Quasisymmetric functions distinguishing trees

Peter McNamara

Bucknell University

Joint work with: Jean-Christophe Aval LaBRI, CNRS, Université de Bordeaux

Karimatou Djenabou LaCIM, Université du Québec à Montréal

Enumerative and Algebraic Combinatorics
SaganFest
25 February 2024

Slides and paper available from

http://www.unix.bucknell.edu/~pm040/

Quasisymmetric functions distinguishing trees

Peter McNamara Bucknell University

Enumerative and Algebraic Combinatorics SaganFest 25 February 2024

Slides and paper available from

http://www.unix.bucknell.edu/~pm040/

124 distinct coauthors over 132 publications Coauthor ratio: 0.939

124 distinct coauthors over 132 publications Coauthor ratio: 0.939

Higher than: Erdős*, Lovász*, Stanley, Seymour, Wachs, Wigderson*, Björner, Krattenthaler, Bousquet-Mélou, Viennot, van Willigenburg, Garsia, Pak, Chung, Hanlon, Sturmfels, Fomin, Stembridge, Kalai, Chen*, Andrews*, Billera, Readdy, Yan, Ehrenborg, Bóna, Reiner, Postnikov (0.938), Bergeron³,...

124 distinct coauthors over 132 publications

Coauthor ratio: 0.939

Higher than: Erdős*, Lovász*, Stanley, Seymour, Wachs, Wigderson*, Björner, Krattenthaler, Bousquet-Mélou, Viennot, van Willigenburg, Garsia, Pak, Chung, Hanlon, Sturmfels, Fomin, Stembridge, Kalai, Chen*, Andrews*, Billera, Readdy, Yan, Ehrenborg, Bóna, Reiner, Postnikov (0.938), Bergeron³,...

Sara Billey: 1.059

124 distinct coauthors over 132 publications

Coauthor ratio: 0.939

Higher than: Erdős*, Lovász*, Stanley, Seymour, Wachs, Wigderson*, Björner, Krattenthaler, Bousquet-Mélou, Viennot, van Willigenburg, Garsia, Pak, Chung, Hanlon, Sturmfels, Fomin, Stembridge, Kalai, Chen*, Andrews*, Billera, Readdy, Yan, Ehrenborg, Bóna, Reiner, Postnikov (0.938), Bergeron³,...

Sara Billey: 1.059

Pamela Harris*: 2.303

Outline

- Chromatic (quasi)symmetric functions and the motivating conjectures
- Converting to a poset question; more conjectures
- Some old and new results; one last conjecture

George Birkhoff, 1912

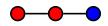
Graph
$$G = (V, E)$$

Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

Proper coloring: adjacent vertices get different colors.

Proper

Not Proper



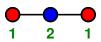
George Birkhoff, 1912

Graph
$$G = (V, E)$$

Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

Proper coloring: adjacent vertices get different colors.

Proper



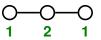
Not Proper

George Birkhoff, 1912

Graph
$$G = (V, E)$$

Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

Proper coloring: adjacent vertices get different colors.



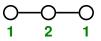
Not Proper

George Birkhoff, 1912

Graph
$$G = (V, E)$$

Coloring: a map $\kappa: V \rightarrow \{1, 2, 3, \ldots\}$

Proper coloring: adjacent vertices get different colors.



Chromatic polynomial: $\chi_G(k)$ is the number of proper colorings of G when k colors are available.

Example. If *T* is any tree with *n* vertices, $\chi_T(k) = k(k-1)^{n-1}$.

Richard Stanley, 1995

Graph
$$G = (V, E)$$

$$V = \{v_1, v_2, \dots, v_n\}$$

To a proper coloring κ , we associate the monomial in commuting variables $x_1, x_2, ...$

$$X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_n)}.$$

$$0 - 0 - 0$$

Richard Stanley, 1995

Graph
$$G = (V, E)$$

$$V = \{v_1, v_2, \dots, v_n\}$$

To a proper coloring κ , we associate the monomial in commuting variables $x_1, x_2, ...$

$$X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_n)}$$
.

$$0 - 0 0 0 0$$

Chromatic symmetric function:

$$X_G(x_1, x_2, \ldots) = X_G(\mathbf{x}) = \sum_{\text{proper } \kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Richard Stanley, 1995

Graph
$$G = (V, E)$$

$$V = \{v_1, v_2, \dots, v_n\}$$

To a proper coloring κ , we associate the monomial in commuting variables $x_1, x_2, ...$

$$X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_n)}$$
.

$$\begin{array}{cccc}
1 & 3 & 2 \\
0 & 0 & 0 \\
x_1 x_2 x_3
\end{array}$$

Chromatic symmetric function:

$$X_G(x_1,x_2,\ldots)=X_G(\mathbf{x})=\sum_{\text{proper }\kappa}x_{\kappa(\nu_1)}x_{\kappa(\nu_2)}\cdots x_{\kappa(\nu_n)}.$$

- $X_G(\mathbf{x})$ is a symmetric function
- ▶ Setting $x_i = 1$ for $1 \le i \le k$ and $x_i = 0$ otherwise yields $\chi_G(k)$.

$$X_G(\mathbf{x}) = \sum_{\text{proper }\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

$$X_G(\mathbf{x}) = \sum_{\text{proper }\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Stanley: these have the same $X_G(\mathbf{x})$:

$$X_G(\mathbf{x}) = \sum_{\text{proper }\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Stanley: these have the same $X_G(\mathbf{x})$:

Famous Statement (Stanley).

"We do not know whether X_G distinguishes trees."

i.e. if T and U are non-isomorphic trees, then is $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$?

$$X_G(\mathbf{X}) = \sum_{\text{proper } \kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Stanley: these have the same $X_G(\mathbf{x})$:

Famous Statement (Stanley).

"We do not know whether X_G distinguishes trees." i.e. if T and U are non-isomorphic trees, then is $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$?

[Aliniaeifard, Aliste-Prieto, Crew, Dahhberg, de Mier, Fougere, Heil, Ji, Loebl, Loehr, Martin, Morin, Orellana, Scott, Smith, Sereni, Spirkl, Tian, Wagner, Wang, Warrington, van Willigenburg, Zamora, ...]

The Loehr–Warrington Conjecture

Conjecture 1 (Stanley). $X_G(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

The Loehr–Warrington Conjecture

Conjecture 1 (Stanley). $X_G(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

(Surprising) Conjecture 2 (Nick Loehr & Greg Warrington, 2022). $X_G(1,q,q^2,\ldots,q^{n-1})$ distinguishes trees with n vertices, i.e. if T and U are non-isomorphic trees with n vertices, then

$$X_T(1,q,q^2,\ldots,q^{n-1}) \neq X_U(1,q,q^2,\ldots,q^{n-1}).$$

Why surprising?

- $X_T(1, q, q^2, \dots, q^{n-1})$ is a polynomial in one variable!
- Compare to $X_G(\mathbf{x})$ and $\chi_G(k)$.

The Loehr-Warrington Conjecture

Conjecture 1 (Stanley). $X_G(\mathbf{x})$ distinguishes trees. In other words, if T and U are non-isomorphic trees, then $X_T(\mathbf{x}) \neq X_U(\mathbf{x})$.

(Surprising) Conjecture 2 (Nick Loehr & Greg Warrington, 2022). $X_G(1, q, q^2, \ldots, q^{n-1})$ distinguishes trees with n vertices, i.e. if T and U are non-isomorphic trees with n vertices, then

$$X_T(1,q,q^2,\ldots,q^{n-1}) \neq X_U(1,q,q^2,\ldots,q^{n-1}).$$

Why surprising?

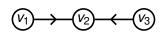
- $X_T(1, q, q^2, \dots, q^{n-1})$ is a polynomial in one variable!
- Compare to $X_G(\mathbf{x})$ and $\chi_G(k)$.
- ▶ The data suggests that fewer than *n* nonzero variables suffice.

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



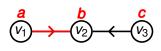
$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



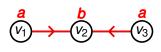
$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



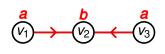
$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$asc(\kappa)$
a	<u></u>	C	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$\operatorname{asc}(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

Chromatic quasisymmetric function:

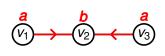
$$X_{\overrightarrow{G}}(\mathbf{X},t) = \sum_{\text{proper } \kappa} t^{\text{asc}(\kappa)} X_{\kappa(\nu_1)} X_{\kappa(\nu_2)} \cdots X_{\kappa(\nu_n)}.$$

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\vec{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(V_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

Chromatic quasisymmetric function:

$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\text{proper }\kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

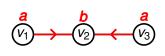
Example.
$$X_{\overrightarrow{G}}(\mathbf{x},t) = (2+2t+2t^2)M_{111} + t^2M_{21} + M_{12}$$
.

John Shareshian & Michelle Wachs, 2014; Brittney Ellzey, 2017.

Directed graph $\overrightarrow{G} = (V, E)$.

Ascent of proper coloring κ : directed edge $u \to v$ with $\kappa(u) < \kappa(v)$ asc (κ) : the number of ascents of κ .

Example. Colors a < b < c



$\kappa(v_1)$	$\kappa(v_2)$	$\kappa(v_3)$	$asc(\kappa)$
а	b	С	1
а	С	b	2
b	а	С	0
b	С	а	2
С	а	b	0
С	b	а	1
а	b	а	2
b	а	b	0

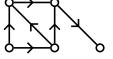
Chromatic quasisymmetric function:

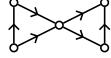
$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\text{proper }\kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Example. $X_{\overrightarrow{G}}(\mathbf{x},t) = (2+2t+2t^2)M_{111} + t^2M_{21} + M_{12}$.

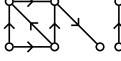
Setting t = 1, we see $X_{\overrightarrow{G}}(\mathbf{x}, t)$ contains more information than $X_G(\mathbf{x})$.

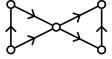
Setting t = 1, we see $X_{\overrightarrow{G}}(\mathbf{x}, t)$ contains more information than $X_G(\mathbf{x})$.





Setting t = 1, we see $X_{\overrightarrow{G}}(\mathbf{x}, t)$ contains more information than $X_G(\mathbf{x})$.





Conjecture 3 (ADM; stated as a question by Per Alexandersson and Robin Sulzgruber, 2021).

 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees. In other words, if \overrightarrow{T} and \overrightarrow{U} are non-isomorphic directed trees, then $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

Setting t = 1, we see $X_{\overrightarrow{G}}(\mathbf{x}, t)$ contains more information than $X_G(\mathbf{x})$.

Conjecture 3 (ADM; stated as a question by Per Alexandersson and Robin Sulzgruber, 2021).

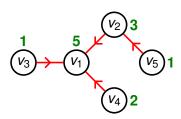
 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees. In other words, if \overrightarrow{T} and \overrightarrow{U} are non-isomorphic directed trees, then $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

This conjecture was our original goal. Strategy: translate to posets.

$$X_{\overrightarrow{G}}(\mathbf{X},t) = \sum_{\mathsf{proper }\kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Want to show: $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

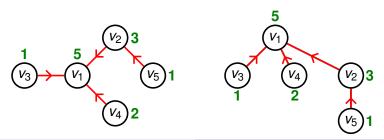
- ▶ Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \overrightarrow{T} and \overrightarrow{U} .
- So just look at colorings where all edges are ascents.



$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\text{proper }\kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa(\nu_1)} X_{\kappa(\nu_2)} \cdots X_{\kappa(\nu_n)}.$$

Want to show: $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

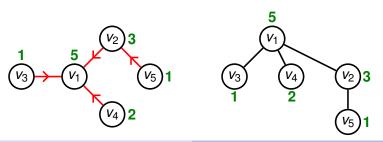
- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \overrightarrow{T} and \overrightarrow{U} .
- So just look at colorings where all edges are ascents.
- ► Construct a poset *P* (oriented arrows upwards).



$$X_{\overrightarrow{G}}(\mathbf{X},t) = \sum_{\mathsf{proper }\kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Want to show: $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

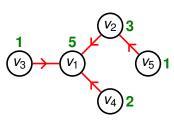
- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \overrightarrow{T} and \overrightarrow{U} .
- So just look at colorings where all edges are ascents.
- Construct a poset P (oriented arrows upwards).

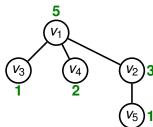


$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\mathsf{proper}\ \kappa} t^{\mathsf{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

Want to show: $X_{\overrightarrow{T}}(\mathbf{x},t) \neq X_{\overrightarrow{U}}(\mathbf{x},t)$.

- Look at the coefficient of the highest power of t.
- It's enough to show these coefficients are different for \overrightarrow{T} and \overrightarrow{U} .
- So just look at colorings where all edges are ascents.
- ► Construct a poset *P* (oriented arrows upwards).
- The corresponding coloring is a strict P-partition (strictly order-presevering map)

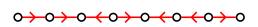


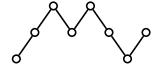


Two nice examples

Example. If \overrightarrow{G} is a directed path, we get a fence poset. [Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran, Roby, Smyth, ...]

Conjecture still open in this case in full generality (?)

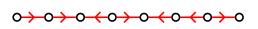


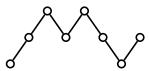


Two nice examples

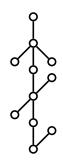
Example. If \overrightarrow{G} is a directed path, we get a fence poset. [Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran, Roby, Smyth, ...]

Conjecture still open in this case in full generality (?)



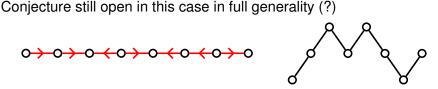


Example. Caterpillars digraphs and caterpillar posets.



Two nice examples

Example. If \overrightarrow{G} is a directed path, we get a fence poset. [Sagan, Elizalde, Kantarci Oğuz, McConville, Plante, Ravichandran, Roby, Smyth, ...]



Example. Caterpillars digraphs and caterpillar posets.

Propostion (Nate Lesnevich & M., 2022).

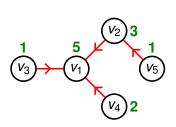
 $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes these caterpillar digraphs.

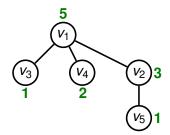
Translating to posets

$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\text{proper }\kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa(\nu_1)} X_{\kappa(\nu_2)} \cdots X_{\kappa(\nu_n)}.$$

The leading coefficient is the strict *P*-parition enumerator:

$$K_P^{\leq}(\mathbf{x}) = \sum_{\text{strict } P\text{-partition } f} X_{f(p_1)X_f(p_2)} \cdots X_{f(p_n)}.$$



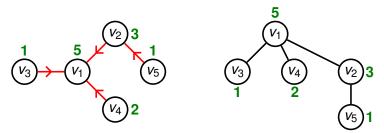


Translating to posets

$$X_{\overrightarrow{G}}(\mathbf{x},t) = \sum_{\text{proper }\kappa} t^{\operatorname{asc}(\kappa)} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}.$$

The leading coefficient is the strict *P*-parition enumerator:

$$K_P^{\leq}(\mathbf{x}) = \sum_{\text{strict } P\text{-partition } f} X_{f(p_1)X_f(p_2)} \cdots X_{f(p_n)}.$$



Project. Study equality among $K_P^{<}(\mathbf{x})$. [Browning, Féray, Hasebe, Hopkins, Kelly, Lesnevich, Liu, M., Tsujie, Ward, Weselcouch, ...]

Can $K_{(P,\omega)}(\mathbf{x})$ distinguish posets?

Conjecture 4 (ADM; stated as a question by Takahiro Hasebe and Shuhei Tsujie, 2017).

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then $K_P^<(\mathbf{x}) \neq K_Q^<(\mathbf{x})$.

Key: this conjecture being true would imply that $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees.

Can $K_{(P,\omega)}(\mathbf{x})$ distinguish posets?

Conjecture 4 (ADM; stated as a question by Takahiro Hasebe and Shuhei Tsujie, 2017).

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees.

i.e. if tree posets P and Q are not isomorphic, then $K_P^{\leq}(\mathbf{x}) \neq K_Q^{\leq}(\mathbf{x})$.

Key: this conjecture being true would imply that $X_{\overrightarrow{G}}(\mathbf{x},t)$ distinguishes directed trees.

Theorem (Hasebe & Tsujie, 2017).

 $K_P^{<}(\mathbf{x})$ distinguishes posets that are rooted trees.

Mixing strict and weak edges

Stanley's (P, ω) -partitions: both strict and weak edges, i.e., labeled posets.

f only needs to weakly increase along weak (springy) edges.

Mixing strict and weak edges

Stanley's (P, ω) -partitions: both strict and weak edges, i.e., labeled posets.

f only needs to weakly increase along weak (springy) edges.

False Statement.

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes labeled posets that are trees.

Mixing strict and weak edges

Stanley's (P, ω) -partitions: both strict and weak edges, i.e., labeled posets.

f only needs to weakly increase along weak (springy) edges.

False Statement.

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes labeled posets that are trees.

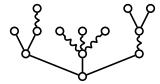
Conjecture 5 (ADM, 2022).

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes labeled posets that are rooted trees.

Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

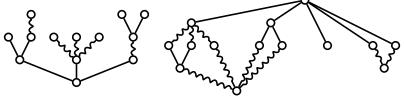
Example.



Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.



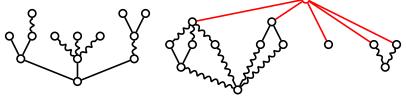
Definition. More generally, we define the set \mathcal{C} of labeled posets recursively by:

- 1. the one-element labeled poset [1] is in C;
- 2. C is closed under disjoint unions $(P, \omega) \sqcup (Q, \omega')$;
- 3. C is closed under the ordinal sums $(P, \omega) \uparrow [1]$ and $(P, \omega) \uparrow [1]$;
- 4. C is closed under the ordinal sums $[1] \uparrow (P, \omega)$ and $[1] \uparrow (P, \omega)$.

Fair trees and a generalization

Definition. A labeled poset that is a rooted tree is said to be a fair tree if for each vertex, its outgoing edges up to its children are either all strict or all weak.

Example.



Definition. More generally, we define the set \mathcal{C} of labeled posets recursively by:

- 1. the one-element labeled poset [1] is in C;
- 2. C is closed under disjoint unions $(P, \omega) \sqcup (Q, \omega')$;
- 3. C is closed under the ordinal sums $(P, \omega) \uparrow [1]$ and $(P, \omega) \uparrow [1]$;
- 4. C is closed under the ordinal sums [1] \uparrow (P, ω) and [1] \uparrow (P, ω).

Our main theorem

Theorem [ADM, 2022].

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C} , so in particular fair trees.

First result about $K_{(P,\omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Our main theorem

Theorem [ADM, 2022].

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C} , so in particular fair trees.

First result about $K_{(P,\omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Proposition (crux of the proof) [ADM, 2022]

If (P,ω) is a connected element of $\mathcal C$ then $K_{(P,\omega)}(\mathbf x)$ is irreducible as a quasisymmetric function.

Our main theorem

Theorem [ADM, 2022].

 $K_{(P,\omega)}(\mathbf{x})$ distinguishes elements of \mathcal{C} , so in particular fair trees.

First result about $K_{(P,\omega)}(\mathbf{x})$ distinguishing a class of posets with a mixture of strict and weak edges.

Proposition (crux of the proof) [ADM, 2022]

If (P,ω) is a connected element of $\mathcal C$ then $K_{(P,\omega)}(\mathbf x)$ is irreducible as a quasisymmetric function.

Irreducibility is also the crux for

- Hasebe & Tsujie;
- Ricki Ini Liu & Michael Weselcouch (K_P(x) distinguishes series-parallel posets; includes irreducibility for general connected P with all strict edges, 2020).

Recall **Conjecture 4.** $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees,

Recall **Conjecture 4.** $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].

 $K_P^{<}(1,q,q^2,\ldots,q^{n-1})$ distinguishes *n*-element posets that are trees.

Recall **Conjecture 4.** $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].

 $K_P^{<}(1,q,q^2,\ldots,q^{n-1})$ distinguishes *n*-element posets that are trees.

Remark. This specialization has a nice interpretation for $K_{(P,\omega)}$: if

$$\textit{K}_{(P,\omega)}(1,q,q^2,\ldots,q^{k-1}) = \sum_{N \geq 0} \textit{a}(N)q^N,$$

then we see that a(N) counts the number of (P, ω) -partitions $f: P \to \{0, \dots, k-1\}$ of N.

Recall **Conjecture 4.** $K_P^{<}(\mathbf{x})$ distinguishes posets that are trees,

Conjecture 6 [ADM, 2022].

 $K_P^{<}(1,q,q^2,\ldots,q^{n-1})$ distinguishes *n*-element posets that are trees.

Remark. This specialization has a nice interpretation for $K_{(P,\omega)}$: if

$$K_{(P,\omega)}(1,q,q^2,\ldots,q^{k-1})=\sum_{N\geq 0}a(N)q^N,$$

then we see that a(N) counts the number of (P, ω) -partitions $f: P \to \{0, \dots, k-1\}$ of N.

Thanks for your attention!

Happy Birthday Bruce!