The Combinatorial Topology of the Permutation Pattern Poset

> Peter McNamara Bucknell University

Joint work with: Einar Steingrímsson University of Strathclyde

Bijective and Algebraic Combinatorics in honor of Bruce Sagan's 60th birthday

25 March 2014

Slides and paper available from

www.facstaff.bucknell.edu/pm040/

The Combinatorial Topology of the Permutation Pattern Poset

Peter R. W. McNamara & Einar Steingrímsson

- The PPP setting
- Some combinatorial topology
- Outline of results
- Open problems

Pattern order: order permutations by pattern containment. e.g., $4132 \leq 516423$

Pattern order: order permutations by pattern containment. e.g., $4132 \le 516423$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

Pattern order: order permutations by pattern containment. e.g., $4132 \le 516423$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

- Sagan & Vatter (2006)
- Steingrímsson & Tenner (2010)
- Burstein, Jelínek, Jelínková & Steingrímsson (2011)
- Smith (2013)

Pattern order: order permutations by pattern containment. e.g., $4132 \le 516423$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

- Sagan & Vatter (2006)
- Steingrímsson & Tenner (2010)
- Burstein, Jelínek, Jelínková & Steingrímsson (2011)
- Smith (2013)

Still open.

Other topological questions

- Are the open intervals connected?
- Shellable?
- What is their homotopy type?

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of [p, q]: faces of $\Delta(p, q)$ are the chains in (p, q).

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of [p, q]: faces of $\Delta(p, q)$ are the chains in (p, q).

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of [p, q]: faces of $\Delta(p, q)$ are the chains in (p, q).

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of [p, q]: faces of $\Delta(p, q)$ are the chains in (p, q).

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of [p, q]: faces of $\Delta(p, q)$ are the chains in (p, q).

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of [p, q]: faces of $\Delta(p, q)$ are the chains in (p, q).

Example.

Definition. A pure *d*-dimensional complex is shellable if its facets can be ordered F_1, F_2, \ldots, F_n such that, for all $2 \le i \le n$,

$$F_i \cap (F_1 \cup F_2 \cup \cdots \cup F_{i-1})$$

is pure and (d-1)-dimensional.

Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

Order complex of [p, q]: faces of $\Delta(p, q)$ are the chains in (p, q).

Example.

Definition. A pure *d*-dimensional complex is shellable if its facets can be ordered F_1, F_2, \ldots, F_n such that, for all $2 \le i \le n$,

$$F_i \cap (F_1 \cup F_2 \cup \cdots \cup F_{i-1})$$

is pure and (d-1)-dimensional.

Non-shellable

Non-shellable

▶ Main counterexample. (p, q) disconnected with $d \ge 1$: $\Delta(p, q)$ is not shellable.

The interval above is said to be non-trivially disconnected.

The Combinatorial Topology of the Permutation Pattern Poset

Peter R. W. McNamara & Einar Steingrímsson

- If ∆(p, q) is shellable, then its either contractible, or homotopic to a wedge of |µ(p, q)| spheres in the top dimension.
- Combinatorial tools for showing shellability of ∆(P): EL-shellability, CL-shellability, etc.

Results

Direct sum: $21 \oplus 3214 = 215436$. Skew sum: $21 \oplus 3214 = 653214$.

 π is indecomposable if $\pi \neq \alpha \oplus \beta$ for any non-empty α, β .

Lemma. If π is indecomposable with $|\pi| \ge 3$, then $\Delta(\pi, \pi \oplus \pi)$ is disconnected and so not shellable.

Almost all intervals are not shellable

Theorem [McN. & Steingrímsson]. Fix σ . Randomly choose τ of length *n*.

 $\lim_{n\to\infty}(\text{Probability that }\Delta(\sigma,\tau)\text{ is shellable})=0.$

Almost all intervals are not shellable

Theorem [McN. & Steingrímsson].

Fix σ . Randomly choose τ of length *n*.

```
\lim_{n\to\infty}(\text{Probability that }\Delta(\sigma,\tau)\text{ is shellable})=0.
```

Idea.

- ► Björner: If [σ, τ] is shellable (i.e. Δ(σ, τ) is), then so is every subinterval of [σ, τ].
- Thus, if [σ, τ] contains a (non-trivial) disconnected subinterval, then it can't be shellable.

Show every [σ, τ] as n→∞ contains [π, π⊕π] with π indecomposable, or contains [π, π⊖π] with π skew indecomposable.

Almost all intervals are not shellable

Theorem [McN. & Steingrímsson].

Fix σ . Randomly choose τ of length *n*.

```
\lim_{n\to\infty}(\text{Probability that }\Delta(\sigma,\tau)\text{ is shellable})=0.
```

Idea.

- ► Björner: If [σ, τ] is shellable (i.e. Δ(σ, τ) is), then so is every subinterval of [σ, τ].
- Thus, if [σ, τ] contains a (non-trivial) disconnected subinterval, then it can't be shellable.

Show every [σ, τ] as n→∞ contains [π, π⊕π] with π indecomposable, or contains [π, π⊖π] with π skew indecomposable.

Several other results about disconnected intervals.

Shellable intervals

In contrast, there's a large class of shellable intervals.

Definition. π is layered if it takes the form $\pi = \pi^1 \oplus \pi^2 \oplus \cdots \oplus \pi^k$ with each π^i decreasing.

e.g. $1 \oplus 1 \oplus 321 \oplus 321 \oplus 1 = 125438769 = 11331$.

Shellable intervals

In contrast, there's a large class of shellable intervals.

Definition. π is layered if it takes the form $\pi = \pi^1 \oplus \pi^2 \oplus \cdots \oplus \pi^k$ with each π^i decreasing.

e.g. $1 \oplus 1 \oplus 321 \oplus 321 \oplus 1 = 125438769 = 11331$.

Lemma. In layered case, it's trivial to check if $[\sigma, \tau]$ is disconnected.

Theorem [McN. & Steingrímsson]. Suppose σ, τ layered such that $[\sigma, \tau]$ does not contain a non-trivial disconnected subinterval. Then $[\sigma, \tau]$ is shellable.

Example. $[1 \oplus 321 \oplus 1, 321 \oplus 321 \oplus 1 \oplus 21 \oplus 1] = [131, 33121]$ is shellable.

Shellable intervals

In contrast, there's a large class of shellable intervals.

Definition. π is layered if it takes the form $\pi = \pi^1 \oplus \pi^2 \oplus \cdots \oplus \pi^k$ with each π^i decreasing.

e.g. $1 \oplus 1 \oplus 321 \oplus 321 \oplus 1 = 125438769 = 11331$.

Lemma. In layered case, it's trivial to check if $[\sigma, \tau]$ is disconnected.

Theorem [McN. & Steingrímsson]. Suppose σ, τ layered such that $[\sigma, \tau]$ does not contain a non-trivial disconnected subinterval. Then $[\sigma, \tau]$ is shellable.

Example. $[1 \oplus 321 \oplus 1, 321 \oplus 321 \oplus 1 \oplus 21 \oplus 1] = [131, 33121]$ is shellable.

Idea of proof. Show $[\sigma, \tau]$ is dual CL-shellable.

Two connections to generalized subword order.

P: any poset.

P^{*}: set of words over the alphabet *P*.

Two connections to generalized subword order.

P: any poset.

P^{*}: set of words over the alphabet *P*.

Main Definition. $u \le w$ if there exists a subword $w(i_1)w(i_2)\cdots w(i_r)$ of w of the same length as u such that

$$u(j) \leq_P w(i_j)$$
 for $1 \leq j \leq r$.

Example. *P* is the chain $1 < 2 < 3 < 4 < \cdots$ gives containment order for layered permutations.

e.g. $22 \leq_P 412$ is equivalent to $21 \oplus 21 \leq 4321 \oplus 1 \oplus 21$.

Two connections to generalized subword order.

P: any poset.

P^{*}: set of words over the alphabet *P*.

Main Definition. $u \le w$ if there exists a subword $w(i_1)w(i_2)\cdots w(i_r)$ of w of the same length as u such that

 $u(j) \leq_P w(i_j)$ for $1 \leq j \leq r$.

Example. *P* is the chain $1 < 2 < 3 < 4 < \cdots$ gives containment order for layered permutations.

e.g. $22 \leq_P 412$ is equivalent to $21 \oplus 21 \leq 4321 \oplus 1 \oplus 21$.

Connection 1.

Theorem [McN. & Steingrímsson]. If P is a rooted forest, then [u, w] is shellable iff it does not contain a non-trivial disconnected subinterval.

A Möbius function formula

 $\sigma = \sigma_1 \oplus \cdots \oplus \sigma_s$, the finest decomposition of σ . $\tau = \tau_1 \oplus \cdots \oplus \tau_t$, the finest decomposition of τ .

Burstein, Jelínek, Jelínková & Steingrímsson: 2 propositions for expressing $\mu(\sigma, \tau)$ in terms of $\mu(\sigma_i, \tau_j)$.

Theorem [McN. & Steingrímsson].

$$\mu(\sigma,\tau) = \sum_{\sigma=\sigma_1 \oplus \dots \oplus \sigma_t} \prod_{1 \le m \le t} \begin{cases} \mu(\sigma_m,\tau_m) + 1 & \text{if } \sigma_m = \emptyset \text{ and } \tau_{m-1} = \tau_m, \\ \mu(\sigma_m,\tau_m) & \text{otherwise,} \end{cases}$$

where the sum is over all direct sums $\sigma = \sigma_1 \oplus \cdots \oplus \sigma_t$ such that $\emptyset \le \sigma_m \le \tau_m$ for all $1 \le m \le t$.

Connection 2. This is identical to the formula for μ for generalized subword order: replace indecomposable parts by letters from *P*.

A Möbius function formula

 $\sigma = \sigma_1 \oplus \cdots \oplus \sigma_s$, the finest decomposition of σ . $\tau = \tau_1 \oplus \cdots \oplus \tau_t$, the finest decomposition of τ .

Burstein, Jelínek, Jelínková & Steingrímsson: 2 propositions for expressing $\mu(\sigma, \tau)$ in terms of $\mu(\sigma_i, \tau_j)$.

Theorem [McN. & Steingrímsson].

$$\mu(\sigma,\tau) = \sum_{\sigma=\sigma_1 \oplus \dots \oplus \sigma_t} \prod_{1 \le m \le t} \begin{cases} \mu(\sigma_m,\tau_m) + 1 & \text{if } \sigma_m = \emptyset \text{ and } \tau_{m-1} = \tau_m, \\ \mu(\sigma_m,\tau_m) & \text{otherwise,} \end{cases}$$

where the sum is over all direct sums $\sigma = \sigma_1 \oplus \cdots \oplus \sigma_t$ such that $\emptyset \le \sigma_m \le \tau_m$ for all $1 \le m \le t$.

Connection 2. This is identical to the formula for μ for generalized subword order: replace indecomposable parts by letters from *P*.

Open problem. Why?

More open problems

- Understand non-shellable intervals without disconnected subintervals.
 e.g. [123, 3416725].
- Find a good way to test shellability by computer.
- Separable permutations: can be built from 1 by a sequence of direct sums or skew sums.

$$1 \oplus 1 = 12$$

 $(1 \oplus 1) \ominus (1 \oplus 1) = 12 \ominus 12 = 3412$
 $1 \oplus 3412 = 14523$ etc.

Conjecture. Suppose σ, τ separable such that $[\sigma, \tau]$ does not contain a non-trivial disconnected subinterval. Then $[\sigma, \tau]$ is shellable.

• Conjecture. $[\sigma, \tau]$ is always rank unimodal.

Consecutive pattern poset

Joint with Sergi Elizalde.

Consecutive pattern poset: $\sigma \le \tau$ if σ appears as a set of consecutive letters in τ . e.g. 213 \le 254613.

Möbius function: Bernini-Ferrari-Steingrímsson, Sagan-Willenbring

Theorem [Sagan & Willenbring]. Any interval is homoptic to a sphere or is contractible.

Theorems [Elizalde & McN.]

- Any interval is shellable iff it doesn't contain a non-trivial disconnected subinterval.
- All intervals are rank unimodal.

Consecutive pattern poset

Joint with Sergi Elizalde.

Consecutive pattern poset: $\sigma \le \tau$ if σ appears as a set of consecutive letters in τ . e.g. 213 \le 254613.

Möbius function: Bernini-Ferrari-Steingrímsson, Sagan-Willenbring

Theorem [Sagan & Willenbring]. Any interval is homoptic to a sphere or is contractible.

Theorems [Elizalde & McN.]

- Any interval is shellable iff it doesn't contain a non-trivial disconnected subinterval.
- All intervals are rank unimodal.

Thanks!