Tiling puzzles

Peter McNamara

Student Colloquium Series
 Bucknell University
 25 October 2007

Slides available from

www.facstaff.bucknell.edu/pm040/research.html

What is a tiling?

Tangrams:

What is a tiling?

Tangrams:

Tilings

- No overlap allowed
- Must completely cover the region

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.
- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating computer memory, scheduling airline flights.
- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating computer memory, scheduling airline flights.
The kind of questions a mathematician might ask:
- Is there a tiling with the given pieces?
- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating computer memory, scheduling airline flights.
The kind of questions a mathematician might ask:
- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?
- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating computer memory, scheduling airline flights.
The kind of questions a mathematician might ask:
- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?
- How many tilings are there?
- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating computer memory, scheduling airline flights.
The kind of questions a mathematician might ask:
- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?
- How many tilings are there?
- What does a typical tiling look like?
- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating computer memory, scheduling airline flights.
The kind of questions a mathematician might ask:
- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?
- How many tilings are there?
- What does a typical tiling look like?

Based on an expository paper of Richard Stanley and Federico Ardila.

Is there a tiling?

Tetris pieces:

Can we tile a 6×5 rectangle with the tetris pieces, using each piece as many times as we like?

Is there a tiling?

Tetris pieces:

Can we tile a 6×5 rectangle with the tetris pieces, using each piece as many times as we like?

No.

Is there a tiling?

Tetris pieces:
\square

Can we tile a 6×5 rectangle with the tetris pieces, using each piece as many times as we like?

No.
Each piece has 4 boxes.
There are 30 boxes to fill.
4 does not divide into 30 evenly. (Divisibility argument)

Is there a tiling of a chessboard with dominoes?

Dominoes:
\square
\square
Can we tile a chessboard with dominoes? 64 squares.

Is there a tiling of a chessboard with dominoes?

Dominoes:
\square
\square
Can we tile a chessboard with dominoes? Yes. 64 squares.

Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes? 62 squares: 30 black, 32 white.

Can we tile a this modified chessboard with dominoes? No. 62 squares: 30 black, 32 white.

Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes? No. 62 squares: 30 black, 32 white.

Every domino covers exactly one black square and one white square.
But there are not the same number of white squares as black squares. (Coloring argument)

What if we remove 1 black and 1 white square? 62 squares: 31 black, 31 white.

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

What if we remove any 2 black and any 2 white squares? 60 squares: 30 black, 30 white.

What if we remove any 2 black and any 2 white squares? No. 60 squares: 30 black, 30 white.

How many tilings of a chessboard with dominoes?

Fisher \& Temperley, Kasteleyn (independently, 1961):
The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right) .
$$

For example, for a chessboard $m=n=4$, and we get

$$
4^{16} \prod_{j=1}^{4} \prod_{k=1}^{4}\left(\cos ^{2} \frac{j \pi}{9}+\cos ^{2} \frac{k \pi}{9}\right) .
$$

How many tilings of a chessboard with dominoes?

Fisher \& Temperley, Kasteleyn (independently, 1961):
The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right) .
$$

For example, for a chessboard $m=n=4$, and we get

$$
4^{16} \prod_{j=1}^{4} \prod_{k=1}^{4}\left(\cos ^{2} \frac{j \pi}{9}+\cos ^{2} \frac{k \pi}{9}\right) .
$$

This is an amazing formula!
e.g. $\cos ^{2} 20^{\circ}=0.8830222216 \ldots$

How many tilings of a chessboard with dominoes?

Fisher \& Temperley, Kasteleyn (independently, 1961):
The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right) .
$$

For example, for a chessboard $m=n=4$, and we get

$$
4^{16} \prod_{j=1}^{4} \prod_{k=1}^{4}\left(\cos ^{2} \frac{j \pi}{9}+\cos ^{2} \frac{k \pi}{9}\right) .
$$

This is an amazing formula!
e.g. $\cos ^{2} 20^{\circ}=0.8830222216 \ldots$

Answer $=12,988,816$.

How many tilings of Aztec diamonds with dominoes?

AZ(1)

Tilings with dominoes:

$2,8,64,1024, \ldots$.

Elkies, Kuperberg, Larsen \& Propp (1992):
In general, $A Z(n)$ has $2^{\frac{n(n+1)}{2}}$ tilings with dominoes. (4 proofs)

Now around 12 proofs, but none are really simple.

Open Problem

Find a simple proof that the number of tilings of $A Z(n)$ is $2^{\frac{n(n+1)}{2}}$.

No obvious structure.
But if we work with Aztec diamonds....

A typical tiling of AZ(50)

Tilings and global warming

Jockusch, Propp and Shor, 1995.
The Arctic Circle Theorem. Fix $\varepsilon>0$. Then for all sufficiently large n, all but an ε fraction of the domino tilings of $A Z(n)$ will have a temperate zone whose boundary stays uniformly within distance εn of the inscribed circle.

In other words: usually, almost everything outside the circle is "frozen" in place.

Similar phenomena observed for other cases.

"To infinity and beyond" - Lightyear, Buzz, 1995

Sierpinski triangle:

"To infinity and beyond" - Lightyear, Buzz, 1995
Sierpinski triangle:

"To infinity and beyond" - Lightyear, Buzz, 1995
Sierpinski triangle:

"To infinity and beyond" - Lightyear, Buzz, 1995
Sierpinski triangle:

"To infinity and beyond" - Lightyear, Buzz, 1995
Sierpinski triangle:

"To infinity and beyond" - Lightyear, Buzz, 1995

Sierpinski triangle:

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.

Sierpinski triangle:

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.
Conclusion: in the limit, the white triangles tile the big triangle.

Sierpinski triangle:

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.
Conclusion: in the limit, the white triangles tile the big triangle.

$$
\text { Area of white potion }=\frac{1}{4}+\frac{1}{4}\left(\frac{3}{4}\right)+\frac{1}{4}\left(\frac{3}{4}\right)^{2}+\cdots
$$

Sierpinski triangle:

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.
Conclusion: in the limit, the white triangles tile the big triangle.

$$
\begin{aligned}
\text { Area of white potion } & =\frac{1}{4}+\frac{1}{4}\left(\frac{3}{4}\right)+\frac{1}{4}\left(\frac{3}{4}\right)^{2}+\cdots \\
& =\frac{\frac{1}{4}}{1-\frac{3}{4}}=1
\end{aligned}
$$

Sierpinski triangle side comment
The Sierpinski triangle is very fashionable:

Sierpinski triangle side comment

The Sierpinski triangle is very fashionable:

Designer: Eri Matsui

Another Sierpinski triangle side comment

Another famous triangle is Pascal's triangle.
Take the first 2^{n} rows:

Another Sierpinski triangle side comment

Another famous triangle is Pascal's triangle.
Take the first 2^{n} rows:

From a series to a tiling
Calc 2:

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=1 .
$$

From a series to a tiling
Calc 2:

$$
\begin{gathered}
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=1 \\
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots=1
\end{gathered}
$$

From a series to a tiling
Calc 2:

$$
\begin{gathered}
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=1 . \\
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots=1 .
\end{gathered}
$$

From a series to a tiling
Calc 2:

$$
\begin{gathered}
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=1 . \\
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots=1 .
\end{gathered}
$$

From a series to a tiling
Calc 2:

$$
\begin{gathered}
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=1 . \\
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots=1 .
\end{gathered}
$$

From a series to a tiling
Calc 2:

$$
\begin{gathered}
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=1 . \\
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots=1 .
\end{gathered}
$$

From a series to a tiling
Calc 2: $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=1$.

$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots=1 .
$$

Open Problem

Find a way to tile the whole region, or show that no tiling exists.

Tiling infinite regions
Alhambra palace, Granada, Spain.

Tiling infinite regions

Alhambra palace, Granada, Spain.

Abstract Algebra: There are essentially 17 different tiling patterns of the plane that have translation symmetries in two different directions.
Plane crystallographic groups / wallpaper groups

Another Alhambra tiling

Escher tilings

Maurits Cornelis Escher (1898-1972): Although I am absolutely without training in the exact sciences, I often seem to have more in common with mathematicians that with my fellow artists.

Another Escher tiling

Opposite direction: no symmetry at all!

Sir Roger Penrose

Another Penrose tiling

Penn State University, November 9-10, 2007

Plenary speakers:

- George Andrews, Penn State University
- Frank Morgan, Williams College

Funding for the conference provided by:

- Penn State's Eberly College of Science
- Penn State's Department of Mathematics
- Penn State's Women in Mathematics Program
- The Mathematical Association of America through NSF grant DMS-0241090

This conference will showcase mathematical research by undergraduate students through 15 -minute contributed talks and posters.

The conference social program includes:

- A Friday evening reception and dinner
- A Friday evening stroll to the famous Penn State Berkey Creamery for ice cream
- Breakfast and lunch on Saturday
- Tours of the Mathematics Department's facilities, including the William Pritchard Fluid Mechanics Lab and the SCREMS Lab
- Lots of coffee and cookie breaks!

To register, go to:
www.math.psu.edu/ug/curm/conference07/

For more information about the conference, contact the co-coordinators, James Sellers and Diane Henderson, at: curm@math.psu.edu

Contact peter.mcnamara@bucknell.edu or emily.dryden@bucknell.edu.

