Skew Schur functions: do their row overlaps determine their F-supports?

Peter McNamara

Bucknell University

Stanley@70
24 June 2014

Slides and paper available from www.facstaff.bucknell.edu/pm040/

February 2nd, 2000

February 2nd, 2000

February 2nd, 2000

February 2nd, 2000

February 2nd, 2000

- 8/28/888-2/2/2000

Preview
Conjecture. For skew shapes A and B, $\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B) \Longleftrightarrow \operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B)$ for all k.

Conjecture. For skew shapes A and B, $\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B) \Longleftrightarrow \operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B)$ for all k.

The beginning of the story

s_{A} : the skew Schur function for the skew shape A.
Wide Open Question. When is $s_{A}=s_{B}$?
Determine necessary and sufficient conditions on shapes of A and B.

The beginning of the story

s_{A} : the skew Schur function for the skew shape A.
Wide Open Question. When is $s_{A}=s_{B}$?
Determine necessary and sufficient conditions on shapes of A and B.

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
- John Stembridge (2004)
- Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- McN., Steph van Willigenburg (2006)
- Christian Gutschwager (2008)

The beginning of the story

s_{A} : the skew Schur function for the skew shape A.
Wide Open Question. When is $s_{A}=s_{B}$?
Determine necessary and sufficient conditions on shapes of A and B.

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
- John Stembridge (2004)
- Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- McN., Steph van Willigenburg (2006)
- Christian Gutschwager (2008)

But this is not the problem I want to talk about....

Necessary conditions for equality

Necessary conditions for equality

General idea: the overlaps among rows must match up.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition $[\mathrm{RSvW}]$. For a skew shape A, let overlap ${ }_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition $[\mathrm{RSvW}]$. For a skew shape A, let overlap ${ }_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows ${ }_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- overlap $_{1}(i)=$ length of the i th row. $\operatorname{Thus~}_{\operatorname{rows}_{1}}(A)=44211$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition $[\mathrm{RSvW}]$. For a skew shape A, let overlap (i) be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- overlap $_{1}(i)=$ length of the i th row. $\operatorname{Thus~}_{\text {rows }}^{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, $\operatorname{overlap}_{2}(3)=1$, overlap $_{2}(4)=1, \quad \operatorname{sor}_{\operatorname{rows}_{2}(A)}(3211$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition $[\mathrm{RSvW}]$. For a skew shape A, let overlap ${ }_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$.).

Example.

- overlap $_{1}(i)=$ length of the i th row. $\operatorname{Thus~}_{\text {rows }}^{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3, \operatorname{overlap}_{2}(3)=1$, overlap $_{2}(4)=1, \quad$ so rows $2(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition $[\mathrm{RSvW}]$. For a skew shape A, let overlap ${ }_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$.).

Example.

- overlap $_{1}(i)=$ length of the i th row. $\operatorname{Thus~}_{\operatorname{rows}_{1}}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3, \operatorname{overlap}_{2}(3)=1$, overlap $_{2}(4)=1, \quad \operatorname{sor}^{\operatorname{rows}}(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.
- $\operatorname{rows}_{k}(A)=\emptyset$ for $k>3$.

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k .
$$

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

$\operatorname{supp}_{s}(A)$: Schur support of A
$\operatorname{supp}_{s}(A)=\left\{\lambda: s_{\lambda}\right.$ appears in Schur expansion of $\left.s_{A}\right\}$
Example. $A=\square$

$$
s_{A}=s_{3}+2 s_{21}+s_{111}
$$

$$
\operatorname{supp}_{s}(A)=\{3,21,111\}
$$

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

$\operatorname{supp}_{s}(A)$: Schur support of A
$\operatorname{supp}_{s}(A)=\left\{\lambda: s_{\lambda}\right.$ appears in Schur expansion of $\left.s_{A}\right\}$
Example. $A=\square$

$$
s_{A}=s_{3}+2 s_{21}+s_{111}
$$

$$
\operatorname{supp}_{s}(A)=\{3,21,111\}
$$

Theorem [McN., 2008]. Let A and B be skew shapes. If $\operatorname{supp}_{s}(A)=\operatorname{supp}_{s}(B)$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k .
$$

$\operatorname{supp}_{s}(A)$: Schur support of A
$\operatorname{supp}_{s}(A)=\left\{\lambda: s_{\lambda}\right.$ appears in Schur expansion of $\left.s_{A}\right\}$
Example. $A=\square$

$$
s_{A}=s_{3}+2 s_{21}+s_{111}
$$

$$
\operatorname{supp}_{s}(A)=\{3,21,111\}
$$

Theorem [McN., 2008]. Let A and B be skew shapes. If $\operatorname{supp}_{s}(A)=\operatorname{supp}_{s}(B)$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

Converse is definitely not true.

Main interest: inequalities

Skew Schur functions are Schur-positive:

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu} .
$$

Question. What are necessary conditions on A and B if $s_{A}-s_{B}$ is Schur-positive?

Theorem [McN., 2008]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

Main interest: inequalities

Skew Schur functions are Schur-positive:

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu} .
$$

Question. What are necessary conditions on A and B if $s_{A}-s_{B}$ is Schur-positive?

Theorem [McN., 2008]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$.

Summary

| $s_{A}-s_{B}$ is Schur-pos. $\Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$ |
| :---: |\Rightarrow| $\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$ |
| :--- |
| Equivalent choices: |
| $\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell$ |
| $\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell$ |

Summary

Summary

| $s_{A}-s_{B}$ is Schur-pos. |
| :--- | :--- |\Rightarrow| $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$ |
| :--- |
| \uparrow | | $\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$ |
| :--- |
| Equivalent choices: |
| $\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell$ |
| $\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell$ |

Converse is very false.

Example.

Summary

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k
$$

$$
s_{A}-s_{B} \text { is Schur-pos. } \Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B) \Rightarrow
$$

Equivalent choices:

$$
\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell
$$

$$
\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell
$$

Converse is very false.
Example.

Real Goal: Find weaker algebraic conditions on A and B that imply the overlap conditions.
What algebraic conditions are being encapsulated by the overlap conditions?

The quasisymmetric perspective

Theorem [Gessel \& Stanley].
s_{A} : nice expansion in Gessel's fundamental quasisymmetric basis F.

Theorem [McN., 2013].

$s_{A}-s_{B}$ is Schur-pos.	\Rightarrow	$\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$	
\Downarrow		\Downarrow	$\left\lvert\, \begin{aligned} & \operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k \\ & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}\right.$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$	

The quasisymmetric perspective

Theorem [Gessel \& Stanley].
s_{A} : nice expansion in Gessel's fundamental quasisymmetric basis F.

Theorem [McN., 2013].

$s_{A}-s_{B}$ is Schur-pos.	\Rightarrow	$\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$		
\Downarrow		\Downarrow	\Longleftrightarrow	$\begin{aligned} & \operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k \\ & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$		

Conjecture. The rightmost implication is if and only if.

$n=6$ example

F-support containment

Dual of row overlap dominance

$n=12$ case has 12,042 edges

$n=12$ case has 12,042 edges

Conjecture.
$s_{A}-s_{B}$ is Schur-pos. $\Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$
\Downarrow

$s_{A}-s_{B}$ is F-positive \Rightarrow| \Downarrow |
| :---: |
| $\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$ |$\stackrel{?}{\rightleftharpoons} \Rightarrow$| $\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$ |
| :--- |
| $\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell$ |
| $\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell$ |

$n=12$ case has 12,042 edges

Conjecture.

$s_{A}-s_{B}$ is Schur-pos.	\Rightarrow	$\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$	$\stackrel{?}{\stackrel{ }{\rightleftharpoons}}$	
\Downarrow		\Downarrow		$\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$		$\begin{aligned} & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}$

Conjecture [McN., Morales]. A quasisym skew Saturation Theorem:

$$
\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B) \quad \Longleftrightarrow \quad \operatorname{supp}_{F}(n A) \supseteq \operatorname{supp}_{F}(n B) .
$$

Adding other bases

$$
\begin{aligned}
& s_{A}-s_{B} \text { is } D \text {-positive }
\end{aligned}
$$

$$
\begin{aligned}
& s_{A}-s_{B} \text { is } M \text {-positive } \Rightarrow \operatorname{supp}_{M}(A) \supseteq \operatorname{supp}_{M}(B)
\end{aligned}
$$

