Comparing skew Schur functions: a quasisymmetric perspective

Peter McNamara
Bucknell University

AMS/EMS/SPM International Meeting

11 June 2015

Slides and paper available from
www.facstaff.bucknell.edu/pm040/

Outline

- The background story: the equality question
- Conditions for Schur-positivity
- Quasisymmetric insights and the main conjecture

Dual of row overlap dominance

Schur functions

Cauchy, 1815

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram.

Example:

$\lambda=(4,4,3,1)$

Schur functions

Cauchy, 1815

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram. Example: $\lambda=(4,4,3,1)$
- Semistandard Young tableau
 (SSYT)

Cauchy, 1815

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram. Example: $\lambda=(4,4,3,1)$
- Semistandard Young tableau
 (SSYT)

The \quad Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example.
$s_{4431}=x_{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

Cauchy, 1815

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- μ fits inside λ.
- Young diagram.

Example:

$$
\lambda / \mu=(4,4,3,1) /(3,1)
$$

- Semistandard Young tableau
 (SSYT)

The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example.
$s_{4431 / 31}=\quad x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

The beginning of the story

s_{A} : the skew Schur function for the skew shape A.
Key Facts.

- s_{A} is symmetric in the variables x_{1}, x_{2}, \ldots.
- The (non-skew) s_{λ} form a basis for the symmetric functions.

The beginning of the story

s_{A} : the skew Schur function for the skew shape A.
Key Facts.

- s_{A} is symmetric in the variables x_{1}, x_{2}, \ldots.
- The (non-skew) s_{λ} form a basis for the symmetric functions.

Wide Open Question. When is $s_{A}=s_{B}$?
Determine necessary and sufficient conditions on shapes of A and B.

The beginning of the story

s_{A} : the skew Schur function for the skew shape A.
Key Facts.

- s_{A} is symmetric in the variables x_{1}, x_{2}, \ldots..
- The (non-skew) s_{λ} form a basis for the symmetric functions.

Wide Open Question. When is $s_{A}=s_{B}$?
Determine necessary and sufficient conditions on shapes of A and B.

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
- John Stembridge (2004)
- Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- McN., Steph van Willigenburg (2006)
- Christian Gutschwager (2008)

Necessary conditions for equality

Necessary conditions for equality

General idea: the overlaps among rows must match up.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.

Example.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=44211$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the ith row. Thus $\operatorname{rows}_{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, $\operatorname{overlap}_{2}(3)=1$, overlap $_{2}(4)=1, \quad$ so $\operatorname{rows}_{2}(A)=3211$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the ith row. $\operatorname{Thus~}_{\operatorname{rows}_{1}}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, $\operatorname{overlap}_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1, \quad \operatorname{sor}_{\operatorname{rows}_{2}}(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows $_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the ith row. $\operatorname{Thus~}_{\operatorname{rows}_{1}}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, $\operatorname{overlap}_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1, \quad \operatorname{sor}_{\operatorname{rows}_{2}}(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.
- $\operatorname{rows}_{k}(A)=\emptyset$ for $k>3$.

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k .
$$

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k .
$$

$\operatorname{supp}_{s}(A)$: Schur support of A
$\operatorname{supp}_{s}(A)=\left\{\lambda: s_{\lambda}\right.$ appears in Schur expansion of $\left.s_{A}\right\}$
Example. $A=\square$

$$
\begin{aligned}
s_{A} & =s_{3}+2 s_{21}+s_{111} \\
\operatorname{supp}_{s}(A) & =\{3,21,111\}
\end{aligned}
$$

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k .
$$

$\operatorname{supp}_{s}(A)$: Schur support of A
$\operatorname{supp}_{s}(A)=\left\{\lambda: s_{\lambda}\right.$ appears in Schur expansion of $\left.s_{A}\right\}$
Example. $A=\square$

$$
s_{A}=s_{3}+2 s_{21}+s_{111}
$$

$$
\operatorname{supp}_{s}(A)=\{3,21,111\} .
$$

Theorem [McN., 2008]. It suffices to assume $\operatorname{supp}_{s}(A)=\operatorname{supp}_{s}(B)$.

Necessary conditions for equality

Theorem [RSvW, 2006]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k .
$$

$\operatorname{supp}_{s}(A)$: Schur support of A
$\operatorname{supp}_{s}(A)=\left\{\lambda: s_{\lambda}\right.$ appears in Schur expansion of $\left.s_{A}\right\}$
Example. $A=\square$

$$
s_{A}=s_{3}+2 s_{21}+s_{111}
$$

$$
\operatorname{supp}_{s}(A)=\{3,21,111\} .
$$

Theorem [McN., 2008]. It suffices to assume $\operatorname{supp}_{s}(A)=\operatorname{supp}_{s}(B)$.

Converse is definitely not true:

Our interest: inequalities.
Skew Schur functions are Schur-positive:

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu} .
$$

Original Question. When is $s_{\lambda / \mu}-s_{\sigma / \tau}$ Schur-positive?

Schur-positivity order

Our interest: inequalities.
Skew Schur functions are Schur-positive:

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu} .
$$

Original Question. When is $s_{\lambda / \mu}-s_{\sigma / \tau}$ Schur-positive?
Definition. Let A, B be skew shapes. We say that

$$
A \geq_{s} B \quad \text { if } \quad s_{A}-s_{B} \quad \text { is Schur-positive. }
$$

Original goal: Characterize the Schur-positivity order \geq_{s} in terms of skew shapes.

Example of a Schur-positivity poset

If $B \leq_{s} A$ then $|A|=|B|$.
Call the resulting ordered set P_{n}. Then P_{4} :

More examples

Known properties: Sufficient conditions

Sufficient conditions for $A \geq_{s} B$:

- Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
- Andrei Okounkov (1997)
- Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon (2003)
- Anatol N. Kirillov (2004)
- Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
- François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
- McN., Steph van Willigenburg $(2009,2012)$

Necessary conditions for Schur-positivity

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$.

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$. Application.

$\operatorname{rows}_{1}(A)=3221 \not$ rows $_{1}(B)=2221$

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$. Application.

$$
\begin{gathered}
\operatorname{rows}_{1}(A)=3221 \nprec \operatorname{rows}_{1}(B)=2221 \\
\operatorname{rows}_{2}(B)=21 \not \operatorname{rows}_{2}(A)=111
\end{gathered}
$$

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$. Application.

$$
\begin{gathered}
\operatorname{rows}_{1}(A)=3221 \nprec \operatorname{rows}_{1}(B)=2221 \\
\operatorname{rows}_{2}(B)=21 \nprec \operatorname{rows}_{2}(A)=111
\end{gathered}
$$

So A and B are incomparable in Schur-positivity poset (and in "Schur support containment poset").

$$
s_{A}-s_{B} \text { is Schur-pos. } \Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B) \Rightarrow \begin{aligned}
& \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\
& \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell
\end{aligned}
$$

Converse is very false.

Summary so far

Summary so far

Example.

Summary so far

Converse is very false.

Example.

New Goal: Find weaker algebraic conditions on A and B that imply the overlap conditions.
What algebraic conditions are being encapsulated by the overlap conditions?

Answer: use the F-basis of quasisymmetric functions

Answer: use the F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of A.

Answer: use the F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of A.
- Descent set: $S(T)=\{3,5\}$.

Answer: use the F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of A.
- Descent set: $S(T)=\{3,5\}$.

Then s_{A} expands in the basis of fundamental quasisymmetric functions as

Example.

$$
s_{A}=\sum_{S Y T T} F_{S(T)}
$$

$$
s_{4431 / 31}=F_{\{3,5\}}+\cdots
$$

Answer: use the F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of A.
- Descent set: $S(T)=\{3,5\}$.

Then s_{A} expands in the basis of fundamental quasisymmetric functions as

$$
s_{A}=\sum_{S Y T} F_{S(T)} .
$$

Example.

$$
s_{4431 / 31}=F_{\{3,5\}}+\cdots .
$$

Facts.

- The F form a basis for the quasisymmetric functions.
- So notions of F-positivity and F-support make sense.
- Schur-positivity implies F-positivity.
- $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$ implies $\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$

New results: filling the gap

Theorem. [McN. (2013)]

$s_{A}-s_{B}$ is Schur-pos. \Downarrow \Downarrow $s_{A}-s_{B}$ is F-positive \Downarrow
$\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$
$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$
:---
$\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell$
$\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell$

New results: filling the gap

Theorem. [McN. (2013)]

$s_{A}-s_{B}$ is Schur-pos.	\Rightarrow	$\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$		
\Downarrow		\Downarrow		$\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$	\Leftrightarrow	$\begin{aligned} & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}$

Conjecture. The rightmost implication is if and only if.

New results: filling the gap

Theorem. [McN. (2013)]

$s_{A}-s_{B}$ is Schur-pos.	\Rightarrow	$\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$		
\Downarrow		\Downarrow		$\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$	\Leftrightarrow	$\begin{aligned} & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}$

Conjecture. The rightmost implication is if and only if.

Evidence. Conjecture is true for:

- $n \leq 13$;
- horizontal strips;
- F-multiplicity-free skew shapes (as determined by Christine Bessenrodt and Steph van Willigenburg (2013));
- ribbons whose rows all have length at least 2.
$n=6$ example

F-support containment

Dual of row overlap dominance

$n=12$

$n=12$ case has 12,042 edges.

$n=13$ case has 23,816 edges.

Conclusion

$$
\begin{aligned}
\begin{array}{|c|}
\hline s_{A}-s_{B} \text { is Schur-pos. } \\
\Downarrow
\end{array} & \Rightarrow \frac{\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)}{\Downarrow} \\
\hline s_{A}-s_{B} \text { is } F \text {-positive } & \Rightarrow \operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B) \\
\stackrel{?}{\rightleftharpoons} & \begin{array}{l}
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k \\
\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\
\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell
\end{array}
\end{aligned}
$$

Conclusion

$$
\begin{array}{cc}
\begin{array}{cc}
s_{A}-s_{B} \text { is Schur-pos. } & \Rightarrow \frac{\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)}{\Downarrow} \\
\Downarrow & \Downarrow \\
s_{A}-s_{B} \text { is } F \text {-positive } & \Rightarrow \operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B) \\
& \stackrel{?}{\rightleftharpoons} \\
\Rightarrow & \begin{array}{l}
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k \\
\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\
\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell
\end{array}
\end{array}
\end{array}
$$

Thanks! Obrigado!

Extras

$$
s_{A}-s_{B} \text { is } D \text {-positive }
$$

$\begin{gathered} \Downarrow \\ \frac{s_{A}-s_{B} \text { is Schur-pos. }}{s_{A}-s_{B} \text { is } S \text {-positive }} \end{gathered}$	\Rightarrow	$\begin{array}{\|l} \operatorname{supp}_{D}(A) \supseteq \operatorname{supp}_{D}(B) \\ \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B) \\ \operatorname{supp}_{S}(A) \supseteq \operatorname{supp}_{S}(B) \end{array}$	$\stackrel{?}{\stackrel{?}{\Rightarrow}}$	
\Downarrow		\Downarrow		$\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$		$\begin{aligned} & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}$

$$
s_{A}-s_{B} \text { is } M \text {-positive } \Rightarrow \operatorname{supp}_{M}(A) \supseteq \operatorname{supp}_{M}(B)
$$

Extras

$$
s_{A}-s_{B} \text { is } D \text {-positive }
$$

$\begin{gathered} \Downarrow \\ \hline \begin{array}{l} s_{A}-s_{B} \text { is Schur-pos. } \\ s_{A}-s_{B} \text { is } S \text {-positive } \end{array} \end{gathered}$	\Rightarrow	$\begin{array}{\|l\|} \hline \operatorname{supp}_{D}(A) \supseteq \operatorname{supp}_{D}(B) \\ \operatorname{supp}_{S}(A) \supseteq \operatorname{supp}_{S}(B) \\ \operatorname{supp}_{S}(A) \supseteq \operatorname{supp}_{S}(B) \\ \hline \end{array}$	$\stackrel{?}{\stackrel{!}{\Rightarrow}}$	
\Downarrow		\Downarrow		$\mathrm{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$		$\left\|\begin{array}{l} \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{array}\right\|$
\Downarrow		\Downarrow		
$s_{A}-s_{B}$ is M-positive	\Rightarrow	$\operatorname{supp}_{M}(A) \supseteq \operatorname{supp}_{M}(B)$		

Conjecture [McN., Alejandro Morales].
A quasisym skew Saturation Theorem:

$$
\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B) \quad \Longleftrightarrow \quad \operatorname{supp}_{F}(n A) \supseteq \operatorname{supp}_{F}(n B) .
$$

Extras

$$
s_{A}-s_{B} \text { is } D \text {-positive }
$$

\Downarrow $s_{A}-s_{B}$ is Schur-pos. $s_{A}-s_{B}$ is S-positive	\Rightarrow	$\begin{array}{\|c} \operatorname{supp}_{D}(A) \supseteq \operatorname{supp}_{D}(B) \\ \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{S}(B) \\ \operatorname{supp}_{S}(A) \supseteq \operatorname{supp}_{S}(B) \\ \hline \end{array}$	$\stackrel{?}{\stackrel{!}{\Rightarrow}}$	
\Downarrow		\Downarrow		$\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$		$\left\lvert\, \begin{aligned} & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}\right.$
\Downarrow		\Downarrow		
$s_{A}-s_{B}$ is M-positive	\Rightarrow	$\operatorname{supp}_{M}(A) \supseteq \operatorname{supp}_{M}(B)$		

Conjecture [McN., Alejandro Morales].
A quasisym skew Saturation Theorem:

$$
\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B) \quad \Longleftrightarrow \quad \operatorname{supp}_{F}(n A) \supseteq \operatorname{supp}_{F}(n B) .
$$

Thanks! Obrigado!

