The Combinatorial Topology of the Permutation Pattern Poset

Peter McNamara Bucknell University
Joint work with:
Einar Steingrímsson
University of Strathclyde

Bijective and Algebraic Combinatorics in honor of Bruce Sagan's 60th birthday

25 March 2014

Slides and paper available from
www.facstaff.bucknell.edu/pm040/

Outline

- The PPP setting
- Some combinatorial topology
- Outline of results
- Open problems

Motivation: Wilf's question

Pattern order: order permutations by pattern containment. e.g., $4132 \leq 516423$

Motivation: Wilf's question

Pattern order: order permutations by pattern containment. e.g., $4132 \leq 516423$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

Motivation: Wilf’s question

Pattern order: order permutations by pattern containment. e.g., $4132 \leq 516423$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

- Sagan \& Vatter (2006)
- Steingrímsson \& Tenner (2010)
- Burstein, Jelínek, Jelínková \& Steingrímsson (2011)
- Smith (2013)

Motivation: Wilf's question

Pattern order: order permutations by pattern containment. e.g., $4132 \leq 516423$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

- Sagan \& Vatter (2006)
- Steingrímsson \& Tenner (2010)
- Burstein, Jelínek, Jelínková \& Steingrímsson (2011)
- Smith (2013)

Still open.

Other topological questions

- Are the open intervals connected?
- Shellable?
- What is their homotopy type?

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of $[p, q]$: faces of $\Delta(p, q)$ are the chains in (p, q). Example.

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of $[p, q]$: faces of $\Delta(p, q)$ are the chains in (p, q). Example.

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

Order complex of $[p, q]$: faces of $\Delta(p, q)$ are the chains in (p, q). Example.

e• \quad C
a•
-f
d• $\quad b$

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

Order complex of $[p, q]$: faces of $\Delta(p, q)$ are the chains in (p, q). Example.

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of $[p, q]$: faces of $\Delta(p, q)$ are the chains in (p, q). Example.

Some combinatorial topology

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$
Order complex of $[p, q]$: faces of $\Delta(p, q)$ are the chains in (p, q).
Example.

Definition. A pure d-dimensional complex is shellable if its facets can be ordered $F_{1}, F_{2}, \ldots, F_{n}$ such that, for all $2 \leq i \leq n$,

$$
F_{i} \cap\left(F_{1} \cup F_{2} \cup \cdots \cup F_{i-1}\right)
$$

is pure and $(d-1)$-dimensional.

Some combinatorial topology

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

Order complex of $[p, q]$: faces of $\Delta(p, q)$ are the chains in (p, q).
Example.

Definition. A pure d-dimensional complex is shellable if its facets can be ordered $F_{1}, F_{2}, \ldots, F_{n}$ such that, for all $2 \leq i \leq n$,

$$
F_{i} \cap\left(F_{1} \cup F_{2} \cup \cdots \cup F_{i-1}\right)
$$

is pure and $(d-1)$-dimensional.

Non-shellable

Non-shellable

- Main counterexample. (p, q) disconnected with $d \geq 1$: $\Delta(p, q)$ is not shellable.

The interval above is said to be non-trivially disconnected.

Why we care about shellability

- If $\Delta(p, q)$ is shellable, then its either contractible, or homotopic to a wedge of $|\mu(p, q)|$ spheres in the top dimension.
- Combinatorial tools for showing shellability of $\Delta(P)$: EL-shellability, CL-shellability, etc.

Results

Direct sum: $21 \oplus 3214=215436$.
Skew sum: $21 \ominus 3214=653214$.
π is indecomposable if $\pi \neq \alpha \oplus \beta$ for any non-empty α, β.
Lemma. If π is indecomposable with $|\pi| \geq 3$, then $\Delta(\pi, \pi \oplus \pi)$ is disconnected and so not shellable.

Example.

Almost all intervals are not shellable

Theorem [McN. \& Steingrímsson].
Fix σ. Randomly choose τ of length n.
$\lim _{n \rightarrow \infty}($ Probability that $\Delta(\sigma, \tau)$ is shellable $)=0$.

Almost all intervals are not shellable

Theorem [McN. \& Steingrímsson].
Fix σ. Randomly choose τ of length n.

$$
\lim _{n \rightarrow \infty}(\text { Probability that } \Delta(\sigma, \tau) \text { is shellable })=0
$$

Idea.

- Björner: If $[\sigma, \tau]$ is shellable (i.e. $\Delta(\sigma, \tau)$ is), then so is every subinterval of $[\sigma, \tau]$.
- Thus, if $[\sigma, \tau]$ contains a (non-trivial) disconnected subinterval, then it can't be shellable.
- Show every $[\sigma, \tau]$ as $n \rightarrow \infty$ contains $[\pi, \pi \oplus \pi]$ with π indecomposable, or contains $[\pi, \pi \ominus \pi]$ with π skew indecomposable.

Almost all intervals are not shellable

Theorem [McN. \& Steingrímsson].
Fix σ. Randomly choose τ of length n.

$$
\lim _{n \rightarrow \infty}(\text { Probability that } \Delta(\sigma, \tau) \text { is shellable })=0
$$

Idea.

- Björner: If $[\sigma, \tau]$ is shellable (i.e. $\Delta(\sigma, \tau)$ is), then so is every subinterval of $[\sigma, \tau]$.
- Thus, if $[\sigma, \tau]$ contains a (non-trivial) disconnected subinterval, then it can't be shellable.
- Show every $[\sigma, \tau]$ as $n \rightarrow \infty$ contains $[\pi, \pi \oplus \pi]$ with π indecomposable, or contains $[\pi, \pi \ominus \pi]$ with π skew indecomposable.

Several other results about disconnected intervals.

Shellable intervals

In contrast, there's a large class of shellable intervals.
Definition. π is layered if it takes the form $\pi=\pi^{1} \oplus \pi^{2} \oplus \cdots \oplus \pi^{k}$ with each π^{i} decreasing.
e.g. $1 \oplus 1 \oplus 321 \oplus 321 \oplus 1=125438769=11331$.

Shellable intervals

In contrast, there's a large class of shellable intervals.
Definition. π is layered if it takes the form $\pi=\pi^{1} \oplus \pi^{2} \oplus \cdots \oplus \pi^{k}$ with each π^{i} decreasing.
e.g. $1 \oplus 1 \oplus 321 \oplus 321 \oplus 1=125438769=11331$.

Lemma. In layered case, it's trivial to check if $[\sigma, \tau]$ is disconnected.
Theorem [McN. \& Steingrímsson]. Suppose σ, τ layered such that $[\sigma, \tau]$ does not contain a non-trivial disconnected subinterval. Then $[\sigma, \tau]$ is shellable.

Example. $[1 \oplus 321 \oplus 1,321 \oplus 321 \oplus 1 \oplus 21 \oplus 1]=[131,33121]$ is shellable.

Shellable intervals

In contrast, there's a large class of shellable intervals.
Definition. π is layered if it takes the form $\pi=\pi^{1} \oplus \pi^{2} \oplus \cdots \oplus \pi^{k}$ with each π^{i} decreasing.
e.g. $1 \oplus 1 \oplus 321 \oplus 321 \oplus 1=125438769=11331$.

Lemma. In layered case, it's trivial to check if $[\sigma, \tau]$ is disconnected.
Theorem [McN. \& Steingrímsson]. Suppose σ, τ layered such that $[\sigma, \tau]$ does not contain a non-trivial disconnected subinterval. Then $[\sigma, \tau]$ is shellable.

Example. $[1 \oplus 321 \oplus 1,321 \oplus 321 \oplus 1 \oplus 21 \oplus 1]=[131,33121]$ is shellable.

Idea of proof. Show $[\sigma, \tau]$ is dual CL-shellable.

Two connections to generalized subword order.
P : any poset.
P^{*} : set of words over the alphabet P.

Two connections to generalized subword order.

P : any poset.
P^{*} : set of words over the alphabet P.

Main Definition. $u \leq w$ if there exists a subword $w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{r}\right)$ of w of the same length as u such that

$$
u(j) \leq P w\left(i_{j}\right) \text { for } 1 \leq j \leq r .
$$

Example. P is the chain $1<2<3<4<\cdots$ gives containment order for layered permutations. e.g. $22 \leq_{p} 412$ is equivalent to $21 \oplus 21 \leq 4321 \oplus 1 \oplus 21$.

Two connections to generalized subword order.

P : any poset.
P^{*} : set of words over the alphabet P.

Main Definition. $u \leq w$ if there exists a subword $w\left(i_{1}\right) w\left(i_{2}\right) \cdots w\left(i_{r}\right)$ of w of the same length as u such that

$$
u(j) \leq p w\left(i_{j}\right) \text { for } 1 \leq j \leq r .
$$

Example. P is the chain $1<2<3<4<\cdots$ gives containment order for layered permutations. e.g. $22 \leq_{p} 412$ is equivalent to $21 \oplus 21 \leq 4321 \oplus 1 \oplus 21$.

Connection 1.
Theorem [McN. \& Steingrímsson]. If P is a rooted forest, then $[u, w]$ is shellable iff it does not contain a non-trivial disconnected subinterval.

A Möbius function formula

$\sigma=\sigma_{1} \oplus \cdots \oplus \sigma_{s}$, the finest decomposition of σ.
$\tau=\tau_{1} \oplus \cdots \oplus \tau_{t}$, the finest decomposition of τ.
Burstein, Jelínek, Jelínková \& Steingrímsson:
2 propositions for expressing $\mu(\sigma, \tau)$ in terms of $\mu\left(\sigma_{i}, \tau_{j}\right)$.
Theorem [McN. \& Steingrímsson].
$\mu(\sigma, \tau)=\sum_{\sigma=\sigma_{1} \oplus \cdots \oplus \sigma_{t}} \prod_{1 \leq m \leq t} \begin{cases}\mu\left(\sigma_{m}, \tau_{m}\right)+1 & \text { if } \sigma_{m}=\emptyset \text { and } \tau_{m-1}=\tau_{m}, \\ \mu\left(\sigma_{m}, \tau_{m}\right) & \text { otherwise },\end{cases}$
where the sum is over all direct sums $\sigma=\sigma_{1} \oplus \cdots \oplus \sigma_{t}$ such that $\emptyset \leq \sigma_{m} \leq \tau_{m}$ for all $1 \leq m \leq t$.

Connection 2. This is identical to the formula for μ for generalized subword order: replace indecomposable parts by letters from P.

A Möbius function formula

$\sigma=\sigma_{1} \oplus \cdots \oplus \sigma_{s}$, the finest decomposition of σ.
$\tau=\tau_{1} \oplus \cdots \oplus \tau_{t}$, the finest decomposition of τ.
Burstein, Jelínek, Jelínková \& Steingrímsson:
2 propositions for expressing $\mu(\sigma, \tau)$ in terms of $\mu\left(\sigma_{i}, \tau_{j}\right)$.
Theorem [McN. \& Steingrímsson].
$\mu(\sigma, \tau)=\sum_{\sigma=\sigma_{1} \oplus \cdots \oplus \sigma_{t}} \prod_{1 \leq m \leq t} \begin{cases}\mu\left(\sigma_{m}, \tau_{m}\right)+1 & \text { if } \sigma_{m}=\emptyset \text { and } \tau_{m-1}=\tau_{m}, \\ \mu\left(\sigma_{m}, \tau_{m}\right) & \text { otherwise },\end{cases}$
where the sum is over all direct sums $\sigma=\sigma_{1} \oplus \cdots \oplus \sigma_{t}$ such that $\emptyset \leq \sigma_{m} \leq \tau_{m}$ for all $1 \leq m \leq t$.

Connection 2. This is identical to the formula for μ for generalized subword order: replace indecomposable parts by letters from P.
Open problem. Why?

More open problems

- Understand non-shellable intervals without disconnected subintervals.
e.g. [123, 3416725].
- Find a good way to test shellability by computer.
- Separable permutations: can be built from 1 by a sequence of direct sums or skew sums.

$$
\begin{aligned}
1 \oplus 1 & =12 \\
(1 \oplus 1) \ominus(1 \oplus 1) & =12 \ominus 12=3412 \\
1 \oplus 3412 & =14523 \text { etc. }
\end{aligned}
$$

Conjecture. Suppose σ, τ separable such that $[\sigma, \tau]$ does not contain a non-trivial disconnected subinterval. Then $[\sigma, \tau]$ is shellable.

- Conjecture. $[\sigma, \tau]$ is always rank unimodal.

Consecutive pattern poset

Joint with Sergi Elizalde.
Consecutive pattern poset: $\sigma \leq \tau$ if σ appears as a set of consecutive letters in τ.
e.g. $213 \leq 254613$.

Möbius function: Bernini-Ferrari-Steingrímsson, Sagan-Willenbring
Theorem [Sagan \& Willenbring]. Any interval is homoptic to a sphere or is contractible.

Theorems [Elizalde \& McN.]

- Any interval is shellable iff it doesn't contain a non-trivial disconnected subinterval.
- All intervals are rank unimodal.

Consecutive pattern poset

Joint with Sergi Elizalde.
Consecutive pattern poset: $\sigma \leq \tau$ if σ appears as a set of consecutive letters in τ.
e.g. $213 \leq 254613$.

Möbius function: Bernini-Ferrari-Steingrímsson, Sagan-Willenbring
Theorem [Sagan \& Willenbring]. Any interval is homoptic to a sphere or is contractible.

Theorems [Elizalde \& McN.]

- Any interval is shellable iff it doesn't contain a non-trivial disconnected subinterval.
- All intervals are rank unimodal.

Thanks!

