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Skew

Schur functions

Cauchy, 1815
I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.

I Young diagram.
Example:
λ

/µ

= (4,4,3,1)

/(3,1)
I Semistandard Young tableau

(SSYT)

7

4

1 3 3 4

944

6 65

The

skew

Schur function sλ

/µ

in the variables x = (x1, x2, . . .) is then
defined by

sλ

/µ

=
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4431

/31

=

x1x2
3

x4x5x2
6 x7x9 + · · · .
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The beginning of the story

sA: the skew Schur function for the skew shape A.

Key Facts.
I sA is symmetric in the variables x1, x2, . . ..
I The (non-skew) sλ form a basis for the symmetric functions.

Wide Open Question. When is sA = sB?
Determine necessary and sufficient conditions on shapes of A and B.

= =

I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
I John Stembridge (2004)
I Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
I McN., Steph van Willigenburg (2006)
I Christian Gutschwager (2008)
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlapk (i) be the number of columns occupied in common by rows
i , i + 1, . . . , i + k − 1.
Then rowsk (A) is the weakly decreasing rearrangement of
(overlapk (1),overlapk (2), . . .).

Example.

A =

I overlap1(i) = length of the i th row. Thus rows1(A) = 44211.
I overlap2(1) = 2, overlap2(2) = 3, overlap2(3) = 1,

overlap2(4) = 1, so rows2(A) = 3211.
I rows3(A) = 11.
I rowsk (A) = ∅ for k > 3.
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Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes.
If sA = sB, then

rowsk (A) = rowsk (B) for all k .

supps(A): Schur support of A
supps(A) = {λ : sλ appears in Schur expansion of sA}

Example. A = sA = s3 + 2s21 + s111

supps(A) = {3,21,111}.

Theorem [McN., 2008]. It suffices to assume supps(A) = supps(B).

Converse is definitely not true: 6=
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Schur-positivity order

Our interest: inequalities.

Skew Schur functions are Schur-positive:

sλ/µ =
∑
ν

cλµνsν .

Original Question. When is sλ/µ − sσ/τ Schur-positive?

Definition. Let A, B be skew shapes. We say that

A ≥s B if sA − sB is Schur-positive.

Original goal: Characterize the Schur-positivity order ≥s in terms of
skew shapes.
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Example of a Schur-positivity poset

If B ≤s A then |A| = |B|.
Call the resulting
ordered set Pn.
Then P4:
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More examples

P5: P6:
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Known properties: Sufficient conditions

Sufficient conditions for A ≥s B:
I Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
I Andrei Okounkov (1997)
I Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon

(2003)
I Anatol N. Kirillov (2004)
I Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
I François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
I McN., Steph van Willigenburg (2009, 2012)
I ...
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Necessary conditions for Schur-positivity

Notation. Write λ 4 µ if λ is less than or equal to µ in dominance
order, i.e.

λ1 + · · ·λi ≤ µ1 + · · ·µi for all i .

Theorem [McN. (2008)]. Let A and B be skew shapes. If sA − sB is
Schur-positive, then

rowsk (A) 4 rowsk (B) for all k .
In fact, it suffices to assume that supps(A) ⊇ supps(B).

Application.

A = B =

rows1(A) = 3221 64 rows1(B) = 2221

rows2(B) = 21 64 rows2(A) = 111

So A and B are incomparable in Schur-positivity poset
(and in “Schur support containment poset”).
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Summary so far

sA − sB is Schur-pos. supps(A) ⊇ supps(B)

rowsk (A) 4 rowsk (B) ∀k
cols`(A) 4 cols`(B) ∀`
rectsk,`(A) ≤ rectsk,`(B) ∀k , `

⇒ ⇒

Converse is very false.

Example.
A = B =

sA = s31 + s211 sB = s22

New Goal: Find weaker algebraic conditions on A and B that
imply the overlap conditions.
What algebraic conditions are being encapsulated by the overlap
conditions?
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Answer: use the F -basis of quasisymmetric functions

I Skew shape A.
I Standard Young tableau (SYT) T of A.

I Descent set: S(T ) = {3,5}.

Then sA expands in the basis of fundamental quasisymmetric
functions as

sA =
∑

SYT T

FS(T ).

Example.
s4431/31 = F{3,5} + · · · .

Facts.
I The F form a basis for the quasisymmetric functions.
I So notions of F -positivity and F -support make sense.
I Schur-positivity implies F -positivity.
I supps(A) ⊇ supps(B) implies suppF (A) ⊇ suppF (B)
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New results: filling the gap

Theorem. [McN. (2013)]

sA − sB is Schur-pos.

sA − sB is F -positive

supps(A) ⊇ supps(B)

suppF (A) ⊇ suppF (B)

rowsk (A) 4 rowsk (B) ∀k
cols`(A) 4 cols`(B) ∀`
rectsk,`(A) ≤ rectsk,`(B) ∀k , `

⇒

⇒ ⇒

⇐

⇓ ⇓

Conjecture. The rightmost implication is if and only if.

Evidence. Conjecture is true for:
I n ≤ 13;
I horizontal strips;
I F -multiplicity-free skew shapes (as determined by Christine

Bessenrodt and Steph van Willigenburg (2013));
I ribbons whose rows all have length at least 2.
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n = 6 example

F -support containment Dual of row overlap dominance
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n = 12

n = 12 case has 12,042 edges.

n = 13 case has 23,816 edges.
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Conclusion

sA − sB is Schur-pos.

sA − sB is F -positive

supps(A) ⊇ supps(B)

suppF (A) ⊇ suppF (B)

rowsk (A) 4 rowsk (B) ∀k
cols`(A) 4 cols`(B) ∀`
rectsk,`(A) ≤ rectsk,`(B) ∀k , `

⇒

⇒ ⇒
⇐?

⇓ ⇓

Thanks! Obrigado!
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Extras

sA − sB is D-positive

sA − sB is Schur-pos.
sA − sB is S-positive

sA − sB is F -positive

suppD(A) ⊇ suppD(B)

supps(A) ⊇ supps(B)

suppS(A) ⊇ suppS(B)

suppF (A) ⊇ suppF (B)

rowsk (A) 4 rowsk (B) ∀k
cols`(A) 4 cols`(B) ∀`
rectsk,`(A) ≤ rectsk,`(B) ∀k , `

sA − sB is M-positive suppM(A) ⊇ suppM(B)

⇒

⇒ ⇒
⇐?

⇒

⇓

⇓

⇓

⇓

⇓

Conjecture [McN., Alejandro Morales].
A quasisym skew Saturation Theorem:

suppF (A) ⊇ suppF (B) ⇐⇒ suppF (nA) ⊇ suppF (nB).

Thanks! Obrigado!
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