A Combinatorial Classification of Skew Schur Functions

Peter McNamara
Bucknell University

Joint work with Stephanie van Willigenburg
Special Session on Algebraic Combinatorics
AMS Sectional Meeting, Fayetteville, AR
3 November 2006

Slides and paper available from
www.facstaff.bucknell.edu/pm040/

When are Two Skew Schur Functions Equal?

Peter McNamara
Bucknell University

Joint work with Stephanie van Willigenburg

Special Session on Algebraic Combinatorics AMS Sectional Meeting, Fayetteville, AR

3 November 2006

Slides and paper available from
www.facstaff.bucknell.edu/pm040/

- Background: skew Schur functions
- Recent work on skew Schur function equality
- Skew Schur equivalence
- Composition of skew diagrams, main results
- Conjectures, open problems

Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram.

Example:

$\lambda=(4,4,3,1)$

Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram. Example: $\lambda=(4,4,3,1)$
- Semistandard Young tableau (SSYT)

The \quad Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example

$s_{4431}=x_{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- μ fits inside λ.
- Young diagram. Example:

$$
\lambda / \mu=(4,4,3,1) /(3,1)
$$

- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 ' s \text { in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example

$s_{4431 / 31}=\quad x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

- Skew Schur functions are symmetric in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$.
- The Schur functions form a basis for the algebra of symmetric functions (over \mathbb{Q}, say).
- Connections with Algebraic Geometry, Representation Theory

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

\sim

- HDL II: Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):
- The more general setting of binomial syzygies

$$
c s_{D_{1}} s_{D_{2}} \cdots s_{D_{m}}=c^{\prime} s_{D_{1}^{\prime}} s_{D_{2}^{\prime}} \cdots s_{D_{n}^{\prime}}
$$

is equivalent to understanding equalities among connected skew diagrams.

- 3 operations for generating skew diagrams with equal skew Schur functions.
- Necessary conditions, but of a different flavor.
- HDL III: McN., Steph van Willigenburg (2006):
- An operation that encompasses the three operations of HDL II.
- Theorem that generalizes all previous results. Explains the 6 missing equivalences from HDL II.
- Conjecture for necessary and sufficient conditions for $s_{\lambda / \alpha}=s_{\mu / \beta}$. Reflects classification of HDL I for ribbons.

Skew diagrams (skew shapes) D, E. If $s_{D}=s_{E}$, we will write $D \sim E$.

Example

We want to classify all equivalences classes, thereby classifying all skew Schur functions.

The basic building block

EC2, Exercise 7.56(a) [2-]
Theorem
$D \sim D^{*}$, where D^{*} denotes D rotated by 180°.

EC2, Exercise 7.56(a) [2-]
Theorem
$D \sim D^{*}$, where D^{*} denotes D rotated by 180°.
Goal: Use this equivalence to build other skew equivalences.

The basic building block

EC2, Exercise 7.56(a) [2-]
Theorem
$D \sim D^{*}$, where D^{*} denotes D rotated by 180°.
Goal: Use this equivalence to build other skew equivalences.
Where we're headed:
Theorem
Suppose we have skew diagrams D, D^{\prime} and E satisfying certain assumptions. If $D \sim D^{\prime}$ then

$$
D^{\prime} \circ_{W} E \sim D \circ_{W} E \sim D \circ_{W^{*}} E^{*} .
$$

Main definition: composition of skew diagrams.

Composition of skew diagams

Theorem [McN., van Willigenburg] If $D \sim D^{\prime}$, then

$$
D^{\prime} \circ E \sim D \circ E \sim D \circ E^{*} .
$$

Amalgamated Compositions

Actually, the previous slide was just a warm-up....
A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Amalgamated Compositions

Actually, the previous slide was just a warm-up....
A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.
Our interest: W lies in both the top and bottom of E. We write $E=W O W$.

Amalgamated Compositions

Actually, the previous slide was just a warm-up....
A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.
Our interest: W lies in both the top and bottom of E. We write
$E=W O W$.
Hypotheses: (inspired by hypotheses of RSvW)

1. W is maximal given its set of diagonals.
2. $W_{n e}$ and $W_{s w}$ are separated by at least one diagonal.
3. $E \backslash W_{n e}$ and $E \backslash W_{s w}$ are both connected skew diagrams.

Amalgamated Compositions

$=$

Amalgamated Compositions

$$
=
$$

Amalgamated Compositions

Amalgamated Compositions

$=$

${ }^{\circ}$ 日

II

15 boxes: first of the non-RSvW examples

Amalgamated Compositions

$$
=
$$

=

15 boxes: first of the non-RSvW examples If $W=\emptyset$, we get the regular compositions:

What are the results?
Construction of \bar{W} and \bar{O} :

What are the results?
Construction of \bar{W} and \bar{O} :

What are the results?
Construction of \bar{W} and \bar{O} :

Hypothesis $4 . \bar{W}$ is never adjacent to \bar{O}.

What are the results?
Construction of \bar{W} and \bar{O} :

Hypothesis $4 . \bar{W}$ is never adjacent to \bar{O}.
Conjecture. Suppose we have skew diagrams D, D^{\prime} with $D \sim D^{\prime}$ and $E=$ WOW satisfying Hypotheses 1-4, then

$$
D^{\prime} \circ_{W} E \sim D \circ_{W} E \sim D \circ_{W^{*}} E^{*} .
$$

What are the results?

Construction of \bar{W} and \bar{O} :

Hypothesis $4 . \bar{W}$ is never adjacent to \bar{O}.
Conjecture. Suppose we have skew diagrams D, D^{\prime} with $D \sim D^{\prime}$ and $E=W O W$ satisfying Hypotheses 1-4, then

$$
D^{\prime} \circ_{W} E \sim D \circ_{W} E \sim D \circ_{W^{*}} E^{*} .
$$

Hypothesis $5 . \ln E=$ WOW, at least one copy of W has just one cell adjacent to O.

What are the results?

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams D, D^{\prime} with $D \sim D^{\prime}$ and $E=$ WOW satisfying Hypotheses $1-5$, then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$

What are the results?

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams D, D^{\prime} with $D \sim D^{\prime}$ and $E=$ WOW satisfying Hypotheses $1-5$, then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$

15 boxes: second of the non-RSvW examples

A word or two about the proof

The hard part: An expression for $s_{D o_{W} E}$ in terms of $s_{D}, s_{E}, s_{\bar{W}}, s_{O}$:

$$
s_{D \circ W E}\left(s_{W}\right)^{|\hat{D}|}\left(s_{O}\right)^{|\widetilde{D}|}= \pm\left(s_{D} \circ{ }_{W} s_{E}\right) .
$$

The easy part: The blue portion is invariant if we replace D by D^{\prime} when $D^{\prime} \sim D$. Similary, can replace E by E^{*}.

Proof of expression uses:

- Hamel-Goulden determinants. See paper of Chen, Yan, Yang.
- Sylvester's Determinantal Identity.

Open problems

- Removing Hypothesis 5.

$$
D=\square \quad E=\square
$$

$D \circ{ }_{w} E$ has 23 boxes, and $D{ }_{w} E \sim D^{*}{ }_{\text {ow }} E$:

Main open problem

Theorem. [McN, van Willigenburg]
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$
$E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-5
E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}. Then

$$
\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime} .
$$

Main open problem

Theorem. [McN, van Willigenburg]
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$
$E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-5
E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.
Then

$$
\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime} .
$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ W_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ W_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satsifies Hypotheses 1-4 for all i,
$\circ E_{i}^{\prime}$ and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.

Main open problem

Theorem. [McN, van Willigenburg]
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$
$E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-5
E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.
Then

$$
\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime} .
$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ W_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ W_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satsifies Hypotheses 1-4 for all i,
$\circ E_{i}^{\prime}$ and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.
True for $n \leq 19$.
- A definition of skew diagram composition. Encompasses the composition, amalgamated composition and staircase operations of RSvW.
- Theorem that generalizes all previous results. In particular, explains the 6 missing equivalences from HDL II.
- Conjecture for necessary and sufficient conditions for $E \sim E^{\prime}$.

