A Combinatorial Classification of Skew Schur Functions

Peter McNamara Bucknell University

Joint work with Stephanie van Willigenburg

Special Session on Algebraic Combinatorics AMS Sectional Meeting, Fayetteville, AR 3 November 2006

Slides and paper available from www.facstaff.bucknell.edu/pm040/

When are Two Skew Schur Functions Equal?

Peter McNamara Bucknell University

Joint work with Stephanie van Willigenburg

Special Session on Algebraic Combinatorics AMS Sectional Meeting, Fayetteville, AR 3 November 2006

Slides and paper available from www.facstaff.bucknell.edu/pm040/

- Background: skew Schur functions
- Recent work on skew Schur function equality
- Skew Schur equivalence
- Composition of skew diagrams, main results
- Conjectures, open problems

Schur functions

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

Young diagram. Example:

$$\lambda = (\mathbf{4}, \mathbf{4}, \mathbf{3}, \mathbf{1})$$

Schur functions

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

- Young diagram.
 Example:
 - $\lambda = (4, 4, 3, 1)$
- Semistandard Young tableau (SSYT)

The Schur function s_{λ} in the variables $x = (x_1, x_2, ...)$ is then defined by

$$\mathbf{s}_{\lambda} = \sum_{\text{SSYT } T} \mathbf{x}_1^{\#1\text{'s in } T} \mathbf{x}_2^{\#2\text{'s in } T} \cdots$$

Example

 $s_{4431} = x_1 x_3^2 x_4^4 x_5 x_6^2 x_7 x_9 + \cdots.$

Skew Schur functions

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

- μ fits inside λ .
- Young diagram. Example: λ/µ = (4, 4, 3, 1)/(3, 1)
- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda/\mu}$ in the variables $x = (x_1, x_2, ...)$ is then defined by

$$s_{\lambda/\mu} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots$$

Example

 $s_{4431/31} = x_4^3 x_5 x_6^2 x_7 x_9 + \cdots$

- Skew Schur functions are symmetric in the variables $x = (x_1, x_2, ...)$.
- The Schur functions form a basis for the algebra of symmetric functions (over Q, say).
- Connections with Algebraic Geometry, Representation Theory

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

- HDL II: Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):
 - The more general setting of binomial syzygies

$$cs_{D_1}s_{D_2}\cdots s_{D_m}=c's_{D'_1}s_{D'_2}\cdots s_{D'_n}$$

is equivalent to understanding equalities among connected skew diagrams.

- 3 operations for generating skew diagrams with equal skew Schur functions.
- Necessary conditions, but of a different flavor.

- ► HDL III: McN., Steph van Willigenburg (2006):
 - An operation that encompasses the three operations of HDL II.
 - Theorem that generalizes all previous results.
 Explains the 6 missing equivalences from HDL II.
 - Conjecture for necessary and sufficient conditions for s_{λ/α} = s_{μ/β}. Reflects classification of HDL I for ribbons.

Skew diagrams (skew shapes) D, E. If $s_D = s_E$, we will write $D \sim E$.

We want to classify all equivalences classes, thereby classifying all skew Schur functions.

The basic building block

EC2, Exercise 7.56(a) [2-]

Theorem

 $D \sim D^*$, where D^* denotes D rotated by 180°.

The basic building block

EC2, Exercise 7.56(a) [2-]

Theorem

 $D \sim D^*$, where D^* denotes D rotated by 180°.

Goal: Use this equivalence to build other skew equivalences.

EC2, Exercise 7.56(a) [2-]

Theorem

 $D \sim D^*,$ where D^* denotes D rotated by $180^\circ.$

Goal: Use this equivalence to build other skew equivalences.

Where we're headed:

Theorem

Suppose we have skew diagrams D, D' and E satisfying certain assumptions. If $D \sim D'$ then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*.$$

Main definition: composition of skew diagrams.

Theorem [McN., van Willigenburg] If $D \sim D'$, then

 $D' \circ E \sim D \circ E \sim D \circ E^*.$

Actually, the previous slide was just a warm-up....

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Actually, the previous slide was just a warm-up....

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.

Our interest: *W* lies in both the top and bottom of *E*. We write E = WOW.

Actually, the previous slide was just a warm-up....

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.

Our interest: *W* lies in both the top and bottom of *E*. We write E = WOW.

Hypotheses: (inspired by hypotheses of RSvW)

- 1. W is maximal given its set of diagonals.
- 2. W_{ne} and W_{sw} are separated by at least one diagonal.
- 3. $E \setminus W_{ne}$ and $E \setminus W_{sw}$ are both connected skew diagrams.

Construction of \overline{W} and \overline{O} :

Construction of \overline{W} and \overline{O} :

Construction of \overline{W} and \overline{O} :

Hypothesis 4. \overline{W} is never adjacent to \overline{O} .

Construction of \overline{W} and \overline{O} :

Hypothesis 4. \overline{W} is never adjacent to \overline{O} .

Conjecture. Suppose we have skew diagrams D, D' with $D \sim D'$ and E = WOW satisfying Hypotheses 1-4, then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*$$

Construction of \overline{W} and \overline{O} .

Hypothesis 4. \overline{W} is never adjacent to \overline{O} .

Conjecture. Suppose we have skew diagrams D, D' with $D \sim D'$ and E = WOW satisfying Hypotheses 1-4, then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*.$$

Hypothesis 5. In E = WOW, at least one copy of W has just one cell adjacent to O. ww

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams D, D' with $D \sim D'$ and E = WOW satisfying Hypotheses 1-5, then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*.$$

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams D, D' with $D \sim D'$ and E = WOW satisfying Hypotheses 1-5, then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*.$$

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*$$
.

15 boxes: second of the non-RSvW examples

A word or two about the proof

The hard part: An expression for $s_{D_{\odot W}E}$ in terms of s_D , s_E , $s_{\overline{W}}$, $s_{\overline{O}}$:

$$\mathbf{s}_{\mathsf{D}\circ_{W}\mathsf{E}}(\mathbf{s}_{\overline{W}})^{|\widehat{\mathsf{D}}|}(\mathbf{s}_{\overline{\mathsf{O}}})^{|\widetilde{\mathsf{D}}|} = \pm(\mathbf{s}_{\mathsf{D}}\circ_{W}\mathbf{s}_{\mathsf{E}}).$$

The easy part: The blue portion is invariant if we replace *D* by *D'* when $D' \sim D$. Similary, can replace *E* by E^* .

Proof of expression uses:

- Hamel-Goulden determinants. See paper of Chen, Yan, Yang.
- Sylvester's Determinantal Identity.

Open problems

Removing Hypothesis 5.

 $D \circ_W E$ has 23 boxes, and $D \circ_W E \sim D^* \circ_W E$:

Main open problem

Theorem. [McN, van Willigenburg] Skew diagrams $E_1, E_2, ..., E_r$ $E_i = W_i O_i W_i$ satisfies Hypotheses 1-5 E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i . Then

 $((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \ \sim \ ((\cdots (E_1' \circ_{W_2'} E_2') \circ_{W_3'} E_3') \cdots) \circ_{W_r} E_r' \,.$

Main open problem

Theorem. [McN, van Willigenburg] Skew diagrams E_1, E_2, \ldots, E_r $E_i = W_i O_i W_i$ satisfies Hypotheses 1-5 E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i . Then

$$((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \sim ((\cdots (E_1' \circ_{W_2'} E_2') \circ_{W_3'} E_3') \cdots) \circ_{W_r} E_r'.$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams *E* and *E'* satisfy $E \sim E'$ if and only if, for some *r*,

$$\begin{array}{rcl} E & = & ((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \\ E' & = & ((\cdots (E'_1 \circ_{W'_2} E'_2) \circ_{W'_3} E'_3) \cdots) \circ_{W_r} E'_r \ , \ \text{where} \end{array}$$

• $E_i = W_i O_i W_i$ satsifies Hypotheses 1-4 for all *i*, • E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i .

Main open problem

Theorem. [McN, van Willigenburg] Skew diagrams E_1, E_2, \ldots, E_r $E_i = W_i O_i W_i$ satisfies Hypotheses 1-5 E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i . Then

$$((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \sim ((\cdots (E_1' \circ_{W_2'} E_2') \circ_{W_3'} E_3') \cdots) \circ_{W_r} E_r'.$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams *E* and *E'* satisfy $E \sim E'$ if and only if, for some *r*,

$$\begin{array}{lll} E & = & ((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \\ E' & = & ((\cdots (E'_1 \circ_{W'_2} E'_2) \circ_{W'_3} E'_3) \cdots) \circ_{W_r} E'_r \ , \ \text{where} \end{array}$$

• $E_i = W_i O_i W_i$ satsifies Hypotheses 1-4 for all *i*, • E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i . True for $n \le 19$.

- A definition of skew diagram composition. Encompasses the composition, amalgamated composition and staircase operations of RSvW.
- Theorem that generalizes all previous results.
 In particular, explains the 6 missing equivalences from HDL II.
- Conjecture for necessary and sufficient conditions for $E \sim E'$.