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Outline

» The background story: the equality question
» Conditions for Schur-positivity

» Quasisymmetric insights and the main conjecture
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Schur functions

Cauchy, 1815
» Partition A = (A1, A2, ..., \)

» Young diagram.
Example:
A =(4,4,3,1)
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Schur functions

Cauchy, 1815
» Partition A = (A1, A2, ..., \)

» Young diagram.
Example:
A =(4,4,3,1)

» Semistandard Young tableau
(SSYT)
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Schur functions

Cauchy, 1815

» Partition A = (A1, Ao, ..., \) <
» Young diagram. /\ 13/314
Example: 4141419
A =(4,4,31) 0|6]6
» Semistandard Young tableau /
(SSYT)
The Schur function s, in the variables x = (x1, Xo, . .
defined by
Z X#1smT #Zsm T .
SSYT T
Example.
Saazt = XIXGX{X6XeX7Xg + - .
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Skew Schur functions

Cauchy, 1815

» Partition A = (A1, Ao, ..., \) <

» 1 fits inside . gresseguesengeene

» Young diagram. R
Exarr?ple: o /\
M= (4,4,3,1)/(3,1) 5

» Semistandard Young tableau /
(SSYT)

N

|~
O

The skew Schur function sy, in the variables x = (x1, xe, .. .) is then

defined b
y o #1smT #ZsmT
Syu= > X y

SSYT T

Example.
_ 2
$4431/31 = XIXsXEX7Xg + - -+ .
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The beginning of the story

Sa: the skew Schur function for the skew shape A.

Key Facts.
> 5S4 is symmetric in the variables xq, xo, . . ..
» The (non-skew) s, form a basis for the symmetric functions.
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Sa: the skew Schur function for the skew shape A.

Key Facts.
> 5S4 is symmetric in the variables xq, xo, . . ..
» The (non-skew) s, form a basis for the symmetric functions.

Wide Open Question. When is s = sg?
Determine necessary and sufficient conditions on shapes of A and B.
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The beginning of the story

Sa: the skew Schur function for the skew shape A.

Key Facts.
> 5S4 is symmetric in the variables xq, xo, . . ..
» The (non-skew) s, form a basis for the symmetric functions.

Wide Open Question. When is s = sg?
Determine necessary and sufficient conditions on shapes of A and B.

Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
John Stembridge (2004)

Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
McN., Steph van Willigenburg (2006)

Christian Gutschwager (2008)

vV VvV VvYyVvYyy

Comparing skew Schur functions quasisymmetrically Peter McNamara



Necessary conditions for equality
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Necessary conditions for equality

General idea: the overlaps among rows must match up.
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.
» overlap,(1) = 2, overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.

» overlap,(1) = 2 overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.

> rowsg(A) = 11
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Necessary conditions for equality

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
i+, i +k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap,(1),overlap,(2),...).

Example.

A=

» overlap; (/) = length of the ith row. Thus rows;(A) = 44211.

(
» overlap,(1) = 2 overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.

)=

» rowsg(A) = 11
> rowsy(A) =0 for k > 3.
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Necessary conditions for equality
Theorem [RSvW, 2006]. Let A and B be skew shapes.

If s4 = sp, then
rows,(A) = rowsg(B) for all k.
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Necessary conditions for equality
Theorem [RSvW, 2006]. Let A and B be skew shapes.

If s4 = sp, then
rows,(A) = rowsg(B) for all k.

supps(A): Schur support of A
supps(A) = {\ : s\ appears in Schur expansion of s4}

Example. A= Sa = S3 + 2821 + S114
supps(A) = {3,21,111}.
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supps(A) = {\ : s\ appears in Schur expansion of s4}

Example. A= Sa = S3 + 2821 + S114
supps(A) = {3,21,111}.
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Necessary conditions for equality
Theorem [RSvW, 2006]. Let A and B be skew shapes.

If s4 = sp, then
rows,(A) = rowsg(B) for all k.

supps(A): Schur support of A
supps(A) = {\ : s\ appears in Schur expansion of s4}

Example. A= Sa = S3 + 2821 + S114
supps(A) = {3,21,111}.

Theorem [McN., 2008]. It suffices to assume suppg(A) = supps(B).
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Schur-positivity order

Our interest: inequalities.

Skew Schur functions are Schur-positive:
Sxju = ChSu

Original Question. Whenis s,/ — S,/ Schur-positive?
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Schur-positivity order

Our interest: inequalities.
Skew Schur functions are Schur-positive:
S\/u = Z Cﬁvsl"
Original Question. Whenis s,/ — S,/ Schur-positive?

Definition. Let A, B be skew shapes. We say that

A>sB if sp—sg is Schur-positive.

Original goal: Characterize the Schur-positivity order > in terms of
skew shapes.
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Example of a Schur-positivity poset

If B <s Athen |A| = |B|.
Call the resulting
ordered set P,.
Then Py:
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More examples
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Known properties: Sufficient conditions

Sufficient conditions for A > B:
» Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
» Andrei Okounkov (1997)

» Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon
(2003)

Anatol N. Kirillov (2004)

Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
Francgois Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
McN., Steph van Willigenburg (2009, 2012)
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Necessary conditions for Schur-positivity
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e.
AMA A<+ for all /.
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance

order, i.e.
M AN < g+ forall i,

Theorem [McN. (2008)]. Let A and B be skew shapes. If s — sg is
Schur-positive, then
rowsg(A) < rowsg(B) for all k.
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Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e.
AMA A<+ for all /.

Theorem [McN. (2008)]. Let A and B be skew shapes. If s — sg is
Schur-positive, then
rowsg(A) < rowsg(B) for all k.

In fact, it suffices to assume that suppg(A) 2 suppg(B).
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e.
AMA A<+ for all /.

Theorem [McN. (2008)]. Let A and B be skew shapes. If s — sg is
Schur-positive, then

rowsg(A) < rowsg(B) for all k.
In fact, it suffices to assume that suppg(A) 2 suppg(B).

[ ] [
A= B=

Application.

I
rowss(A) = 3221 &£ rowsq(B) = 2221
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e.
AMA A<+ for all /.

Theorem [McN. (2008)]. Let A and B be skew shapes. If s — sg is
Schur-positive, then

rowsg(A) < rowsg(B) for all k.
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Application.
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Necessary conditions for Schur-positivity

Notation. Write A < p if X is less than or equal to 1 in dominance
order, i.e.
AMA A<+ for all /.

Theorem [McN. (2008)]. Let A and B be skew shapes. If s — sg is
Schur-positive, then

rowsg(A) < rowsg(B) for all k.
In fact, it suffices to assume that suppg(A) 2 suppg(B).

[ ] [
A= B=

Application.

rowsq(A) = 3221 £ rowsq(B) = 2221
rows,(B) = 21 £ rowsy(A) = 111

So A and B are incomparable in Schur-positivity poset
(and in “Schur support containment poset”).
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Summary so far

’ Sa — Sg is Schur-pos. ‘ = ’suppS(A) Dsupps(B)| =
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rows, (A) < rowsy(B) Vk
cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £
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Summary so far

’ Sa — Sg is Schur-pos. ‘ = ’suppS(A) D supps(B) ‘

Converse is very false.
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Summary so far

rows, (A) < rowsy(B) Vk
’ Sa — Sg is Schur-pos. ‘ = ’suppS(A) D supps(B) ‘ = | colsy(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £

Converse is very false.

A:E B =

SA = 831 + S211 S = S22

Example.
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Summary so far

rows, (A) < rowsy(B) Vk
’ Sa — Sg is Schur-pos. ‘ = ’suppS(A) D supps(B) ‘ = | colsy(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £

Converse is very false.

A:E B =

SA = 831 + S211 S = S22

New Goal: Find weaker algebraic conditions on A and B that
imply the overlap conditions.

What algebraic conditions are being encapsulated by the overlap
conditions?

Example.
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Answer: use the F-basis of quasisymmetric functions
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Answer: use the F-basis of quasisymmetric functions

» Skew shape A.

» Standard Young tableau (SYT) T of A.
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Answer: use the F-basis of quasisymmetric functions

» Skew shape A.

» Standard Young tableau (SYT) T of A.

» Descent set: S(T) = {3,5}.
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Answer: use the F-basis of quasisymmetric functions

<

» Skew shape A. 5
» Standard Young tableau (SYT) T of A. /\ 2138
» Descent set: S(T) = {3,5}. 11617

4

Then s4 expands in the basis of fundamental quasisymmetric

functions as
SaA = Z FS(T)-

SYTT
Example.

Saa31/31 = Fasy + -
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Answer: use the F-basis of quasisymmetric functions

<

» Skew shape A. 5
» Standard Young tableau (SYT) T of A. /\ 2138
» Descent set: S(T) = {3,5}. 11617

4

Then s4 expands in the basis of fundamental quasisymmetric

functions as
SaA = Z FS(T)-

SYTT
Example.

S4a31/31 = Fzsp +-- .
Facts.
The F form a basis for the quasisymmetric functions.
So notions of F-positivity and F-support make sense.
Schur-positivity implies F-positivity.
supps(A) 2 supps(B) implies suppg(A) 2 suppg(B)
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New results: filling the gap

Theorem. [McN. (2013)]

’ s — sg is Schur-pos. ‘ = ’ supps(A) 2 suppg(B) ‘

U U rowsy(A) < rowsg(B) Yk
’ Sp—Sgis F—positive‘ = ’suppF(A) D suppg(B) ‘ = | cols;(A) < cols,(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢
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New results: filling the gap

Theorem. [McN. (2013)]

’ s — sg is Schur-pos. ‘ = ’ supps(A) 2 suppg(B) ‘

U U rowsy(A) < rowsg(B) Yk
’ Sp—Sgis F—positive‘ = ’suppF(A) D suppg(B) ‘ <= | cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢

Conjecture. The rightmost implication is if and only if.
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New results: filling the gap

Theorem. [McN. (2013)]

’ s — sg is Schur-pos. ‘ = ’ supps(A) 2 suppg(B) ‘

Y Y rowsy(A) < rowsg(B) Yk
’ Sp—Sgis F—positive‘ = ’suppF(A) D suppg(B) ‘ <= | cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢

Conjecture. The rightmost implication is if and only if.

Evidence. Conjecture is true for:
» n<13;
» horizontal strips;

» F-multiplicity-free skew shapes (as determined by Christine
Bessenrodt and Steph van Willigenburg (2013));

» ribbons whose rows all have length at least 2.
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n =12 case has 12,042 edges.

n = 13 case has 23,816 edges.
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Conclusion

’ Sa — Sg is Schur-pos. ‘ = ’suppS(A) D supps(B) ‘

U U

’ Sa—Ssgis F-positive‘ = ’suppF(A) D suppg(B) ‘

rows, (A) < rowsg(B) Vk
cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsg ¢(B) Vk, ¢

?
<~
=
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Conclusion

’ Sa — Sg is Schur-pos. ‘ = ’suppS(A) D supps(B) ‘

U U

’ Sa—Ssgis F-positive‘ = ’suppF(A) D suppg(B) ‘

rows, (A) < rowsg(B) Vk
cols,(A) < colsy(B) V¢
rectsy ¢(A) < rectsg ¢(B) Vk, ¢

?
<~
=

Thanks! Obrigado!
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Extras

’ sa — sp is D-positive ‘

Y suppp(A) 2 suppp(B)
sa — Sg is Schur-pos. supps(A) 2 supps(B)
Sa — Sg is S-positive suppg(A) 2 suppg(B)

4

] Sa— sgis F—positive‘ = ’suppF(A) O suppg(B) \

4

P

rowsy(A) < rowsg(B) Yk
colsy(A) < colsy(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢

?
<~
=

e

’ Sp— sgis M—positive‘ = ’suppM(A) D suppy(B) ‘
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Extras

’ sa — sp is D-positive ‘

b suppo(4) 2 suppo(B)
sa — Sg is Schur-pos. supps(A) 2 supps(B)
Sa — Sg is S-positive = suppg(A) 2 suppg(B)
4 4 ? | rows(A) < rows,(B) Vk
[sa— s is F-positive| = ’suppF(A) O suppg(B) \ i cols,(A) < cols(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢
Y Y
’ Sp — Spg is M-positive ‘ = ’ suppy,(A) 2 suppy(B) ‘

Conjecture [McN., Alejandro Morales].
A quasisym skew Saturation Theorem:

suppg(A) 2 suppe(B) <= suppg(nA) 2 suppg(nB).
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Extras

’ sa — sp is D-positive ‘

b suppo(4) 2 suppo(B)
sa — Sg is Schur-pos. supps(A) 2 supps(B)
Sa — Sg is S-positive = suppg(A) 2 suppg(B)
4 4 ? | rows(A) < rows,(B) Vk
[sa— s is F-positive| = ’suppF(A) > supp(B) \ i cols,(A) < cols(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, ¢
Y Y

’ Sp— sgis M—positive‘ = ’suppM(A) D suppy(B) ‘

Conjecture [McN., Alejandro Morales].
A quasisym skew Saturation Theorem:

Suppg(A) 2 suppe(B) <= suppg(nA) 2 suppg(nB).

Thanks! Obrigado!
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