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Outline

» Chromatic (quasi)symmetric functions and the motivating
conjectures

» Converting to a poset question; more conjectures

» Some old and new results; one last conjecture
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The chromatic polynomial
George Birkhoff, 1912

Graph G=(V,E)
Coloring:amap x: V- {1,2,3,...}

Proper coloring: adjacent vertices
get different colors.

Proper Not Proper

o—0—0 o—0—9©
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The chromatic polynomial
George Birkhoff, 1912

Graph G=(V,E)
Coloring:amap x: V- {1,2,3,...}

Proper coloring: adjacent vertices
get different colors.

Proper Not Proper
e—0—©0 o—0—©
1 2 1 1 1 2
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The chromatic polynomial
George Birkhoff, 1912

Graph G=(V,E)
Coloring:amap x: V- {1,2,3,...}

Proper coloring: adjacent vertices
get different colors.

Proper Not Proper
o—0—oO0 oO—0—-oO0
1 2 1 1 1 2
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The chromatic polynomial
George Birkhoff, 1912

Graph G=(V,E)
Coloring:amap x: V- {1,2,3,...}

Proper coloring: adjacent vertices
get different colors.

Proper Not Proper
o—0——0 o0—0—=0
1 2 1 1 1 2

Chromatic polynomial: xg(k) is the number of proper colorings of G
when k colors are available.

Example. If T is any tree with n vertices, x7(k) = k(k—1)"".
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The chromatic symmetric function
Richard Stanley, 1995

Graph G=(V,E)
V={vi,vo,...,vp}
To a proper coloring «, we associate the monomial in commuting
variables xi, Xo, . ..

Xio(vi) Xk (v2) " Xis(vin) -

1 3 1 1 3 2
o0—0—O0 o—0—oO0
X2x3 X1 X2X3
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The chromatic symmetric function
Richard Stanley, 1995
Graph G=(V,E)

V={vi,vo,...,vp}

To a proper coloring «, we associate the monomial in commuting
variables xi, Xo, . ..

Xio(vi) Xk (v2) " Xis(vin) -

1 3 1 1 3 2
o0—0—O o0—0—oO0
X2x3 X1 X2X3

Chromatic symmetric function:
Xa(X1,%2,...) = Xg(X) = D0 Xu(v) Xu(va) Xes(va)-

proper
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The chromatic symmetric function
Richard Stanley, 1995
Graph G=(V,E)

V={vi,vo,...,vp}

To a proper coloring «, we associate the monomial in commuting
variables xi, Xo, . ..

Xio(vi) Xk (v2) " Xis(vin) -

1 3 1 1 3 2
o0—0—O0 o—0—oO0
X2x3 X1 X2X3

Chromatic symmetric function:
Xa(X1,%2,...) = Xg(X) = D0 Xu(v) Xu(va) Xes(va)-

proper x

» Xg(X) is a symmetric function
» Setting x; =1 for 1 </ < k and x; = 0 otherwise yields xg(k).
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Can Xg(x) distinguish graphs?

Xa(X) = > Xa(u) Xe(va) " Xe(vn)-

proper
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Can Xg(x) distinguish graphs?

Xa(X) = > Xa(u) Xe(va) " Xe(vn)-

proper

Stanley: these have the same Xg(x):

NN P
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Can Xg(x) distinguish graphs?

Xa(X) = > Xa(u) Xe(va) " Xe(vn)-

proper

Stanley: these have the same Xg(x):

NN P

Famous Statement (Stanley).
“We do not know whether Xg distinguishes trees.”
i.e. if T and U are non-isomorphic trees, then is X7(x) # Xy(x)?
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Can Xg(x) distinguish graphs?

Xa(X) = > Xa(u) Xe(va) " Xe(vn)-

proper

Stanley: these have the same Xg(x):

NN P

Famous Statement (Stanley).
“We do not know whether Xg distinguishes trees.”
i.e. if T and U are non-isomorphic trees, then is X7(x) # Xy(x)?

[Aliniaeifard, Aliste-Prieto, Crew, Dahhberg, de Mier, Fougere, Heil,

Ji, Loebl, Loehr, Martin, Morin, Orellana, Scott, Smith, Sereni, Spirkl,
Tian, Wagner, Wang, Warrington, van Willigenburg, Zamora, ...]
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The Loehr—Warrington Conjecture

Conjecture 1 (Stanley). Xg(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then X7(x) # Xy(X).
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The Loehr—Warrington Conjecture

Conjecture 1 (Stanley). Xg(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then X7(x) # Xy(X).

(Surprising) Conjecture 2 (Nick Loehr & Greg Warrington, 2022).
Xs(1,9,9%,...,9™ ") distinguishes trees with n vertices, i.e.
if T and U are non-isomorphic trees with n vertices, then

XT(17q7q27"'7qn_1)iXU(17q7q27"'7qn_1)'

Why surprising?
» X7(1,9,6%,...,9™") is a polynomial in one variable!
» Compare to Xg(x) and xg(k).
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The Loehr—Warrington Conjecture

Conjecture 1 (Stanley). Xg(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then X7(x) # Xy(X).

(Surprising) Conjecture 2 (Nick Loehr & Greg Warrington, 2022).
Xs(1,9,9%,...,9™ ") distinguishes trees with n vertices, i.e.
if T and U are non-isomorphic trees with n vertices, then

XT(17q7q27"'7qn_1)iXU(17q7q27"'7qn_1)'
Why surprising?
» X7(1,9,6%,...,9™") is a polynomial in one variable!

» Compare to Xg(x) and xg(k).
» The data suggests that fewer than n nonzero variables suffice.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara



The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph G- (V,E).

Ascent of proper coloring «: directed edge u — v with k(u) < k(v)
asc(k): the number of ascents of .

Example. Colorsa<b<c k(vy) k() r(vg) | asc(k)

TLOUOO0OTTD
LTTHO DO
TS0 0T OO
ON—=-0OMNON =
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph G- (V,E).

Ascent of proper coloring x: directed edge u — v with x(u) < x(v)
asc(k): the number of ascents of .

Example. Colorsa<b<c k(vy) k() r(vg) | asc(k)
a b c 1
a c b 2
a b c b a c 0
[ a b 0
c b a 1
a b a 2
b a b 0
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph G- (V,E).

Ascent of proper coloring x: directed edge u — v with x(u) < x(v)
asc(k): the number of ascents of .

Example. Colorsa<b<c k(vy) w(w) r(vs) | asc(k)
a b c

a b a

TLUOO0OTTD
LTTHLO DO
TLUHOTVLOT
ON—=-0OMNON =
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph G- (V,E).

Ascent of proper coloring «: directed edge u — v with k(u) < k(v)
asc(k): the number of ascents of .

Example. Colorsa<b<c k(vy) w(w) r(vs) | asc(k)
a b c

a b a

TLUOO0OTTD
LTTHLO DO
TLUHOTVLOT
ON—=-0OMNON =

Chromatic quasisymmetric function:

Xg(x )= 3 20X 0 X)X

proper &
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph G- (V,E).

Ascent of proper coloring «: directed edge u — v with k(u) < k(v)
asc(k): the number of ascents of .

Example. Colorsa<b<c k(vy) w(w) r(vs) | asc(k)
a b c

a b a

TLUOO0OTTD
LTTHLO DO
TLUHOTVLOT
ON—=-0OMNON =

Chromatic quasisymmetric function:

Xg(x )= 3 20X 0 X)X

proper &

Example. XE(X, t) = (2 + 2t + 2t2)M111 + t2M21 + Mjs.
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.
Directed graph G- (V,E).

Ascent of proper coloring «: directed edge u — v with k(u) < k(v)
asc(k): the number of ascents of .

Example. Colorsa<b<c k(vy) w(w) r(vs) | asc(k)
a b c

a b a

TLUOO0OTTD
LTTHLO DO
TLUHOTVLOT
ON—=-0OMNON =

Chromatic quasisymmetric function:

Xg(x )= 3 20X 0 X)X

proper &

Example. XE(X, t) = (2 + 2t + 2t2)M111 + t2M21 + Mjs.
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Can Xa(x, t) distinguish graphs?

Setting t = 1, we see X—G>(x, t) contains more information than Xg(x).
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Can Xa(x, t) distinguish graphs?

Setting t = 1, we see Xg(x, t) contains more information than Xg(x).

NN e
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Can Xg(x, t) distinguish graphs?

Setting t = 1, we see X—G>(x, t) contains more information than Xg(x).

NN e

Conjecture 3 (ADM; stated as a question by Per Alexandersson and
Robin Sulzgruber, 2021).

Xa»(x, t) distinguishes directed trees. In other words, if Tand U
are non-isomorphic directed trees, then X=:(x,t) # XU(x, f).
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Can Xa(x, t) distinguish graphs?

Setting t = 1, we see X—G>(x, t) contains more information than Xg(x).

NN e

Conjecture 3 (ADM; stated as a question by Per Alexandersson and
Robin Sulzgruber, 2021).

Xa»(x, t) distinguishes directed trees. In other words, if Tand U
are non-isomorphic directed trees, then X=:(x,t) # XU(x, f).

This conjecture was our original goal. Strategy: translate to posets.
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Translating to posets

Xz(x,t)=" > 1) X, () Xes(vp ) K (vn)

proper
Want to show: X—T>(x, ) + XU(x, t).
Key insight:
» Look at the coefficient of the highest power of ¢.
» It's enough to show these coefficients are different for T and U.
» So just look at colorings where all edges are ascents.
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Translating to posets

Xz(x,t)=" > 1) X, () Xes(vp ) K (vn)

proper
Want to show: X—T>(x, ) + XU(x, t).
Key insight:
» Look at the coefficient of the highest power of ¢.
It's enough to show these coefficients are different for T and U.
So just look at colorings where all edges are ascents.
Construct a poset P (oriented arrows upwards).

v

v

v
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Translating to posets

Xz(x,t)=" > 1) X, () Xes(vp ) K (vn)

proper
Want to show: X—T>(x, ) + XU(x, t).
Key insight:
» Look at the coefficient of the highest power of ¢.
It's enough to show these coefficients are different for T and U.
So just look at colorings where all edges are ascents.
Construct a poset P (oriented arrows upwards).

v

v

v
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Translating to posets

Xz(x,t)=" > 1) X, () Xes(vp ) K (vn)

proper
Want to show: X—T>(x, ) + XU(x, t).
Key insight:
Look at the coefficient of the highest power of t.
It's enough to show these coefficients are different for T and U.
So just look at colorings where all edges are ascents.
Construct a poset P (oriented arrows upwards).
The corresponding coloring is a strict P-partition (strictly
order-presevering map)

v

vV v v Vv
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Two nice examples

Example. If G is a directed path, we get a fence poset.
[Sagan, Elizalde, Kantarci Oguz, McConville, Plante, Ravichandran,

Roby, Smyth, ...]
Conjecture still open in this case in full generality (?)

0>—0>-0<0>0<0<0>0
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Two nice examples

Example. If G is a directed path, we get a fence poset.

[Sagan, Elizalde, Kantarci Oguz, McConville, Plante, Ravichandran,
Roby, Smyth, ...]

Conjecture still open in this case in full generality (?)

0>—0>-0<0>0<0<0>0

Example. Caterpillars digraphs
and caterpillar posets.

AVAWAY
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Two nice examples

Example. If G is a directed path, we get a fence poset.

[Sagan, Elizalde, Kantarci Oguz, McConville, Plante, Ravichandran,

Roby, Smyth, ...]
Conjecture still open in this case in full generality (?)

0>—0>-0<0>0<0<0>0

Example. Caterpillars digraphs
and caterpillar posets.

AVAWAY

Propostion (Nate Lesnevich & M., 2022).
Xa(x t) distinguishes these caterpillar digraphs.
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Translating to posets

Xz(x,t)=" > 1) X, ) Xos (1) K (v)

proper x

The leading coefficient is the strict P-parition enumerator:

Ke(X) = X X(pr)xi(pe) " Xt(pn)-
strict P-partition f
5
() () (s
1 2
()1
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Translating to posets

Xz(x,t)=" > 1) X, ) Xos (1) K (v)

proper x

The leading coefficient is the strict P-parition enumerator:

Kp(x) = o Xp)xi(pa) Xi(pn)-
strict P-partition f

Project. Study equality among K5(x).
[Browning, Féray, Hasebe, Hopkins, Kelly, Lesnevich, Liu, M., Tsuijie,
Ward, Weselcouch, ...]
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Can K(p,,)(x) distinguish posets?

Conjecture 4 (ADM; stated as a question by Takahiro Hasebe and
Shuhei Tsujie, 2017).

K5 (x) distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then K5(x) # K5(X).

Key: this conjecture being true would imply that Xa(x, t)
distinguishes directed trees.
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Can K(p,,)(x) distinguish posets?

Conjecture 4 (ADM; stated as a question by Takahiro Hasebe and
Shuhei Tsujie, 2017).

K5 (x) distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then K5(x) # K5(X).

Key: this conjecture being true would imply that Xa(x, t)
distinguishes directed trees.

Theorem (Hasebe & Tsujie, 2017).
K5 (x) distinguishes posets that are rooted trees.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara
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Mixing strict and weak edges

Stanley’s (P, w)-partitions: both strict and weak edges, i.e.,
labeled posets.
f only needs to weakly increase along weak (springy) edges.

I N
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Mixing strict and weak edges

Stanley’s (P, w)-partitions: both strict and weak edges, i.e.,
labeled posets.
f only needs to weakly increase along weak (springy) edges.

False Statement.

K(p . (X) distinguishes labeled posets that are trees.
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Mixing strict and weak edges
Stanley’s (P, w)-partitions: both strict and weak edges, i.e.,

labeled posets.
f only needs to weakly increase along weak (springy) edges.

False Statement.

K(p . (X) distinguishes labeled posets that are trees.

Conjecture 5 (ADM, 2022).
K(p . (X) distinguishes labeled posets that are rooted trees.

v
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Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair
tree if for each vertex, its outgoing edges up to its children are either
all strict or all weak.

Example.
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Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair
tree if for each vertex, its outgoing edges up to its children are either
all strict or all weak.

Example.

LY 65

Definition. More generally, we define the set C of labeled posets
recursively by:

1. the one-element labeled poset [1] is in C;

2. C is closed under disjoint unions (P,w) u (Q,w’);

3. C is closed under the ordinal sums (P,w) ¢ [1] and (P,w) 1 [1];
4. Cis closed under the ordinal sums [1] 3 (P,w) and [1] 1 (P,w).
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Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair
tree if for each vertex, its outgoing edges up to its children are either
all strict or all weak.

Example.

LY 6 T

Definition. More generally, we define the set C of labeled posets
recursively by:

1. the one-element labeled poset [1] is in C;

2. C is closed under disjoint unions (P,w) u (Q,w’);

3. Cis closed under the ordinal sums (P,w) ¢ [1] and (P,w) 1 [1];
4. Cis closed under the ordinal sums [1] 3 (P,w) and [1] 1 (P,w).
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Our main theorem

Theorem [ADM, 2022].
K(p.)(X) distinguishes elements of C, so in particular fair trees.

First result about K(p . (x) distinguishing a class of posets with a
mixture of strict and weak edges.
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Our main theorem

Theorem [ADM, 2022].
K(p . (X) distinguishes elements of C, so in particular fair trees.

First result about K(p . (x) distinguishing a class of posets with a
mixture of strict and weak edges.

Proposition (crux of the proof) [ADM, 2022]
If (P,w) is a connected element of C then K. (X) is irreducible as a
quasisymmetric function.
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Our main theorem

Theorem [ADM, 2022].
K(p.)(X) distinguishes elements of C, so in particular fair trees.

First result about K(p . (x) distinguishing a class of posets with a
mixture of strict and weak edges.

Proposition (crux of the proof) [ADM, 2022]
If (P,w) is a connected element of C then K. (X) is irreducible as a
quasisymmetric function.

Irreducibility is also the crux for
» Hasebe & Tsujie;

» Ricki Ini Liu & Michael Weselcouch (K5(x) distinguishes
series-parallel posets; includes irreducibility for general
connected P with all strict edges, 2020).
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One for the road

Recall Conjecture 4. K5(x) distinguishes posets that are trees,

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara

17



One for the road

Recall Conjecture 4. K5(x) distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].
K5(1,9,9%,...,9"") distinguishes n-element posets that are trees.
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One for the road

Recall Conjecture 4. K5(x) distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].

K5(1,9,9%,...,9"") distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for K(p ) if

K(P,w)(1 »qs qza SR qk_1) = Nz:o a(N)qN7

then we see that a(N) counts the number of (P, w)-partitions
f:P-{0,...,k-1} of N.
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One for the road

Recall Conjecture 4. K5(x) distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].
K5(1,9,9%,...,9"") distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for K(p ) if

K(P,w)(1 »qs qza SR qk_1) = Nz:o a(N)qNa

then we see that a(N) counts the number of (P, w)-partitions
f:P-{0,...,k-1} of N.

Thanks for your attention!

Happy Birthday Bruce!
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