Quasisymmetric functions distinguishing trees

Peter McNamara
Bucknell University

Joint work with: Jean-Christophe Aval
LaBRI, CNRS, Université de Bordeaux
Karimatou Djenabou
LaCIM, Université du Québec à Montréal
Enumerative and Algebraic Combinatorics SaganFest
25 February 2024

Slides and paper available from
http://www.unix.bucknell.edu/~pm040/

Quasisymmetric functions distinguishing trees

Peter McNamara
Bucknell University

Joint work with: Jean-Christophe Aval
LaBRI, CNRS, Université de Bordeaux
Karimatou Djenabou
LaCIM, Université du Québec à Montréal
Enumerative and Algebraic Combinatorics SaganFest
25 February 2024

Slides and paper available from

```
http://www.unix.bucknell.edu/~pm040/
```


A Tribute to Bruce

A Tribute to Bruce

124 distinct coauthors over 132 publications

Coauthor ratio: 0.939

A Tribute to Bruce

124 distinct coauthors over 132 publications
Coauthor ratio: 0.939
Higher than: Erdős*, Lovász*, Stanley, Seymour, Wachs, Wigderson*, Björner, Krattenthaler, Bousquet-Mélou, Viennot, van Willigenburg, Garsia, Pak, Chung, Hanlon, Sturmfels, Fomin, Stembridge, Kalai, Chen*, Andrews*, Billera, Readdy, Yan, Ehrenborg, Bóna, Reiner, Postnikov (0.938), Bergeron ${ }^{3}, \ldots$.

A Tribute to Bruce

124 distinct coauthors over 132 publications
Coauthor ratio: 0.939
Higher than: Erdős*, Lovász*, Stanley, Seymour, Wachs, Wigderson*, Björner, Krattenthaler, Bousquet-Mélou, Viennot, van Willigenburg, Garsia, Pak, Chung, Hanlon, Sturmfels, Fomin, Stembridge, Kalai, Chen*, Andrews*, Billera, Readdy, Yan, Ehrenborg, Bóna, Reiner, Postnikov (0.938), Bergeron³, ..

Sara Billey: 1.059

A Tribute to Bruce

124 distinct coauthors over 132 publications
Coauthor ratio: 0.939
Higher than: Erdős*, Lovász*, Stanley, Seymour, Wachs, Wigderson*, Björner, Krattenthaler, Bousquet-Mélou, Viennot, van Willigenburg, Garsia, Pak, Chung, Hanlon, Sturmfels, Fomin, Stembridge, Kalai, Chen*, Andrews*, Billera, Readdy, Yan, Ehrenborg, Bóna, Reiner, Postnikov (0.938), Bergeron ${ }^{3}, \ldots$.

Sara Billey: 1.059
Pamela Harris*: 2.303

Outline

- Chromatic (quasi)symmetric functions and the motivating conjectures
- Converting to a poset question; more conjectures
- Some old and new results; one last conjecture

The chromatic polynomial
George Birkhoff, 1912
Graph $G=(V, E)$
Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Not Proper

The chromatic polynomial
George Birkhoff, 1912
Graph $G=(V, E)$
Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Not Proper

The chromatic polynomial
George Birkhoff, 1912
Graph $G=(V, E)$
Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Not Proper

The chromatic polynomial

George Birkhoff, 1912
Graph $G=(V, E)$
Coloring: a map $\kappa: V \rightarrow\{1,2,3, \ldots\}$
Proper coloring: adjacent vertices
 get different colors.

Proper

Not Proper

Chromatic polynomial: $\chi_{G}(k)$ is the number of proper colorings of G when k colors are available.

Example. If T is any tree with n vertices, $\quad \chi_{T}(k)=k(k-1)^{n-1}$.

The chromatic symmetric function
Richard Stanley, 1995
Graph $G=(V, E)$
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

To a proper coloring κ, we associate the monomial in commuting variables x_{1}, x_{2}, \ldots

$$
x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

The chromatic symmetric function

Richard Stanley, 1995
Graph $G=(V, E)$
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

To a proper coloring κ, we associate the monomial in commuting variables x_{1}, x_{2}, \ldots

$$
X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

Chromatic symmetric function:

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

The chromatic symmetric function

Richard Stanley, 1995
Graph $G=(V, E)$
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

To a proper coloring κ, we associate the monomial in commuting variables x_{1}, x_{2}, \ldots

$$
x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

Chromatic symmetric function:

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

- $X_{G}(\mathbf{x})$ is a symmetric function
- Setting $x_{i}=1$ for $1 \leq i \leq k$ and $x_{i}=0$ otherwise yields $\chi_{G}(k)$.

Can $X_{G}(\mathbf{x})$ distinguish graphs?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Can $X_{G}(\mathbf{x})$ distinguish graphs?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper }{ }_{\kappa}} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{n}\right)} .
$$

Stanley: these have the same $X_{G}(\mathbf{x})$:

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)}
$$

Stanley: these have the same $X_{G}(\mathbf{x})$:

Famous Statement (Stanley).
"We do not know whether X_{G} distinguishes trees." i.e. if T and U are non-isomorphic trees, then is $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$?

$$
X_{G}(\mathbf{x})=\sum_{\text {proper } \kappa} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)}
$$

Stanley: these have the same $X_{G}(\mathbf{x})$:

Famous Statement (Stanley).
"We do not know whether X_{G} distinguishes trees."
i.e. if T and U are non-isomorphic trees, then is $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$?
[Aliniaeifard, Aliste-Prieto, Crew, Dahhberg, de Mier, Fougere, Heil, Ji, Loebl, Loehr, Martin, Morin, Orellana, Scott, Smith, Sereni, Spirkl, Tian, Wagner, Wang, Warrington, van Willigenburg, Zamora, ...]

The Loehr-Warrington Conjecture
Conjecture 1 (Stanley). $X_{G}(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.

The Loehr-Warrington Conjecture

Conjecture 1 (Stanley). $X_{G}(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.
(Surprising) Conjecture 2 (Nick Loehr \& Greg Warrington, 2022). $X_{G}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes trees with n vertices, i.e. if T and U are non-isomorphic trees with n vertices, then

$$
X_{T}\left(1, q, q^{2}, \ldots, q^{n-1}\right) \neq X_{U}\left(1, q, q^{2}, \ldots, q^{n-1}\right) .
$$

Why surprising?

- $X_{T}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ is a polynomial in one variable!
- Compare to $X_{G}(\mathbf{x})$ and $\chi_{G}(k)$.

The Loehr-Warrington Conjecture

Conjecture 1 (Stanley). $X_{G}(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_{T}(\mathbf{x}) \neq X_{U}(\mathbf{x})$.
(Surprising) Conjecture 2 (Nick Loehr \& Greg Warrington, 2022). $X_{G}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes trees with n vertices, i.e. if T and U are non-isomorphic trees with n vertices, then

$$
X_{T}\left(1, q, q^{2}, \ldots, q^{n-1}\right) \neq X_{U}\left(1, q, q^{2}, \ldots, q^{n-1}\right)
$$

Why surprising?

- $X_{T}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ is a polynomial in one variable!
- Compare to $X_{G}(\mathbf{x})$ and $\chi_{G}(k)$.
- The data suggests that fewer than n nonzero variables suffice.

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ $\operatorname{asc}(\kappa)$: the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

Chromatic quasisymmetric function:

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

The chromatic quasisymmetric function

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ asc(κ): the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

Chromatic quasisymmetric function:

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

Example. $\quad X_{\vec{G}}(\mathbf{x}, t)=\left(2+2 t+2 t^{2}\right) M_{111}+t^{2} M_{21}+M_{12}$.

The chromatic quasisymmetric function

John Shareshian \& Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph $\vec{G}=(V, E)$.
Ascent of proper coloring κ : directed edge $u \rightarrow v$ with $\kappa(u)<\kappa(v)$ asc(κ): the number of ascents of κ.
Example. Colors $a<b<c$

$\kappa\left(v_{1}\right)$	$\kappa\left(v_{2}\right)$	$\kappa\left(v_{3}\right)$	$\operatorname{asc}(\kappa)$
a	b	c	1
a	c	b	2
b	a	c	0
b	c	a	2
c	a	b	0
c	b	a	1
a	b	a	2
b	a	b	0

Chromatic quasisymmetric function:

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

Example. $\quad X_{\vec{G}}(\mathbf{x}, t)=\left(2+2 t+2 t^{2}\right) M_{111}+t^{2} M_{21}+M_{12}$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

Setting $t=1$, we see $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

Setting $t=1$, we see $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

Setting $t=1$, we see $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.

Conjecture 3 (ADM; stated as a question by Per Alexandersson and Robin Sulzgruber, 2021).
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees. In other words, if \vec{T} and \vec{U} are non-isomorphic directed trees, then $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{u}}(\mathbf{x}, t)$.

Can $X_{\vec{G}}(\mathbf{x}, t)$ distinguish graphs?

Setting $t=1$, we see $X_{\vec{G}}(\mathbf{x}, t)$ contains more information than $X_{G}(\mathbf{x})$.

Conjecture 3 (ADM; stated as a question by Per Alexandersson and Robin Sulzgruber, 2021).
$X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees. In other words, if \vec{T} and \vec{U} are non-isomorphic directed trees, then $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{u}}(\mathbf{x}, t)$.

This conjecture was our original goal. Strategy: translate to posets.

Translating to posets

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)}
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \vec{T} and \vec{U}.
- So just look at colorings where all edges are ascents.

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)}
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \vec{T} and \vec{U}.
- So just look at colorings where all edges are ascents.
- Construct a poset P (oriented arrows upwards).

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)}
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \vec{T} and \vec{U}.
- So just look at colorings where all edges are ascents.
- Construct a poset P (oriented arrows upwards).

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)}
$$

Want to show: $X_{\vec{T}}(\mathbf{x}, t) \neq X_{\vec{U}}(\mathbf{x}, t)$.
Key insight:

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \vec{T} and \vec{U}.
- So just look at colorings where all edges are ascents.
- Construct a poset P (oriented arrows upwards).
- The corresponding coloring is a strict P-partition (strictly order-presevering map)

Two nice examples

Example. If \vec{G} is a directed path, we get a fence poset. [Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran, Roby, Smyth, ...]
Conjecture still open in this case in full generality (?)

Two nice examples

Example. If \vec{G} is a directed path, we get a fence poset.
[Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran, Roby, Smyth, ...]
Conjecture still open in this case in full generality (?)

Example. Caterpillars digraphs and caterpillar posets.

Two nice examples

Example. If \vec{G} is a directed path, we get a fence poset.
[Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran, Roby, Smyth, ...]
Conjecture still open in this case in full generality (?)

Example. Caterpillars digraphs and caterpillar posets.

Propostion (Nate Lesnevich \& M., 2022). $X_{\vec{G}}(\mathbf{x}, t)$ distinguishes these caterpillar digraphs.

Translating to posets

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)}
$$

The leading coefficient is the strict P-parition enumerator:

$$
K_{P}^{\subset}(\mathbf{x})=\sum_{\text {strict }} \sum_{P \text {-partition } f} X_{f\left(p_{1}\right) x_{f}\left(p_{2}\right) \cdots x_{f\left(p_{n}\right)} .} .
$$

Translating to posets

$$
X_{\vec{G}}(\mathbf{x}, t)=\sum_{\text {proper } \kappa} t^{\operatorname{asc}(\kappa)} x_{\kappa\left(v_{1}\right)} X_{\kappa\left(v_{2}\right)} \cdots X_{\kappa\left(v_{n}\right)} .
$$

The leading coefficient is the strict P-parition enumerator:

$$
K_{P}^{¢}(\mathbf{x})=\sum_{\text {strict }} \sum_{P \text {-partition } f} X_{f\left(p_{1}\right) x_{f}\left(p_{2}\right) \cdots x_{f\left(p_{n}\right)} .} .
$$

Project. Study equality among $K_{P}^{<}(\mathbf{x})$.
[Browning, Féray, Hasebe, Hopkins, Kelly, Lesnevich, Liu, M., Tsujie, Ward, Weselcouch, ...]

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Conjecture 4 (ADM; stated as a question by Takahiro Hasebe and Shuhei Tsujie, 2017).
$K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Key: this conjecture being true would imply that $X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees.

Can $K_{(P, \omega)}(\mathbf{x})$ distinguish posets?

Conjecture 4 (ADM; stated as a question by Takahiro Hasebe and Shuhei Tsujie, 2017).
$K_{\rho}^{<}(\mathbf{x})$ distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then $K_{P}^{<}(\mathbf{x}) \neq K_{Q}^{<}(\mathbf{x})$.

Key: this conjecture being true would imply that $X_{\vec{G}}(\mathbf{x}, t)$ distinguishes directed trees.

Theorem (Hasebe \& Tsujie, 2017). $K_{\rho}^{<}(\mathbf{x})$ distinguishes posets that are rooted trees.

Mixing strict and weak edges

Stanley's (P, ω)-partitions: both strict and weak edges, i.e., labeled posets.
f only needs to weakly increase along weak (springy) edges.

Mixing strict and weak edges

Stanley's (P, ω)-partitions: both strict and weak edges, i.e., labeled posets.
f only needs to weakly increase along weak (springy) edges.

False Statement.

$K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are trees.

Mixing strict and weak edges

Stanley's (P, ω)-partitions: both strict and weak edges, i.e., labeled posets.
f only needs to weakly increase along weak (springy) edges.

False Statement.

$K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are trees.
Conjecture 5 (ADM, 2022).
$K_{(P, \omega)}(\mathbf{x})$ distinguishes labeled posets that are rooted trees.

Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.

Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.

Definition. More generally, we define the $\operatorname{set} \mathcal{C}$ of labeled posets recursively by:

1. the one-element labeled poset [1] is in \mathcal{C};
2. \mathcal{C} is closed under disjoint unions $(P, \omega) \sqcup\left(Q, \omega^{\prime}\right)$;
3. \mathcal{C} is closed under the ordinal sums $(P, \omega)\}[1]$ and $(P, \omega) \uparrow[1]$;
4. \mathcal{C} is closed under the ordinal sums $[1]\{(P, \omega)$ and $[1] \uparrow(P, \omega)$.

Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.

Definition. More generally, we define the $\operatorname{set} \mathcal{C}$ of labeled posets recursively by:

1. the one-element labeled poset [1] is in \mathcal{C};
2. \mathcal{C} is closed under disjoint unions $(P, \omega) \sqcup\left(Q, \omega^{\prime}\right)$;
3. \mathcal{C} is closed under the ordinal sums $(P, \omega)\}[1]$ and $(P, \omega) \uparrow[1]$;
4. \mathcal{C} is closed under the ordinal sums $[1]\}(P, \omega)$ and $[1] \uparrow(P, \omega)$.

Our main theorem

Theorem [ADM, 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C}, so in particular fair trees.
First result about $K_{(P, \omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Our main theorem

Theorem [ADM, 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C}, so in particular fair trees.
First result about $K_{(P, \omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Proposition (crux of the proof) [ADM, 2022]
If (P, ω) is a connected element of \mathcal{C} then $K_{(P, \omega)}(\mathbf{x})$ is irreducible as a quasisymmetric function.

Our main theorem

Theorem [ADM, 2022].
$K_{(P, \omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C}, so in particular fair trees.
First result about $K_{(P, \omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Proposition (crux of the proof) [ADM, 2022]

If (P, ω) is a connected element of \mathcal{C} then $K_{(P, \omega)}(\mathbf{x})$ is irreducible as a quasisymmetric function.

Irreducibility is also the crux for

- Hasebe \& Tsujie;
- Ricki Ini Liu \& Michael Weselcouch ($K_{\rho}^{<}(\mathbf{x})$ distinguishes series-parallel posets; includes irreducibility for general connected P with all strict edges, 2020).

One for the road

Recall Conjecture 4. $K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees,

One for the road

Recall Conjecture 4. $K_{P}^{<}(\mathbf{x})$ distinguishes posets that are trees,
Conjecture 6 [ADM, 2022].
$K_{P}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes n-element posets that are trees.

One for the road

Recall Conjecture 4. $K_{\rho}^{<}(\mathbf{x})$ distinguishes posets that are trees,
Conjecture 6 [ADM, 2022]. $K_{P}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for $K_{(P, \omega)}$: if

$$
K_{(P, \omega)}\left(1, q, q^{2}, \ldots, q^{k-1}\right)=\sum_{N \geq 0} a(N) q^{N},
$$

then we see that $a(N)$ counts the number of (P, ω)-partitions $f: P \rightarrow\{0, \ldots, k-1\}$ of N.

One for the road

Recall Conjecture 4. $K_{\rho}^{<}(\mathbf{x})$ distinguishes posets that are trees,
Conjecture 6 [ADM, 2022]. $K_{\rho}^{<}\left(1, q, q^{2}, \ldots, q^{n-1}\right)$ distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for $K_{(P, \omega)}$: if

$$
K_{(P, \omega)}\left(1, q, q^{2}, \ldots, q^{k-1}\right)=\sum_{N \geq 0} a(N) q^{N},
$$

then we see that $a(N)$ counts the number of (P, ω)-partitions $f: P \rightarrow\{0, \ldots, k-1\}$ of N.

Thanks for your attention!

Happy Birthday Bruce!

