
The Combinatorial Topology of the
Permutation Pattern Poset

Peter McNamara
Bucknell University

Joint work with:
Einar Steingrímsson

University of Strathclyde

Bijective and Algebraic Combinatorics
in honor of Bruce Sagan’s 60th birthday

25 March 2014

Slides and paper available from
www.facstaff.bucknell.edu/pm040/

The Combinatorial Topology of the Permutation Pattern Poset Peter R. W. McNamara & Einar Steingrímsson 1



Outline

I The PPP setting

I Some combinatorial topology

I Outline of results

I Open problems

The Combinatorial Topology of the Permutation Pattern Poset Peter R. W. McNamara & Einar Steingrímsson 2



Motivation: Wilf’s question

Pattern order: order permutations by pattern containment.
e.g., 4132 ≤ 516423

132

1423 1432 3142 4132

15423 41523 51423 41532

516423

Wilf (2002): What can be said about the Möbius function µ(σ, τ) of
the pattern poset?

I Sagan & Vatter (2006)
I Steingrímsson & Tenner (2010)
I Burstein, Jelínek, Jelínková & Steingrímsson (2011)
I Smith (2013)

Still open.
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Other topological questions

I Are the open intervals connected?

I Shellable?

I What is their homotopy type?

1342

21453 12453 13425

231564 132564 123564 134265 134256

1342675

The Combinatorial Topology of the Permutation Pattern Poset Peter R. W. McNamara & Einar Steingrímsson 4



Some combinatorial topology

Poset P −→ Simplicial complex ∆(P)

Order complex of [p,q]: faces of ∆(p,q) are the chains in (p,q).

Example.

a b

c d

e f

p

q

p

q

d b

a f

e c

1 2
3 4

Definition. A pure d-dimensional complex is shellable if its facets can
be ordered F1,F2, . . . ,Fn such that, for all 2 ≤ i ≤ n,

Fi ∩ (F1 ∪ F2 ∪ · · · ∪ Fi−1)

is pure and (d − 1)-dimensional.
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Non-shellable

I

1

2

3
4

I Main counterexample. (p,q) disconnected with d ≥ 1:
∆(p,q) is not shellable.

1342

21453 12453 13425

231564 132564 123564 134265 134256

1342675

The interval above is said to be non-trivially disconnected.
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Why we care about shellability

I If ∆(p,q) is shellable, then its either contractible, or homotopic to
a wedge of |µ(p,q)| spheres in the top dimension.

I Combinatorial tools for showing shellability of ∆(P):
EL-shellability, CL-shellability, etc.
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Results

Direct sum: 21⊕ 3214 = 215436.

Skew sum: 21	 3214 = 653214.

π is indecomposable if π 6= α⊕ β for any non-empty α, β.

Lemma. If π is indecomposable with |π| ≥ 3, then ∆(π, π ⊕ π) is
disconnected and so not shellable.

Example.

321

321⊕ 1 1⊕ 321

321⊕ 21 21⊕ 321

321⊕ 321
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Almost all intervals are not shellable

Theorem [McN. & Steingrímsson].
Fix σ. Randomly choose τ of length n.

lim
n→∞

(Probability that ∆(σ, τ) is shellable) = 0.

Idea.
I Björner: If [σ, τ ] is shellable (i.e. ∆(σ, τ) is), then so is every

subinterval of [σ, τ ].
I Thus, if [σ, τ ] contains a (non-trivial) disconnected subinterval,

then it can’t be shellable.
I Show every [σ, τ ] as n→∞ contains [π, π ⊕ π] with π

indecomposable,
or contains [π, π 	 π] with π skew indecomposable.

Several other results about disconnected intervals.
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Shellable intervals

In contrast, there’s a large class of shellable intervals.

Definition. π is layered if it takes the form π = π1 ⊕ π2 ⊕ · · · ⊕ πk with
each πi decreasing.

e.g. 1⊕ 1⊕ 321⊕ 321⊕ 1 = 125438769 = 11331 .

Lemma. In layered case, it’s trivial to check if [σ, τ ] is disconnected.

Theorem [McN. & Steingrímsson]. Suppose σ, τ layered such that
[σ, τ ] does not contain a non-trivial disconnected subinterval. Then
[σ, τ ] is shellable.

Example. [1⊕ 321⊕ 1, 321⊕ 321⊕ 1⊕ 21⊕ 1] = [131,33121]
is shellable.

Idea of proof. Show [σ, τ ] is dual CL-shellable.
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Two connections to generalized subword order.

P: any poset.

P∗: set of words over the alphabet P.

P :

1

2 3

4

5

6

Main Definition. u ≤ w if there exists a subword w(i1)w(i2) · · ·w(ir ) of
w of the same length as u such that

u(j) ≤P w(ij) for 1 ≤ j ≤ r .

Example. P is the chain 1 < 2 < 3 < 4 < · · ·
gives containment order for layered permutations.
e.g. 22 ≤P 412 is equivalent to 21⊕ 21 ≤ 4321⊕ 1⊕ 21.

Connection 1.
Theorem [McN. & Steingrímsson]. If P is a rooted forest, then [u,w ] is
shellable iff it does not contain a non-trivial disconnected subinterval.

The Combinatorial Topology of the Permutation Pattern Poset Peter R. W. McNamara & Einar Steingrímsson 11



Two connections to generalized subword order.

P: any poset.

P∗: set of words over the alphabet P.

P :

1

2 3

4

5

6

Main Definition. u ≤ w if there exists a subword w(i1)w(i2) · · ·w(ir ) of
w of the same length as u such that

u(j) ≤P w(ij) for 1 ≤ j ≤ r .

Example. P is the chain 1 < 2 < 3 < 4 < · · ·
gives containment order for layered permutations.
e.g. 22 ≤P 412 is equivalent to 21⊕ 21 ≤ 4321⊕ 1⊕ 21.

Connection 1.
Theorem [McN. & Steingrímsson]. If P is a rooted forest, then [u,w ] is
shellable iff it does not contain a non-trivial disconnected subinterval.

The Combinatorial Topology of the Permutation Pattern Poset Peter R. W. McNamara & Einar Steingrímsson 11



Two connections to generalized subword order.

P: any poset.

P∗: set of words over the alphabet P.

P :

1

2 3

4

5

6

Main Definition. u ≤ w if there exists a subword w(i1)w(i2) · · ·w(ir ) of
w of the same length as u such that

u(j) ≤P w(ij) for 1 ≤ j ≤ r .

Example. P is the chain 1 < 2 < 3 < 4 < · · ·
gives containment order for layered permutations.
e.g. 22 ≤P 412 is equivalent to 21⊕ 21 ≤ 4321⊕ 1⊕ 21.

Connection 1.
Theorem [McN. & Steingrímsson]. If P is a rooted forest, then [u,w ] is
shellable iff it does not contain a non-trivial disconnected subinterval.

The Combinatorial Topology of the Permutation Pattern Poset Peter R. W. McNamara & Einar Steingrímsson 11



A Möbius function formula

σ = σ1 ⊕ · · · ⊕ σs , the finest decomposition of σ.
τ = τ1 ⊕ · · · ⊕ τt , the finest decomposition of τ .

Burstein, Jelínek, Jelínková & Steingrímsson:
2 propositions for expressing µ(σ, τ) in terms of µ(σi , τj).

Theorem [McN. & Steingrímsson].

µ(σ, τ) =
∑

σ=σ1⊕···⊕σt

∏
1≤m≤t

{
µ(σm , τm) + 1 if σm = ∅ and τm−1 = τm ,
µ(σm , τm) otherwise,

where the sum is over all direct sums σ = σ1 ⊕ · · · ⊕ σt such that
∅ ≤ σm ≤ τm for all 1 ≤ m ≤ t .

Connection 2. This is identical to the formula for µ for generalized
subword order: replace indecomposable parts by letters from P.

Open problem. Why?
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More open problems

I Understand non-shellable intervals without disconnected
subintervals.
e.g. [123,3416725].

I Find a good way to test shellability by computer.
I Separable permutations: can be built from 1 by a sequence of

direct sums or skew sums.

1⊕ 1 = 12
(1⊕ 1)	 (1⊕ 1) = 12	 12 = 3412

1⊕ 3412 = 14523 etc.

Conjecture. Suppose σ, τ separable such that [σ, τ ] does not
contain a non-trivial disconnected subinterval. Then [σ, τ ] is
shellable.

I Conjecture. [σ, τ ] is always rank unimodal.
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Consecutive pattern poset

Joint with Sergi Elizalde.

Consecutive pattern poset: σ ≤ τ if σ appears as a set of consecutive
letters in τ .
e.g. 213 ≤ 254613.

Möbius function: Bernini–Ferrari–Steingrímsson, Sagan–Willenbring

Theorem [Sagan & Willenbring]. Any interval is homoptic to a sphere
or is contractible.

Theorems [Elizalde & McN.]
I Any interval is shellable iff it doesn’t contain a non-trivial

disconnected subinterval.
I All intervals are rank unimodal.

Thanks!
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