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Outline

▸ Chromatic (quasi)symmetric functions and the motivating
conjectures

▸ Converting to a poset question; more conjectures

▸ Some old and new results; one last conjecture
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The chromatic polynomial

George Birkhoff, 1912

Graph G = (V ,E)

Coloring: a map κ ∶ V → {1,2,3, . . .}

Proper coloring: adjacent vertices
get different colors.

Proper

1 2 1

Not Proper

1 1 2

Chromatic polynomial: χG(k) is the number of proper colorings of G
when k colors are available.

Example. If T is any tree with n vertices, χT (k) = k(k − 1)n−1.
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The chromatic symmetric function

Richard Stanley, 1995

Graph G = (V ,E)
V = {v1,v2, . . . ,vn}
To a proper coloring κ, we associate the monomial in commuting
variables x1,x2, . . .

xκ(v1)
xκ(v2)

⋯xκ(vn).

1 3 1

x2
1 x3

1 3 2

x1x2x3

Chromatic symmetric function:

XG(x1,x2, . . .) = XG(x) = ∑
proper κ

xκ(v1)
xκ(v2)

⋯xκ(vn).

▸ XG(x) is a symmetric function
▸ Setting xi = 1 for 1 ≤ i ≤ k and xi = 0 otherwise yields χG(k).
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Can XG(x) distinguish graphs?

XG(x) = ∑
proper κ

xκ(v1)
xκ(v2)

⋯xκ(vn).

Stanley: these have the same XG(x):

Famous Statement (Stanley).
“We do not know whether XG distinguishes trees.”
i.e. if T and U are non-isomorphic trees, then is XT (x) ≠ XU(x)?

[Aliniaeifard, Aliste-Prieto, Crew, Dahhberg, de Mier, Fougere, Heil,
Ji, Loebl, Loehr, Martin, Morin, Orellana, Scott, Smith, Sereni, Spirkl,
Tian, Wagner, Wang, Warrington, van Willigenburg, Zamora, ...]
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The Loehr–Warrington Conjecture

Conjecture 1 (Stanley). XG(x) distinguishes trees. In other words,
if T and U are non-isomorphic trees, then XT (x) ≠ XU(x).

(Surprising) Conjecture 2 (Nick Loehr & Greg Warrington, 2022).
XG(1,q,q2, . . . ,qn−1) distinguishes trees with n vertices, i.e.
if T and U are non-isomorphic trees with n vertices, then

XT (1,q,q2, . . . ,qn−1) ≠ XU(1,q,q2, . . . ,qn−1).

Why surprising?
▸ XT (1,q,q2, . . . ,qn−1) is a polynomial in one variable!
▸ Compare to XG(x) and χG(k).
▸ The data suggests that fewer than n nonzero variables suffice.
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The chromatic quasisymmetric function

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph
Ð→
G = (V ,E).

Ascent of proper coloring κ: directed edge u → v with κ(u) < κ(v)
asc(κ): the number of ascents of κ.
Example. Colors a < b < c

v1 v2 v3

aaa bbb cccaaa bbb aaa

κ(v1) κ(v2) κ(v3) asc(κ)
a b c 1
a c b 2
b a c 0
b c a 2
c a b 0
c b a 1
a b a 2
b a b 0

Chromatic quasisymmetric function:

XÐ→
G
(x, t) = ∑

proper κ

tasc(κ)xκ(v1)
xκ(v2)

⋯xκ(vn).

Example. XÐ→
G
(x, t) = (2 + 2t + 2t2)M111 + t2M21 +M12.
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Can XÐ→
G
(x, t) distinguish graphs?

Setting t = 1, we see XÐ→
G
(x, t) contains more information than XG(x).

Conjecture 3 (ADM; stated as a question by Per Alexandersson and
Robin Sulzgruber, 2021).

XÐ→
G
(x, t) distinguishes directed trees. In other words, if

Ð→
T and

Ð→
U

are non-isomorphic directed trees, then XÐ→
T
(x, t) ≠ XÐ→

U
(x, t).

This conjecture was our original goal. Strategy: translate to posets.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 9



Can XÐ→
G
(x, t) distinguish graphs?

Setting t = 1, we see XÐ→
G
(x, t) contains more information than XG(x).

Conjecture 3 (ADM; stated as a question by Per Alexandersson and
Robin Sulzgruber, 2021).

XÐ→
G
(x, t) distinguishes directed trees. In other words, if

Ð→
T and

Ð→
U

are non-isomorphic directed trees, then XÐ→
T
(x, t) ≠ XÐ→

U
(x, t).

This conjecture was our original goal. Strategy: translate to posets.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 9



Can XÐ→
G
(x, t) distinguish graphs?

Setting t = 1, we see XÐ→
G
(x, t) contains more information than XG(x).

Conjecture 3 (ADM; stated as a question by Per Alexandersson and
Robin Sulzgruber, 2021).

XÐ→
G
(x, t) distinguishes directed trees. In other words, if

Ð→
T and

Ð→
U

are non-isomorphic directed trees, then XÐ→
T
(x, t) ≠ XÐ→

U
(x, t).

This conjecture was our original goal. Strategy: translate to posets.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 9



Can XÐ→
G
(x, t) distinguish graphs?

Setting t = 1, we see XÐ→
G
(x, t) contains more information than XG(x).

Conjecture 3 (ADM; stated as a question by Per Alexandersson and
Robin Sulzgruber, 2021).

XÐ→
G
(x, t) distinguishes directed trees. In other words, if

Ð→
T and

Ð→
U

are non-isomorphic directed trees, then XÐ→
T
(x, t) ≠ XÐ→

U
(x, t).

This conjecture was our original goal. Strategy: translate to posets.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 9



Translating to posets

XÐ→
G
(x, t) = ∑

proper κ

tasc(κ)xκ(v1)
xκ(v2)

⋯xκ(vn).

Want to show: XÐ→
T
(x, t) ≠ XÐ→

U
(x, t).

Key insight:
▸ Look at the coefficient of the highest power of t .
▸ It’s enough to show these coefficients are different for

Ð→
T and

Ð→
U .

▸ So just look at colorings where all edges are ascents.

▸ Construct a poset P (oriented arrows upwards).
▸ The corresponding coloring is a strict P-partition (strictly

order-presevering map)

v4

v1 v5

v2

v3

2

1 5
3

1

v5

v3 v4

v1

v2

1

3
1

5

2
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Two nice examples

Example. If
Ð→
G is a directed path, we get a fence poset.

[Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran,
Roby, Smyth, ...]
Conjecture still open in this case in full generality (?)

Example. Caterpillars digraphs
and caterpillar posets.

Propostion (Nate Lesnevich & M., 2022).
XÐ→

G
(x, t) distinguishes these caterpillar digraphs.
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[Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran,
Roby, Smyth, ...]
Conjecture still open in this case in full generality (?)

Example. Caterpillars digraphs
and caterpillar posets.

Propostion (Nate Lesnevich & M., 2022).
XÐ→

G
(x, t) distinguishes these caterpillar digraphs.

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 11



Translating to posets

XÐ→
G
(x, t) = ∑

proper κ

tasc(κ)xκ(v1)
xκ(v2)

⋯xκ(vn).

The leading coefficient is the strict P-parition enumerator:

K <P(x) = ∑
strict P-partition f

xf(p1)xf (p2)
⋯xf(pn).

v4

v1 v5

v2

v3

2

1 5
3

1

v5

v3 v4

v1

v2

1

3
1

5

2

Project. Study equality among K <P(x).
[Browning, Féray, Hasebe, Hopkins, Kelly, Lesnevich, Liu, M., Tsujie,
Ward, Weselcouch, ...]
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Can K(P,ω)(x) distinguish posets?

Conjecture 4 (ADM; stated as a question by Takahiro Hasebe and
Shuhei Tsujie, 2017).
K <P(x) distinguishes posets that are trees.
i.e. if tree posets P and Q are not isomorphic, then K <P(x) ≠ K <Q(x).

Key: this conjecture being true would imply that XÐ→
G
(x, t)

distinguishes directed trees.

Theorem (Hasebe & Tsujie, 2017).
K <P(x) distinguishes posets that are rooted trees.
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Mixing strict and weak edges

Stanley’s (P, ω)-partitions: both strict and weak edges, i.e.,
labeled posets.
f only needs to weakly increase along weak (springy) edges.

False Statement.
K(P,ω)(x) distinguishes labeled posets that are trees.

Conjecture 5 (ADM, 2022).
K(P,ω)(x) distinguishes labeled posets that are rooted trees.
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Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair
tree if for each vertex, its outgoing edges up to its children are either
all strict or all weak.

Example.

Definition. More generally, we define the set C of labeled posets
recursively by:

1. the one-element labeled poset [1] is in C;
2. C is closed under disjoint unions (P, ω) ⊔ (Q, ω′);
3. C is closed under the ordinal sums (P, ω) © [1] and ;
4. C is closed under the ordinal sums [1] © (P, ω) and [1] ↑ (P, ω).
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Our main theorem

Theorem [ADM, 2022].
K(P,ω)(x) distinguishes elements of C, so in particular fair trees.

First result about K(P,ω)(x) distinguishing a class of posets with a
mixture of strict and weak edges.

Proposition (crux of the proof) [ADM, 2022]
If (P, ω) is a connected element of C then K(P,ω)(x) is irreducible as a
quasisymmetric function.

Irreducibility is also the crux for
▸ Hasebe & Tsujie;
▸ Ricki Ini Liu & Michael Weselcouch (K <P(x) distinguishes

series-parallel posets; includes irreducibility for general
connected P with all strict edges, 2020).
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One for the road

Recall Conjecture 4. K <P(x) distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].
K <P(1,q,q

2, . . . ,qn−1) distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for K(P,ω): if

K(P,ω)(1,q,q2, . . . ,qk−1) = ∑
N≥0

a(N)qN ,

then we see that a(N) counts the number of (P, ω)-partitions
f ∶ P → {0, . . . ,k − 1} of N.

Thanks for your attention!

Happy Birthday Bruce!

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 17



One for the road

Recall Conjecture 4. K <P(x) distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].
K <P(1,q,q

2, . . . ,qn−1) distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for K(P,ω): if

K(P,ω)(1,q,q2, . . . ,qk−1) = ∑
N≥0

a(N)qN ,

then we see that a(N) counts the number of (P, ω)-partitions
f ∶ P → {0, . . . ,k − 1} of N.

Thanks for your attention!

Happy Birthday Bruce!

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 17



One for the road

Recall Conjecture 4. K <P(x) distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].
K <P(1,q,q

2, . . . ,qn−1) distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for K(P,ω): if

K(P,ω)(1,q,q2, . . . ,qk−1) = ∑
N≥0

a(N)qN ,

then we see that a(N) counts the number of (P, ω)-partitions
f ∶ P → {0, . . . ,k − 1} of N.

Thanks for your attention!

Happy Birthday Bruce!

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 17



One for the road

Recall Conjecture 4. K <P(x) distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].
K <P(1,q,q

2, . . . ,qn−1) distinguishes n-element posets that are trees.

Remark. This specialization has a nice interpretation for K(P,ω): if

K(P,ω)(1,q,q2, . . . ,qk−1) = ∑
N≥0

a(N)qN ,

then we see that a(N) counts the number of (P, ω)-partitions
f ∶ P → {0, . . . ,k − 1} of N.

Thanks for your attention!

Happy Birthday Bruce!

Quasisymmetric functions distinguishing trees Aval, Djenabou, McNamara 17


