

In other words, if G and H are not isomorphic, then $X_G(\mathbf{x}) \neq X_H(\mathbf{x})$.

Stanley: these have the same $X_G(\mathbf{x})$

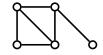
$$X_G(\mathbf{x}) = \sum_{\mathsf{proper}\ \kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}.$$

False Statement 1.

 $X_G(\mathbf{x})$ distinguishes graphs.

In other words, if G and H are not isomorphic, then $X_G(\mathbf{x}) \neq X_H(\mathbf{x})$.

Stanley: these have the same $X_G(\mathbf{x})$



Statement 2.

 $X_G(\mathbf{x})$ distinguishes trees. In other words,

if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

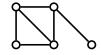
$$X_G(\mathbf{x}) = \sum_{\mathsf{proper}\ \kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

False Statement 1.

 $X_G(\mathbf{x})$ distinguishes graphs.

In other words, if G and H are not isomorphic, then $X_G(\mathbf{x}) \neq X_H(\mathbf{x})$.

Stanley: these have the same $X_G(\mathbf{x})$



Famous Conjecture 1 (Stanley as a question).

 $X_G(\mathbf{x})$ distinguishes trees. In other words,

if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper}\ \kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}.$$

False Statement 1.

 $X_G(\mathbf{x})$ distinguishes graphs.

In other words, if G and H are not isomorphic, then $X_G(\mathbf{x}) \neq X_H(\mathbf{x})$.

Stanley: these have the same $X_G(\mathbf{x})$

Famous Conjecture 1 (Stanley as a question).

 $X_G(\mathbf{x})$ distinguishes trees. In other words,

if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

[Aliniaeifard, Aliste-Prieto, Crew, de Mier, Fougere, Heil, Ji, Loebl, Martin, Morin, Orellana, Scott, Smith, Sereni, Spirkl, Tian, Wagner, Wang, van Willigenburg, Zamora, ...]

$$X_G(\mathbf{x}) = \sum_{\mathsf{proper}\ \kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}.$$

False Statement 1.

 $X_G(\mathbf{x})$ distinguishes graphs.

In other words, if G and H are not isomorphic, then $X_G(\mathbf{x}) \neq X_H(\mathbf{x})$.

Stanley: these have the same $X_G(\mathbf{x})$

Famous Conjecture 1 (Stanley as a question).

 $X_G(\mathbf{x})$ distinguishes trees. In other words,

if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

[Aliniaeifard, Aliste-Prieto, Crew, de Mier, Fougere, Heil, Ji, Loebl, Martin, Morin, Orellana, Scott, Smith, Sereni, Spirkl, Tian, Wagner, Wang, van Willigenburg, Zamora, ...]

Remark. Stanley–Stembridge: another famous $X_G(\mathbf{x})$ conjecture.

A little bit of (quasi)symmetric functions

 $x^2y + y^2x + x^2z + z^2x + y^2z + z^2y$ is a symmetric polynomial in $\{x,y,z\}$ because it doesn't change when you permute the variables.

$$\sum_{a\neq b} x_a^2 x_b = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \text{ is a symmetric function in } \mathbf{x}.$$

Denoted m_{21} .

A little bit of (quasi)symmetric functions

 $x^2y + y^2x + x^2z + z^2x + y^2z + z^2y$ is a symmetric polynomial in $\{x,y,z\}$ because it doesn't change when you permute the variables.

$$\sum_{a\neq b} x_a^2 x_b = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \text{ is a symmetric function in } \mathbf{x}.$$

Denoted m_{21} .

Now consider
$$\sum_{a < b} x_a x_b^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_4^2 + x_2 x_4^2 + \cdots$$
.

It is not symmetric but it is quasisymmetric. Denoted M_{12} .

A little bit of (quasi)symmetric functions

 $x^2y + y^2x + x^2z + z^2x + y^2z + z^2y$ is a symmetric polynomial in $\{x,y,z\}$ because it doesn't change when you permute the variables.

$$\sum_{a\neq b} x_a^2 x_b = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + \cdots \text{ is a symmetric function in } \mathbf{x}.$$

Denoted m_{21} .

Now consider
$$\sum_{a \le b} x_a x_b^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_4^2 + x_2 x_4^2 + \cdots$$
.

It is not symmetric but it is quasisymmetric. Denoted M_{12} .

Definition. A quasisymmetric function is a formal power series (over \mathbb{Z} , say) in x_1, x_2, \ldots of bounded degree whose coefficients are *shift invariant* meaning

coefficient of
$$x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k} = \text{coefficient of } x_{a_1}^{\alpha_1} x_{a_2}^{\alpha_2} \cdots x_{a_k}^{\alpha_k}$$
 whenever $a_1 < a_2 < \cdots < a_k$.

$$M_{12} = \sum_{a < b} x_a x_b^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_4^2 + \cdots$$

$$M_{12} = \sum_{a < b} x_a x_b^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_4^2 + \cdots$$

For a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ the monomial quasisymmetric function is:

$$M_{\alpha} = \sum_{a_1 < a_2 < \dots < a_k} x_{a_1}^{\alpha_1} x_{a_2}^{\alpha_2} \cdots x_{a_k}^{\alpha_k}.$$

The M_{α} form a basis for the algebra QSym of quasisymmetric functions.

$$M_{12} = \sum_{a < b} x_a x_b^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_4^2 + \cdots$$

For a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ the monomial quasisymmetric function is:

$$M_{\alpha} = \sum_{a_1 < a_2 < \dots < a_k} x_{a_1}^{\alpha_1} x_{a_2}^{\alpha_2} \cdots x_{a_k}^{\alpha_k}.$$

The M_{α} form a basis for the algebra QSym of quasisymmetric functions.

QSym is a star of 21st century algebraic combinatorics.

$$M_{12} = \sum_{a < b} x_a x_b^2 = x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_4^2 + \cdots$$

For a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ the monomial quasisymmetric function is:

$$M_{\alpha} = \sum_{a_1 < a_2 < \dots < a_k} X_{a_1}^{\alpha_1} X_{a_2}^{\alpha_2} \cdots X_{a_k}^{\alpha_k}.$$

The M_{α} form a basis for the algebra QSym of quasisymmetric functions.

QSym is a star of 21st century algebraic combinatorics.

A great basis: Gessel's fundamental quasisymmetric functions

$$F_{lpha} = \sum_{eta ext{ refines } lpha} extbf{\textit{M}}_{eta}.$$

Example.

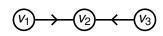
 $F_{32} = M_{32} + M_{212} + M_{122} + M_{1112} + M_{311} + M_{2111} + M_{1211} + M_{11111}$. (M_{221} , for example, does not appear).

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



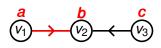
$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$asc(\kappa)$
Λ(V)	n(v2)	$\kappa(v_3)$	a30(n)
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c

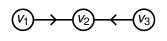
()	()		
$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(V_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(V_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

Chromatic quasisymmetric function:

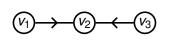
$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\text{proper }\kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

Chromatic quasisymmetric function:

$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\mathsf{proper }\kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

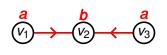
Example.
$$X_{\overrightarrow{c}}(\mathbf{x},t) = (2+2t+2t^2)M_{111} + t^2M_{21} + M_{12}$$
.

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(V_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

Chromatic quasisymmetric function:

$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\mathsf{proper }\kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Example.
$$X_{\overrightarrow{c}}(\mathbf{x},t) = (2+2t+2t^2)M_{111} + \frac{t^2M_{21}}{2} + M_{12}$$
.

Can $X_{\overrightarrow{c}}(\mathbf{x},t)$ distinguish graphs?

By setting t=1, we see that $X_{\overrightarrow{G}}(\mathbf{x},t)$ contains more information than $X_G(\mathbf{x})$.

Can $X_{\overrightarrow{G}}(\mathbf{x}, t)$ distinguish graphs?

By setting t=1, we see that $X_{\overrightarrow{G}}(\mathbf{x},t)$ contains more information than $X_G(\mathbf{x})$.

Statement 3.

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed graphs.

i.e. if \overrightarrow{G} and \overrightarrow{H} are not isomorphic, then $X_{\overrightarrow{G}}(\mathbf{x},t) \neq X_{\overrightarrow{H}}(\mathbf{x},t)$.

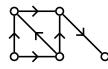
Can $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguish graphs?

By setting t=1, we see that $X_{\overrightarrow{G}}(\mathbf{x},t)$ contains more information than $X_G(\mathbf{x})$.

False Statement 2.

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed graphs.

i.e. if \overrightarrow{G} and \overrightarrow{H} are not isomorphic, then $X_{\overrightarrow{G}}(\mathbf{x},t) \neq X_{\overrightarrow{H}}(\mathbf{x},t)$.

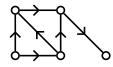


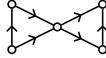
By setting t=1, we see that $X_{\overrightarrow{G}}(\mathbf{x},t)$ contains more information than $X_G(\mathbf{x})$.

False Statement 2.

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed graphs.

i.e. if \overrightarrow{G} and \overrightarrow{H} are not isomorphic, then $X_{\overrightarrow{G}}(\mathbf{x},t) \neq X_{\overrightarrow{H}}(\mathbf{x},t)$.





Statement 4.

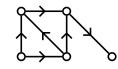
 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees. In other words, if \overrightarrow{T} and \overrightarrow{U} are non-isomorphic directed trees, then $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{D}}(\mathbf{x},t)$.

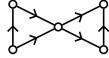
By setting t=1, we see that $X_{\overrightarrow{G}}(\mathbf{x},t)$ contains more information than $X_G(\mathbf{x})$.

False Statement 2.

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed graphs.

i.e. if \overrightarrow{G} and \overrightarrow{H} are not isomorphic, then $X_{\overrightarrow{G}}(\mathbf{x},t) \neq X_{\overrightarrow{H}}(\mathbf{x},t)$.





Motiviating Conjecture 2 (stated as a question by Per Alexandersson and Robin Sulzgruber, 2021).

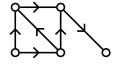
 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees. In other words, if \overrightarrow{T} and \overrightarrow{U} are non-isomorphic directed trees, then $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

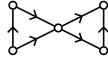
By setting t=1, we see that $X_{\overrightarrow{G}}(\mathbf{x},t)$ contains more information than $X_G(\mathbf{x})$.

False Statement 2.

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed graphs.

i.e. if \overrightarrow{G} and \overrightarrow{H} are not isomorphic, then $X_{\overrightarrow{G}}(\mathbf{x},t) \neq X_{\overrightarrow{H}}(\mathbf{x},t)$.





Motiviating Conjecture 2 (stated as a question by Per Alexandersson and Robin Sulzgruber, 2021).

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees. In other words, if \overrightarrow{T} and \overrightarrow{U} are non-isomorphic directed trees, then $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{H}}(\mathbf{x},t)$.

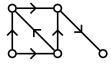
This conjecture was our original goal.

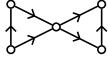
By setting t=1, we see that $X_{\overrightarrow{G}}(\mathbf{x},t)$ contains more information than $X_G(\mathbf{x})$.

False Statement 2.

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed graphs.

i.e. if \overrightarrow{G} and \overrightarrow{H} are not isomorphic, then $X_{\overrightarrow{G}}(\mathbf{x},t) \neq X_{\overrightarrow{H}}(\mathbf{x},t)$.





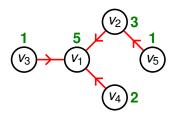
Motiviating Conjecture 2 (stated as a question by Per Alexandersson and Robin Sulzgruber, 2021).

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees. In other words, if \overrightarrow{T} and \overrightarrow{U} are non-isomorphic directed trees, then $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

This conjecture was our original goal. Strategy: translate to posets.

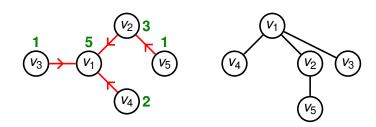
$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\mathsf{proper}\ \kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

- Look at the coefficient of the highest power of t.
- ▶ It's enough to show these coefficients are different for *T* and *U*.
- So just look at colorings where all edges are ascents



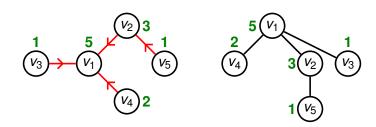
$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\mathsf{proper}\ \kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

- Look at the coefficient of the highest power of t.
- ▶ It's enough to show these coefficients are different for *T* and *U*.
- So just look at colorings where all edges are ascents
- Construct a poset P: v_i ≤_P v_i if there is a directed path from v_i to v_i.



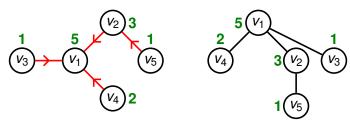
$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\mathsf{proper}\ \kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

- ▶ Look at the coefficient of the highest power of *t*.
- ▶ It's enough to show these coefficients are different for *T* and *U*.
- So just look at colorings where all edges are ascents
- Construct a poset P: v_i ≤_P v_i if there is a directed path from v_i to v_i.

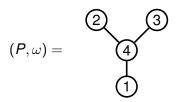


$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\mathsf{proper}\ \kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

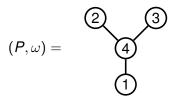
- Look at the coefficient of the highest power of *t*.
- ▶ It's enough to show these coefficients are different for *T* and *U*.
- So just look at colorings where all edges are ascents
- Construct a poset P: $v_i \leq_P v_i$ if there is a directed path from v_i to v_i .
- ► The corresponding coloring is a strict *P*-partition.



Labeled poset (P, ω) : poset P with n elements and a bijection $\omega : P \to \{1, 2, ..., n\}$.

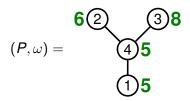


Labeled poset (P, ω) : poset P with n elements and a bijection $\omega : P \to \{1, 2, ..., n\}$.



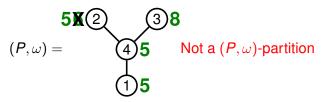
- ▶ f is ordering preserving, i.e. if $a <_P b$ then $f(a) \le f(b)$;
- if $a <_P b$ and $\omega(a) > \omega(b)$, then f(a) < f(b).

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega : P \to \{1, 2, ..., n\}$.



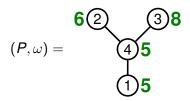
- ▶ f is ordering preserving, i.e. if $a <_P b$ then $f(a) \le f(b)$;
- if $a <_P b$ and $\omega(a) > \omega(b)$, then f(a) < f(b).

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega : P \to \{1, 2, ..., n\}$.



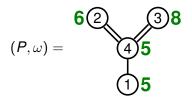
- ▶ f is ordering preserving, i.e. if $a <_P b$ then $f(a) \le f(b)$;
- if $a <_P b$ and $\omega(a) > \omega(b)$, then f(a) < f(b).

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega : P \to \{1, 2, ..., n\}$.



- ▶ f is ordering preserving, i.e. if $a <_P b$ then $f(a) \le f(b)$;
- if $a <_P b$ and $\omega(a) > \omega(b)$, then f(a) < f(b).

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega : P \to \{1, 2, ..., n\}$.



Key definition (Stanley, 1971). A (P, ω) -partition is a map f from P to the positive integers satisfying:

- ▶ f is ordering preserving, i.e. if $a <_P b$ then $f(a) \le f(b)$;
- if $a <_P b$ and $\omega(a) > \omega(b)$, then f(a) < f(b).

We use double edges to denote the strictness conditions

Labeled poset (P, ω) : poset P with n elements and a bijection $\omega : P \to \{1, 2, ..., n\}$.

$$(P,\omega) =$$

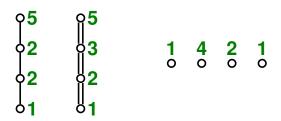
$$\begin{array}{c} \mathbf{6} \bigcirc \mathbf{8} \\ \mathbf{5} \\ \mathbf{5} \end{array}$$

Key definition (Stanley, 1971). A (P, ω) -partition is a map f from P to the positive integers satisfying:

- ▶ f is ordering preserving, i.e. if $a <_P b$ then $f(a) \le f(b)$;
- if $a <_P b$ and $\omega(a) > \omega(b)$, then f(a) < f(b).

We use double edges to denote the strictness conditions and then we can (usually) ignore the underlying labeling.

Motivating examples for (P, ω) -partitions

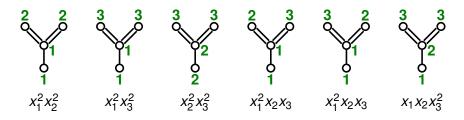


- \triangleright (P,ω) chain with all weak edges: get a partition
- $ightharpoonup (P,\omega)$ chain with all strict edges: get a partition with distinct parts
- $ightharpoonup (P,\omega)$ is an antichain: get a composition

General (P, ω) -partitions interpolate between these classical objects.

The (P, ω) -partition enumerator

Example. Resrict to $f(p) \in \{1, 2, 3\}$.



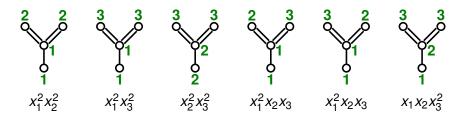
$$K_{(P,\omega)}(x_1,x_2,x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + 2x_1^2 x_2 x_3 + x_1 x_2 x_3^2.$$

In general, the (P, ω) -partition enumerator is by given by:

$$K_{(P,\omega)}(\mathbf{x}) = \sum_{(P,\omega)\text{-partition } f} x_1^{\#f^{-1}(1)} x_2^{\#f^{-1}(2)} \cdots$$

The (P, ω) -partition enumerator

Example. Resrict to $f(p) \in \{1, 2, 3\}$.

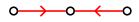


$$K_{(P,\omega)}(x_1,x_2,x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + 2x_1^2 x_2 x_3 + x_1 x_2 x_3^2.$$

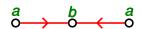
In general, the (P, ω) -partition enumerator is by given by:

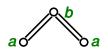
$$K_{(P,\omega)}(\mathbf{x}) = \sum_{(P,\omega)\text{-partition } f} x_1^{\#f^{-1}(1)} x_2^{\#f^{-1}(2)} \cdots$$

Seem familiar?

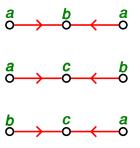


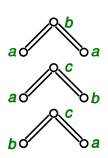
colorings of \overrightarrow{G} with all ascents \longleftrightarrow strict P-partitions a < b < c





colorings of \overrightarrow{G} with all ascents \longleftrightarrow strict P-partitions a < b < c





colorings of \overrightarrow{G} with all ascents \longleftrightarrow strict P-partitions a < b < c

colorings of \overrightarrow{G} with all ascents \longleftrightarrow strict P-partitions a < b < c

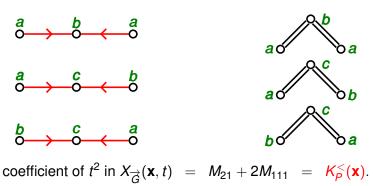
For general trees, coefficient of $t^{\#E}$ in $X_{\overrightarrow{G}}(\mathbf{x},t) = K_P^{<}(\mathbf{x})$.

colorings of \overrightarrow{G} with all ascents \longleftrightarrow strict P-partitions a < b < c



For general trees, coefficient of $t^{\#E}$ in $X_{\overrightarrow{G}}(\mathbf{x},t) = K_P^{<}(\mathbf{x})$. Translation complete. Now study equality among $K_{(P,\omega)}(\mathbf{x})$.

colorings of \overrightarrow{G} with all ascents \longleftrightarrow strict P-partitions a < b < c



For general trees, coefficient of $t^{\#E}$ in $X_{\overrightarrow{G}}(\mathbf{x},t) = K_P^{<}(\mathbf{x})$.

Translation complete. Now study equality among $K_{(P,\omega)}(\mathbf{x})$. [Browning, Féray, Hasebe, Hopkins, Kelly, Liu, M., Tsujie, Ward, Weselcouch]

Statement 5.

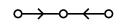
 $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees.

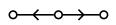
i.e. if tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.

Conjecture 3 (Stated as a question by Takahiro Hasebe & Shuhei Tsujie, 2017).

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.



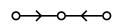


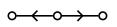
Conjecture 3 (Stated as a question by Takahiro Hasebe & Shuhei Tsujie, 2017).

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.

Key: this conjecture being true would imply Conjecture 2 (that $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees).





Conjecture 3 (Stated as a question by Takahiro Hasebe & Shuhei Tsujie, 2017).

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.

Key: this conjecture being true would imply Conjecture 2 (that $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees).

False Statement 3 (mix strict and weak edges).

 $\mathcal{K}_{(P,\omega)}(\mathbf{x})$ distinguishes labeled posets that are trees.

i.e. if labeled tree posets (P, ω) and (Q, τ) are not isomorphic, then $K_{(P,\omega)}(\mathbf{x}) \neq K_{(Q,\tau)}(\mathbf{x})$.

Statement 6.

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are rooted trees. i.e. if rooted tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.

Theorem 1 [Hasebe & Tsujie, 2017].

 $K_P^<(\mathbf{x})$ distinguishes posets that are rooted trees. i.e. if rooted tree posets P and Q are not isomorphic, then $K_P^<(\mathbf{x}) \neq K_Q^<(\mathbf{x})$.

Theorem 1 [Hasebe & Tsujie, 2017].

 $K_P^<(\mathbf{x})$ distinguishes posets that are rooted trees. i.e. if rooted tree posets P and Q are not isomorphic, then $K_P^<(\mathbf{x}) \neq K_Q^<(\mathbf{x})$.

We'd like to allow a mixture of strict and weak edges

Theorem 1 [Hasebe & Tsujie, 2017].

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are rooted trees. i.e. if rooted tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.

We'd like to allow a mixture of strict and weak edges

Conjecture 4 [Aval, Djenabou, M., 2022].

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes labeled posets that are rooted trees. i.e. if labeled rooted tree posets (P,ω) and (Q,τ) are not isomorphic, then $K_{(P,\omega)}(\mathbf{x}) \neq K_{(Q,\tau)}(\mathbf{x})$.

Theorem 1 [Hasebe & Tsujie, 2017].

 $\mathit{K}^<_{\mathit{P}}(\boldsymbol{x})$ distinguishes posets that are rooted trees.

i.e. if rooted tree posets P and Q are not isomorphic, then $K_P^<(\mathbf{x}) \neq K_Q^<(\mathbf{x})$.

We'd like to allow a mixture of strict and weak edges

Conjecture 4 [Aval, Djenabou, M., 2022].

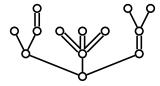
 $K_{(P,\omega)}(\mathbf{x})$ distinguishes labeled posets that are rooted trees. i.e. if labeled rooted tree posets (P,ω) and (Q,τ) are not isomorphic, then $K_{(P,\omega)}(\mathbf{x}) \neq K_{(Q,\tau)}(\mathbf{x})$.

Our main contribution sits between Theorem 1 and Conjecture 4.

Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

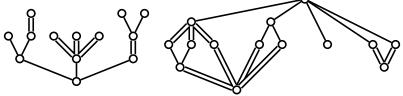
Example.



Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.



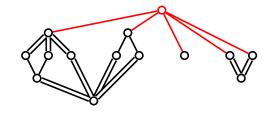
Definition. More generally, we define the set \mathcal{C} of labeled posets recursively by:

- 1. the one-element labeled poset [1] is in C;
- 2. C is closed under disjoint unions $(P, \omega) \sqcup (Q, \omega')$;
- 3. C is closed under the ordinal sums $(P, \omega) \uparrow [1]$ and $(P, \omega) \uparrow [1]$;
- 4. C is closed under the ordinal sums [1] \uparrow (P, ω) and [1] \uparrow (P, ω).

Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.



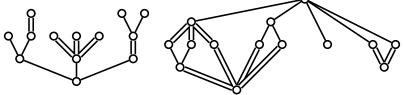
Definition. More generally, we define the set C of labeled posets recursively by:

- 1. the one-element labeled poset [1] is in C;
- 2. C is closed under disjoint unions $(P, \omega) \sqcup (Q, \omega')$;
- 3. C is closed under the ordinal sums $(P, \omega) \uparrow [1]$ and $(P, \omega) \uparrow [1]$;
- 4. C is closed under the ordinal sums [1] \uparrow (P, ω) and [1] \uparrow (P, ω).

Fair trees and a generalization

Definition. A labeled poset that is a tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.



Definition. More generally, we define the set \mathcal{C} of labeled posets recursively by:

- 1. the one-element labeled poset [1] is in C;
- 2. C is closed under disjoint unions $(P, \omega) \sqcup (Q, \omega')$;
- 3. C is closed under the ordinal sums $(P, \omega) \uparrow [1]$ and $(P, \omega) \uparrow [1]$;
- 4. C is closed under the ordinal sums [1] \uparrow (P, ω) and [1] \uparrow (P, ω).

Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C} , so in particular fair trees; i.e. if (P,ω) and (Q,τ) are in \mathcal{C} and not isomorphic, then $K_{(P,\omega)}(\mathbf{x}) \neq K_{(Q,\tau)}(\mathbf{x})$.

Just one previous statement about $K_{(P,\omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges: caterpillar posets where just the spine can have a mixture [M., Lesnevich, 2020]

Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022]. $K_{(P,\omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C} , so in particular fair trees; i.e. if (P,ω) and (Q,τ) are in \mathcal{C} and not isomorphic, then $K_{(P,\omega)}(\mathbf{x}) \neq K_{(Q,\tau)}(\mathbf{x})$.

Just one previous statement about $K_{(P,\omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges: caterpillar posets where just the spine can have a mixture [M., Lesnevich, 2020]

Proposition 1 (crux of the proof) [Aval, Djenabou, M., 2022] If (P, ω) is a connected element of $\mathcal C$ then $K_{(P,\omega)}(\mathbf x)$ is irreducible as a quasisymmetric function.

Our main theorem

Theorem 2 [Aval, Djenabou, M., 2022].

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C} , so in particular fair trees; i.e. if (P,ω) and (Q,τ) are in \mathcal{C} and not isomorphic, then $K_{(P,\omega)}(\mathbf{x}) \neq K_{(Q,\tau)}(\mathbf{x})$.

Just one previous statement about $K_{(P,\omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges: caterpillar posets where just the spine can have a mixture [M., Lesnevich, 2020]

Proposition 1 (crux of the proof) [Aval, Djenabou, M., 2022] If (P, ω) is a connected element of $\mathcal C$ then $K_{(P,\omega)}(\mathbf x)$ is irreducible as a quasisymmetric function.

Irreducibility is also the crux for

- Hasebe & Tsujie;
- ▶ Ricki Ini Liu & Michael Weselcouch ($K_P^{<}(\mathbf{x})$ distinguishes series-parallel posets; needs irreducibility for general connected P with all strict edges, 2020).

Stanley, 1971 and Ira Gessel, 1984:

 $K_{(P,\omega)}(\mathbf{x})$ expands beautifully in *F*-basis.

Example.

Linear extensions: $\mathcal{L}(P,\omega) = \{3412, 1324, 1342, 3124, 3142\}.$

Stanley, 1971 and Ira Gessel, 1984:

 $K_{(P,\omega)}(\mathbf{x})$ expands beautifully in *F*-basis.

Example.

Linear extensions: $\mathcal{L}(P,\omega) = \{3412, 1324, 1342, 3124, 3142\}.$

Stanley, 1971 and Ira Gessel, 1984: $K_{(P,\omega)}(\mathbf{x})$ expands beautifully in F-basis.

Example.

Linear extensions: $\mathcal{L}(P,\omega) = \{3412, 1324, 1342, 3124, 3142\}$. Descent compositions: $comp(\pi)$ 22 22 31 13 121

Stanley, 1971 and Ira Gessel, 1984: $K_{(P,\omega)}(\mathbf{x})$ expands beautifully in F-basis.

Example.

Linear extensions: $\mathcal{L}(P,\omega) = \{34|12, 13|24, 134|2, 3|124, 3|14|2\}$. Descent compositions: comp(π) 22 22 31 13 121

$$K_{(P,\omega)} = 2F_{22} + F_{31} + F_{13} + F_{121}.$$

Stanley, 1971 and Ira Gessel, 1984: $K_{(P,\omega)}(\mathbf{x})$ expands beautifully in F-basis.

Example.

Linear extensions: $\mathcal{L}(P,\omega) = \{34|12, 13|24, 134|2, 3|124, 3|14|2\}$. Descent compositions: $comp(\pi)$ 22 22 31 13 121

$$K_{(P,\omega)} = 2F_{22} + F_{31} + F_{13} + F_{121}.$$

Theorem [Gessel & Stanley]. For a labeled poset (P, ω) ,

$$\mathcal{K}_{(P,\omega)} = \sum_{\pi \in \mathcal{L}(P,\omega)} \mathcal{F}_{\mathsf{comp}(\pi)}.$$

Recall Stanley's **Famous Conjecture 1.** $X_G(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

Recall Stanley's

Famous Conjecture 1. $X_G(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

Surprising Conjecture 5 [Nick Loehr & Greg Warrington, 2022]. $X_G(1, q, q^2, \ldots, q^{n-1})$ distinguishes trees with n vertices, i.e. if T and U are non-isomorphic trees with n vertices, then

$$X_T(1, q, q^2, \dots, q^{n-1}) \neq X_U(1, q, q^2, \dots, q^{n-1}).$$

Recall **Conjecture 3.** $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.

Recall **Conjecture 3.** $K_P^{\leq}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_P^{\leq}(\mathbf{x}) \neq K_Q^{\leq}(\mathbf{x})$.

Conjecture 6 [Aval, Djenabou, M., 2022].

 $K_P^{<}(1, q, q^2, \dots, q^{n-1})$ distinguishes tree posets with n elements, i.e. if T and U are non-isomorphic tree posets with n vertices, then

$$K_P^{<}(1,q,q^2,\ldots,q^{n-1}) \neq K_U^{<}(1,q,q^2,\ldots,q^{n-1}).$$

Recall **Conjecture 3.** $K_P^{\leq}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_P^{\leq}(\mathbf{x}) \neq K_Q^{\leq}(\mathbf{x})$.

Conjecture 6 [Aval, Djenabou, M., 2022].

 $K_P^{<}(1,q,q^2,\ldots,q^{n-1})$ distinguishes tree posets with n elements, i.e. if T and U are non-isomorphic tree posets with n vertices, then

$$K_P^{<}(1,q,q^2,\ldots,q^{n-1}) \neq K_U^{<}(1,q,q^2,\ldots,q^{n-1}).$$

Remark. This specialization has a nice interpretation for $K_{(P,\omega)}$: if

$$K_{(P,\omega)}(1,q,q^2,\ldots,q^{k-1}) = \sum_{N>0} a(N)q^N,$$

then we see that a(N) counts the number of (P, ω) -partitions $f: P \to \{0, \dots, k-1\}$ of N.

Recall **Conjecture 3.** $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees, i.e. if tree posets P and Q are not isomorphic, then $K_P^{<}(\mathbf{x}) \neq K_Q^{<}(\mathbf{x})$.

Conjecture 6 [Aval, Djenabou, M., 2022].

 $K_P^{<}(1,q,q^2,\ldots,q^{n-1})$ distinguishes tree posets with n elements, i.e. if T and U are non-isomorphic tree posets with n vertices, then

$$K_P^{<}(1,q,q^2,\ldots,q^{n-1}) \neq K_U^{<}(1,q,q^2,\ldots,q^{n-1}).$$

Remark. This specialization has a nice interpretation for $K_{(P,\omega)}$: if

$$K_{(P,\omega)}(1,q,q^2,\ldots,q^{k-1}) = \sum_{N>0} a(N)q^N,$$

then we see that a(N) counts the number of (P, ω) -partitions $f: P \to \{0, \dots, k-1\}$ of N.

Thanks for your attention!