Discrete Morse theory for posets: the bare bones WITH AN EXAMPLE FROM GENERALIZED SUBWORD ORDER

$6 \xrightarrow{3} 3 \xrightarrow{1} 1 \xrightarrow{0} 0$
$6 \xrightarrow{4} 4 \xrightarrow{1} 1 \xrightarrow{0} 0$
$6 \xrightarrow{5} \xrightarrow{2} 2 \xrightarrow{0} 0 \Rightarrow \mu_{0}(0,6)=(-1)^{1-1}=+1$
P^{*} :

$61 \xrightarrow{(1,3)} 31 \xrightarrow{(1,1)} 11 \xrightarrow{(1,0)} 01$
$61 \xrightarrow{(1,3)} 31 \xrightarrow{(2,0)} 30 \xrightarrow{(1,1)} 10$
$61 \xrightarrow{(1,4)} 41 \xrightarrow{(1,1)} 11 \xrightarrow{(1,0)} 01$
$61 \xrightarrow{(1,4)} 41 \xrightarrow{(2,0)} 40 \xrightarrow{(1,1)} 10$
$61 \xrightarrow{(1,5)} 51 \xrightarrow{(1,2)} 21 \xrightarrow{(1,0)} 01$
$61 \xrightarrow{(2,0)} 60 \xrightarrow{(1,3)} 30 \xrightarrow{(1,1)} 10$
$61 \xrightarrow{(2,0)} 60 \xrightarrow{(1,4)} 40 \xrightarrow{(1,1)} 10$

Goal: compute $\mu(x, y)$ using DMT.
(1) Pick an ordering, denoted \prec, of the maximal chains of $[x, y]$ that is a poset lexicographic order (PLO). Note: chains are read from top to bottom.
(2) Identify the skipped intervals (SIs) of each maximal chain C, i.e., an interval I of C such that $C \backslash I \subseteq B$ for some maximal chain $B \prec C$.
(3) Identify the minimal skipped intervals (MSIs) of C, i.e., the SIs that are minimal with respect to containment.
(4) Remove overlaps among the MSIs of C in a certain precise fashion to obtain the set $\mathcal{J}(C)$ of intervals.
(5) If the $\mathcal{J}(C)$ cover the interior of C, then C is critical.
(6) Compute the Möbius function:

$$
\mu(x, y)=\sum_{\text {critical chains } C}(-1)^{|\mathcal{J}(C)|-1} \text {. }
$$

"Definition". An ordering $C_{1} \prec C_{2} \prec \cdots$ of the maximal chains of $[x, y]$ is a poset lexicographic order (PLO) if it satisfies the following (mild) property. Suppose that C and C^{\prime} diverge from D and D^{\prime} at a certain point, while the divergence of C^{\prime} from C and of D^{\prime} and D happens later. In this situation we insist that $C \prec D$ if and only if $C^{\prime} \prec D^{\prime}$.

Example. The construction of the disjoint sets $\mathcal{J}(C)$ from the MSIs of a maximal chain C is an iterative procedure illustrated in the table below. Suppose C is the maximal chain

$$
y>c_{1}>c_{2}>\cdots>c_{8}>x
$$

and the MSIs from top to bottom are as given in the first line of the table.

MSIs	$I_{1}=\left\{c_{1}, c_{2}\right\}$	$I_{2}=\left\{c_{2}, c_{3}, c_{4}\right\}$	$I_{3}=\left\{c_{4}, c_{5}, c_{6}\right\}$	$I_{4}=\left\{c_{5}, c_{6}, c_{7}, c_{8}\right\}$
I_{1} disjoint	$J_{1}=\left\{c_{1}, c_{2}\right\}$	$I_{2}^{\prime}=\left\{c_{3}, c_{4}\right\}$	$I_{3}^{\prime}=\left\{c_{4}, c_{5}, c_{6}\right\}$	$I_{4}^{\prime}=\left\{c_{5}, c_{6}, c_{7}, c_{8}\right\}$
I_{2}^{\prime} disjoint	$J_{1}=\left\{c_{1}, c_{2}\right\}$	$J_{2}=\left\{c_{3}, c_{4}\right\}$	$I_{3}^{\prime \prime}=\left\{c_{5}, c_{6}\right\}$	$I_{4}^{\prime \prime}=\left\{c_{5}, c_{6}, c_{7}, c_{8}\right\}$
$\mathcal{J}(C)$	$J_{1}=\left\{c_{1}, c_{2}\right\}$	$J_{2}=\left\{c_{3}, c_{4}\right\}$	$J_{3}=\left\{c_{5}, c_{6}\right\}$	no longer minimal

Note that the $\mathcal{J}(C)$ no longer cover the interior of C, so C is not a critical chain.

References

[1] Eric Babson and Patricia Hersh. Discrete Morse functions from lexicographic orders. Trans. Amer. Math. Soc., 357(2):509-534 (electronic), 2005.
[2] Peter R. W. McNamara and E. Sagan, Bruce. The Möbius function of generalized subword order. Adv. Math., 229(5):2741-2766, 2012.
[3] Bruce E. Sagan and Vincent Vatter. The Möbius function of a composition poset. J. Algebraic Combin., 24(2):117-136, 2006.

