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» No overlap allowed
» Must completely cover the region

Tiling puzzles Peter McNal



» No overlap allowed

» Must completely cover the region: area of region equals the sum
of the areas of the tiles.
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» Must completely cover the region: area of region equals the sum
of the areas of the tiles.
Applications:
» Archaeology: reassembling fragments.

» Packing: loading trucks, allocating computer memory, scheduling
airline flights.
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» No overlap allowed
» Must completely cover the region: area of region equals the sum
of the areas of the tiles.
Applications:
» Archaeology: reassembling fragments.

» Packing: loading trucks, allocating computer memory, scheduling
airline flights.

The kind of questions a mathematician might ask:
» Is there a tiling with the given pieces?
» |s it easy to prove that a tiling doesn’t exist?
» How many tilings are there?
» What does a typical tiling look like?

Based on an expository paper of Richard Stanley and Federico
Ardila.
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Is there a tiling?

Tetris pieces:

LITT] [ L | |
L H |
Can we tile a 6 x 5 rectangle with the tetris pieces, using each piece
as many times as we like?

Tiling puzzles Peter McNamara



Is there a tiling?

Tetris pieces:
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Can we tile a 6 x 5 rectangle with the tetris pieces, using each piece
as many times as we like?

No.
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Is there a tiling?

Tetris pieces:

Can we tile a 6 x 5 rectangle with the tetris pieces, using each piece
as many times as we like?

No.

Each piece has 4 boxes.
There are 30 boxes to fill.
4 does not divide into 30 evenly. (Divisibility argument)
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Is there a tiling of a chessboard with dominoes?

Dominoes:

L[]

Can we tile a chessboard with dominoes?
64 squares.
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Is there a tiling of a chessboard with dominoes?

Dominoes:

L[]

Can we tile a chessboard with dominoes? Yes.
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Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes?
62 squares: 30 black, 32 white.
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Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes? No.
62 squares: 30 black, 32 white.

Every domino covers exactly one black square and one white square.
But there are not the same number of white squares as black
squares. (Coloring argument)
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Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square?
62 squares: 31 black, 31 white.
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Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? VYes.
62 squares: 31 black, 31 white.

EEEcEEs
EEE I
oo
T T
non

[ [ | B ]
i nin
- -

Tiling puzzles Peter McNamara



Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? VYes.
62 squares: 31 black, 31 white.
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Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? VYes.
62 squares: 31 black, 31 white.
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Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? VYes.
62 squares: 31 black, 31 white.
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Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? VYes.
62 squares: 31 black, 31 white.




Is there a tiling of a fair holey chessboard?

What if we remove any 2 black and any 2 white squares?
60 squares: 30 black, 30 white.
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Is there a tiling of a fair holey chessboard?

What if we remove any 2 black and any 2 white squares? No.
60 squares: 30 black, 30 white.
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How many tilings of a chessboard with dominoes?
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How many tilings of a chessboard with dominoes?

Fisher & Temperley, Kasteleyn (independently, 1961):
The number of tilings of a 2m x 2n rectangle with dominoes is

n

K
mn 2
4 /I ! kl |1 <COS + Ccos 72!’1—!— 1> .

For example, for a chessboard m = n = 4, and we get

4

4161_[ H (cos + cos? k97r> .

j=1k=1
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How many tilings of a chessboard with dominoes?

Fisher & Temperley, Kasteleyn (independently, 1961):
The number of tilings of a 2m x 2n rectangle with dominoes is

n
km
mn 2
4 ||||<cos +cos TR 1>.

Jj=1 k=1

For example, for a chessboard m = n = 4, and we get

4

4161_[ H (cos + cos? k97r> .

j=1k=1

This is an amazing formula!
e.g. cos?20° = 0.8830222216.. . ..
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How many tilings of a chessboard with dominoes?

Fisher & Temperley, Kasteleyn (independently, 1961):
The number of tilings of a 2m x 2n rectangle with dominoes is

n
km
mn 2
4 ||||<cos +cos TR 1>.

Jj=1 k=1

For example, for a chessboard m = n = 4, and we get

4

4161_[ H (cos + cos? k97r> .

j=1k=1

This is an amazing formula!
e.g. cos?20° = 0.8830222216.. . ..

Answer = 12,988,816 .
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How many tilings of Aztec diamonds with dominoes?

AZ(3) AZ(7)
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How many tilings of Aztec diamonds with dominoes?

Tilings with dominoes:

AZ(7)

Tiling puzzles

Peter McNamara




How many tilings of Aztec diamonds (continued)

2.8,64,1024, ... .

Elkies, Kuperberg, Larsen & Propp (1992):
n(n+1
In general, AZ(n) has 2" tilings with dominoes. (4 proofs)

Now around 12 proofs, but none are really simple.

Open Problem
Find a simple proof that the number of tilings of AZ(n) is 2

n(n+1)
2
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What does a typical tiling look like?

No obvious structure.
But if we work with Aztec diamonds....
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A typical tiling of AZ(50)
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Tilings and global warming

Jockusch, Propp and Shor, 1995.

The Arctic Circle Theorem. Fix e > 0. Then for all sufficiently large n,
all but an ¢ fraction of the domino tilings of AZ(n) will have a
temperate zone whose boundary stays uniformly within distance en of
the inscribed circle.

temperate
zone

In other words: usually, almost everything outside the circle is
“frozen” in place.

Similar phenomena observed for other cases.
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“To infinity and beyond” — Lightyear, Buzz, 1995
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“To infinity and beyond” — Lightyear, Buzz, 1995

Sierpinski triangle:

AW
Al

Area of black portion =1 -
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“To infinity and beyond” — Lightyear, Buzz, 1995

Sierpinski triangle:

Area of black portion =1 - % . % = 0.

Conclusion: in the limit, the white triangles tile the big triangle.
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“To infinity and beyond” — Lightyear, Buzz, 1995

Sierpinski triangle:

Area of black portion =1 - % . % = 0.

Conclusion: in the limit, the white triangles tile the big triangle.

N 1 1/3\  1/38)\?
Area of white potion = 4+4<4>+4<4> 4.
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“To infinity and beyond” — Lightyear, Buzz, 1995

Sierpinski triangle:

Area of black portion =1 - % . % = 0.

Conclusion: in the limit, the white triangles tile the big triangle.

N 1 1/3\  1/38)\?
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Sierpinski triangle side comment

The Sierpinski triangle is very fashionable:
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Sierpinski triangle side comment

The Sierpinski triangle is very fashionable:

Designer: Eri Matsui
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Another Sierpinski triangle side comment

Another famous triangle is Pascal’s triangle.
Take the first 2" rows:

1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
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Another Sierpinski triangle side comment

Another famous triangle is Pascal’s triangle.
Take the first 2" rows:
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From a series to a tiling

1 1 1 1
Calc 2: e = 1.
12 2x3 3x4 4x5"
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From a series to a tiling

Calc 2: 1 1 1

1
%2  2x3 3x4 ax5t =T
2 6 1 20 -
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From a series to a tiling

1 1 1 1
Calc 2: R
12 2x3 3x4 4x5" 1
2 6 T 12 T 20 = b

1/5
+1/?’--'-:I-MI:I-'- I:I T
112 — 73 1/4
; / //
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From a series to a tiling

Calc 2: 1 1 1

1
Tx2 2x3 3x4 "4x5" 1.
1 + 1 + l + l NE— 1
2 6 " 12 T 20 = b
1/2 + 1/3 + 1’4 1/5|;| +.
1 / // [
! ?
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From a series to a tiling

Calc 2: 1 1 1
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From a series to a tiling
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From a series to a tiling

1 1 1 1
Calc 2: R
Tx2 2x3 3x4 "4x5" 1
1 + 1 + l + l NE— 1
2 6 " 12 T 20 = b

1/5
+:I./3-+1/4|:|+ - T
12 — 173 14
: / //

Open Problem
Find a way to tile the whole region, or show that no tiling exists.
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Tiling infinite regions

Alhambra palace, Granada, Spain.
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Tiling infinite regions

Alhambra palace, Granada, Spain.

Abstract Algebra: There are essentially 17 different tiling patterns of
the plane that have translation symmetries in two different directions.
Plane crystallographic groups / wallpaper groups
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Another Alhambra tiling
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Escher tilings

Maurits Cornelis Escher (1898-1972): Although | am absolutely
without training in the exact sciences, | often seem to have more in
common with mathematicians that with my fellow artists.
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Another Escher tiling
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Opposite direction: no symmetry at all!

Sir Roger Penrose
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Another Penrose tiling
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PENNSTATE

Conference on Undergraduate Research in Mathematics

Penn State University, November 9-10, 2007

This conference will showcase mathematical
research by undergraduate students through
15-minute contributed talks and posters.

5
N

The conference social program includes:
+ A Friday evening reception and dinner

A Friday evening stroll to the famous Penn
State Berkey Creamery for ice cream

+ Breakfast and lunch on Saturday

« Tours of the Mathematics Department's
facilities, including the William Pritchard Fluid
Mechanics Lab and the SCREMS Lab

« Lots of coffee and cookie breaks!

To register, go to:
www.math.psu.edu/ug/curm/conference07/

For more information about the conference,
contact the co-coordinators, James Sellers and
Diane Henderson, at: curm@math.psu.edu

Contact peter.mcnamara@bucknell.edu or
emily.dryden@bucknell.edu.
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