An Introduction to the Combinatorics of Symmetric Functions

Peter McNamara

Pomona College
4 February 2005

Slides and papers available from
www.lacim.uqam.ca/~mcnamara

What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:

What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:

Define combinatorics

What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:
Define combinatorics

The biggest open problem in algebraic combinatorics:
Define algebraic combinatorics

Combinatorics that takes its problems, or its tools, from commutative algebra, algebraic geometry, algebraic topology, representation theory, etc.

Outline

- Symmetric functions
- Schur functions and Littlewood-Richardson coefficients
- The Littlewood-Richardson rule
- Cylindric skew Schur functions

What are symmetric functions?

Definition

A symmetric polynomial is a polynomial that is invariant under any permutation of its variables $x_{1}, x_{2}, \ldots x_{n}$.

Examples

- $x_{1}+x_{2}+\cdots+x_{n}$
- $x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}+x_{3}^{2} x_{2}$
is a symmetric polynomial in x_{1}, x_{2}, x_{3}.

Definition

A symmetric function is a formal power series that is invariant under any permutation of its (infinite set of) variables $x=\left(x_{1}, x_{2}, \ldots\right)$.

Examples

- $\sum_{i \geq 1} x_{i}$ is a symmetric function, as is $\sum_{i \neq j} x_{i}^{2} x_{j}$.
- $\sum_{i<j} x_{i}^{2} x_{j}$ is not symmetric.

A basis for the symmetric functions

Fact: The symmetric functions form a vector space. What is a possible basis?

Monomial symmetric functions: Start with a monomial:

$$
x_{1}^{7} x_{2}^{4}
$$

A basis for the symmetric functions

Fact: The symmetric functions form a vector space. What is a possible basis?

Monomial symmetric functions: Start with a monomial:

$$
x_{1}^{7} x_{2}^{4}+x_{1}^{4} x_{2}^{7}+x_{1}^{7} x_{3}^{4}+x_{1}^{4} x_{3}^{7}+\cdots .
$$

Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, e.g. $\lambda=(7,4)$,

$$
m_{\lambda}=\sum_{\substack{i_{1}, \ldots, i_{e} \\ \text { distinct }}} x_{i_{1}}^{\lambda_{1}} \ldots x_{i_{\ell}}^{\lambda_{\ell}} .
$$

Examples

- $m_{(3)}=x_{1}^{3}+x_{2}^{3}+\cdots$.
- $m_{(1,1,1)}\left(x_{1}, x_{2}, x_{3}\right) \equiv m_{111}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}$.

Other bases

- Elementary symmetric functions, e_{λ}.
- Complete homogeneous symmetric functions, h_{λ}.
- Power sum symmetric functions, p_{λ}.

Typical questions: Prove they are bases, convert from one to another, ...

Schur functions

Cauchy, 1815.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- Young diagram. Example: $\lambda=(4,4,3,1)$.

Schur functions

Cauchy, 1815.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- Young diagram. Example: $\lambda=(4,4,3,1)$.
- Semistandard Young tableau (SSYT)

The Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\mathrm{SSYT} T} x_{1}^{\# 1 ' \mathrm{~s} \text { in } T} x_{2}^{\# 2 ' \sin T} \cdots .
$$

Example
$s_{4431}=x_{1}^{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

Schur functions

Example

Hence

$$
\begin{aligned}
s_{21}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
& +2 x_{1} x_{2} x_{3} \\
= & m_{21}\left(x_{1}, x_{2}, x_{3}\right)+2 m_{111}\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Fact: Schur functions are symmetric functions.
Question
Why do we care about Schur functions?

- Fact: The Schur functions form a basis for the symmetric functions.
- In fact, they form an orthonormal basis: $\left\langle\boldsymbol{s}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle=\delta_{\lambda \mu}$.
- Main reason: they arise in many other areas of mathematics.
- Representation theory of \mathcal{S}_{n}.
- Representations of GL(n, \mathbb{C}).
- Algebraic Geometry: Schubert Calculus.
- Linear Algebra: eigenvalues of Hermitian matrices.

Littlewood-Richardson coefficients

Note: The symmetric functions form a ring.

$$
\begin{gathered}
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots\right)\left(x_{1}+x_{2}+x_{3}+\cdots\right) . \\
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
\end{gathered}
$$

$c_{\mu \nu}^{\lambda}$: Littlewood-Richardson coefficients

Littlewood-Richardson coefficients

Note: The symmetric functions form a ring.

$$
\begin{gathered}
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots\right)\left(x_{1}+x_{2}+x_{3}+\cdots\right) . \\
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} .
\end{gathered}
$$

$c_{\mu \nu}^{\lambda}$: Littlewood-Richardson coefficients
Examples
$-s_{21} s_{21}=s_{42}+s_{411}+s_{33}+2 s_{321}+s_{3111}+s_{222}+s_{2211}$.

- $s_{32} s_{421}=s_{44211}+s_{54111}+s_{4332}+s_{4422}+2 s_{4431}+2 s_{5322}+$ $2 s_{5331}+3 s_{5421}+s_{52221}+s_{5511}+s_{62211}+s_{6222}+s_{43221}+$ $3 s_{6321}+s_{43311}+2 s_{6411}+2 s_{53211}+s_{63111}+s_{444}+2 s_{543}+s_{552}+$ $s_{633}+2 s_{642}+s_{732}+s_{741}+s_{7221}+s_{7311}+S_{651}$.
- $c_{(8,7,6,5,4,3,2,1),(8,7,6,6,5,4,3,2,1)}^{(12,11,1,9,8,7,5,5,4,2,1)}=7869992$.
(Maple packages: John Stembridge, Anders Buch.)

Littlewood-Richardson coefficients are non-negative

$$
s_{\mu} \boldsymbol{s}_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

Theorem

For any partitions μ, ν and λ,

$$
c_{\mu \nu}^{\lambda} \geq 0 . \quad \text { (Your take-home fact!) }
$$

Terminology: We say that $s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}$ is a Schur-positive function.

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

Theorem
For any partitions μ, ν and λ,

$$
c_{\mu \nu}^{\lambda} \geq 0 . \quad \text { (Your take-home fact!) }
$$

Terminology: We say that $s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}$ is a Schur-positive function.

Proof 1: Use representation theory of \mathcal{S}_{n}.
Proof 2: Use representation theory of $\mathrm{GL}(n, \mathbb{C})$.
Proof 3: Use Schubert Calculus.
Want a combinatorial proof:
"They must count something simpler!"

Skew Schur functions: a generalization of Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- Young diagram.

Example:
$\lambda=(4,4,3,1)$

Skew Schur functions: a generalization of Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- μ fits inside λ.
- Young diagram.

Example:
$\lambda / \mu=(4,4,3,1) /(3,1)$

Skew Schur functions: a generalization of Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- μ fits inside λ.
- Young diagram.

Example:

$$
\lambda / \mu=(4,4,3,1) /(3,1)
$$

- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda / \mu}$ is the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 \text { 's in } T} \cdots
$$

$s_{4431 / 31}=x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$. Again, it's a symmetric function. Remarkable fact:

Skew Schur functions: a generalization of Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- μ fits inside λ.
- Young diagram.

Example:
$\lambda / \mu=(4,4,3,1) /(3,1)$

- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda / \mu}$ is the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s} \text { in } T \ldots
$$

$s_{4431 / 31}=x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$. Again, it's a symmetric function. Remarkable fact:

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu}
$$

Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974.
Theorem
$c_{\mu \nu}^{\lambda}$ equals the number of SSYT of shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\quad \lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974.
Theorem
$c_{\mu \nu}^{\lambda}$ equals the number of SSYT of shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\quad \lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No
$c_{32,431}^{5221}=2$.

Expanding a skew Schur function

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}
$$

Can expand $s_{\lambda / \mu}$ by looking for all fillings of λ / μ whose reverse reading word is a ballot sequence.
Example
$\lambda / \mu=4431 / 31$.

$s_{4431 / 31}=s_{44}+2 s_{431}+s_{422}+s_{4211}+s_{332}+s_{3311}$.

- Schur functions: (most?) important basis for the symmetric functions
- Skew Schur functions are Schur-positive
- The coefficients in the expansion are the Littlewood-Richardson coefficients $c_{\mu \nu}^{\lambda}$
- The Littlewood-Richardson rule gives a combinatorial rule for calculating $c_{\mu \nu}^{\lambda}$, and hence much information about the other interpretations of $c_{\mu \nu}^{\lambda}$.

Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (a, b) and
$(a+n-k, b-k)$.

Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (a, b) and
$(a+n-k, b-k)$.

Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (a, b) and
$(a+n-k, b-k)$.

Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (a, b) and ($a+n-k, b-k$).

- Entries weakly increase in each row Strictly increase up each column
- Alternatively: SSYT with relations between entries in first and last columns
- Cylindric skew Schur function:

$$
\begin{aligned}
s_{C}(x) & =\sum_{T} x_{1}^{\# 1 ' s} \text { in } T_{2}^{\# 2 ' s} \text { in } T \ldots . \\
\text { e.g. } s_{C}(x) & =x_{3} x_{4}^{4} x_{5} x_{6}^{3} x_{7}^{2}+\cdots .
\end{aligned}
$$

- s_{C} is a symmetric function

Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (a, b) and ($a+n-k, b-k$).

- Entries weakly increase in each row Strictly increase up each column
- Alternatively: SSYT with relations between entries in first and last columns
- Cylindric skew Schur function:

$$
\begin{aligned}
s_{C}(x) & =\sum_{T} x_{1}^{\# 1 ' s} \text { in } T_{2}^{\# 2} x_{2}^{\prime} \text { in } T \ldots . \\
\text { e.g. } s_{C}(x) & =x_{3} x_{4}^{4} x_{5} x_{6}^{3} x_{7}^{2}+\cdots .
\end{aligned}
$$

- s_{C} is a symmetric function

Cylindric skew Schur functions

- Infinite skew shape C
- Invariant under translation
- Identify (a, b) and ($a+n-k, b-k$).

- Entries weakly increase in each row Strictly increase up each column
- Alternatively: SSYT with relations between entries in first and last columns
- Cylindric skew Schur function:

$$
\begin{aligned}
s_{C}(x) & =\sum_{T} x_{1}^{\# 1 ' s} \text { in } T_{2}^{\# 2} x_{2}^{\prime} \text { in } T \ldots . \\
\text { e.g. } s_{C}(x) & =x_{3} x_{4}^{4} x_{5} x_{6}^{3} x_{7}^{2}+\cdots .
\end{aligned}
$$

- s_{C} is a symmetric function

Skew shapes are cylindric skew shapes...

... and so skew Schur functions are cylindric skew Schur functions. Example

Skew shapes are cylindric skew shapes...

... and so skew Schur functions are cylindric skew Schur functions.
Example

- Gessel, Krattenthaler: "Cylindric partitions,"1997.
- Bertram, Ciocan-Fontanine, Fulton: "Quantum multiplication of Schur polynomials,"1999.
- Postnikov: "Affine approach to quantum Schubert calculus," math. CO/0205165.
- Stanley: "Recent developments in algebraic combinatorics," math. CO/0211114.

A generalization of Littlewood-Richardson coefficients:
3-point Gromov-Witten invariants $C_{\mu \nu}^{\lambda, d}$.
Fact: $C_{\mu \nu}^{\lambda, d} \geq 0$ by their geometric definition.
Fundamental open problem: Find a combinatorial proof of this fact.

Motivation: A "fundamental" open problem

A generalization of Littlewood-Richardson coefficients:
3-point Gromov-Witten invariants $C_{\mu \nu}^{\lambda, d}$.
Fact: $C_{\mu \nu}^{\lambda, d} \geq 0$ by their geometric definition.
Fundamental open problem: Find a combinatorial proof of this fact.
Postnikov: Gromov-Witten invariants appear as coefficients when we expand (certain) cylindric skew Schur functions in terms of Schur functions.

Fundamental open problem: Find a Littlewood-Richardson rule for cylindric skew Schur functions.

Motivation: A "fundamental" open problem

A generalization of Littlewood-Richardson coefficients:
3-point Gromov-Witten invariants $C_{\mu \nu}^{\lambda, d}$.
Fact: $C_{\mu \nu}^{\lambda, d} \geq 0$ by their geometric definition.
Fundamental open problem: Find a combinatorial proof of this fact.
Postnikov: Gromov-Witten invariants appear as coefficients when we expand (certain) cylindric skew Schur functions in terms of Schur functions.

Fundamental open problem: Find a Littlewood-Richardson rule for cylindric skew Schur functions.

Rest of talk:

- Why the problem is difficult
- A tool
- A hint?

When is a cylindric skew Schur function Schur-positive?

Theorem (McN.)
For any cylindric skew shape C,

$$
s_{C}\left(x_{1}, x_{2}, \ldots\right) \text { is Schur-positive } \Leftrightarrow C \text { is a skew shape. }
$$

Equivalently, if C is a non-trivial cylindric skew shape, then $s_{C}\left(x_{1}, x_{2}, \ldots\right)$ is not Schur-positive.

Example: cylindric ribbons

$$
\begin{aligned}
s_{C}\left(x_{1}, x_{2}, \ldots\right)= & \sum_{\lambda \subseteq k \times(n-k)} c_{\lambda} s_{\lambda}+s_{\left(n-k, 1^{k}\right)}-s_{\left(n-k-1,1^{k+1}\right)} \\
& +s_{\left(n-k-2,1^{k+2}\right)}-\cdots+(-1)^{n-k} s_{\left(1^{n}\right)} .
\end{aligned}
$$

Formula: cylindric skew Schur functions as signed sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton Uses result of Gessel, Krattenthaler

Example

Formula: cylindric skew Schur functions as signed sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton Uses result of Gessel, Krattenthaler

Example

Formula: cylindric skew Schur functions as signed sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton Uses result of Gessel, Krattenthaler

Example

Formula: cylindric skew Schur functions as signed sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton Uses result of Gessel, Krattenthaler

Example

Formula: cylindric skew Schur functions as signed sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton Uses result of Gessel, Krattenthaler

Example

Formula: cylindric skew Schur functions as signed sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton Uses result of Gessel, Krattenthaler

Example

Formula: cylindric skew Schur functions as signed sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton Uses result of Gessel, Krattenthaler

Example

A hint: Cylindric Schur-positivity

Skew Schur functions are Schur-positive:

A hint: Cylindric Schur-positivity

Skew Schur functions are Schur-positive:

Some cylindric skew Schur functions are cylindric Schur-positive:

A hint: Cylindric Schur-positivity

Skew Schur functions are Schur-positive:

Some cylindric skew Schur functions are cylindric Schur-positive:

Conjecture
For any cylindric skew shape C, s_{C} is cylindric Schur-positive

Theorem (McN.)

The cylindric Schur functions corresponding to a given translation $(-n+k,+k)$ are linearly independent.

Theorem (McN.)
If s_{C} can be written as a linear combination of cylindric Schur functions with the same translation as C, then s_{C} is cylindric Schur-positive.

- Classification of those cylindric skew Schur functions that are Schur-positive.
- Full knowledge of negative terms in Schur expansion of ribbons.
- Expansion of any cylindric skew Schur function into skew Schur functions.
- Conjecture and evidence that every cylindric skew Schur function is cylindric Schur-positive.
- Outlook
- Prove the conjecture.
- Develop a Littlewood-Richardson rule for cylindric skew Schur functions - this would solve the "fundamental open problem."

Another Schur－positivity research project

Know

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

is Schur－positive．
Question
Given μ, ν ，when is

$$
\boldsymbol{s}_{\sigma} \boldsymbol{s}_{\tau}-\boldsymbol{s}_{\mu} \boldsymbol{s}_{\nu}
$$

Schur－positive？In other words，when is $c_{\sigma \tau}^{\lambda}-c_{\mu \nu}^{\lambda} \geq 0$ for every partition λ ．

固 Fomin，Fulton，Li，Poon：＂Eigenvalues，singular values，and Littlewood－Richardson coefficients，＂math．AG／0301307．

囦 Bergeron，Biagioli，Rosas：＂Inequalities between Littlewood－Richardson Coefficients，＂math．co／0403541．
围 Bergeron，McNamara：＂Some positive differences of products of Schur functions，＂math．CO／0412289．

Like previous two slides, the slides that follow probably won't be included in the presentation. However, they give more details on certain aspects of what we covered.

Proof. Consider SSYTs of shape λ and content $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$.
Show: \# SSYTs shape λ, content $\alpha=$ \# SSYTs shape λ, content β, where β is any permutation of α.
Sufficient: $\beta=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \alpha_{i}, \alpha_{i+2}, \ldots\right)$.
Bijection: SSYTs shape λ, content $\alpha \leftrightarrow$ SSYTs shape λ, content β.

$$
\begin{array}{cc}
i+1 & i+1 \\
i & i
\end{array} \underbrace{i}_{r=2} i \underbrace{i+1}_{s=4} \quad i+1 \quad i+1 \quad i+1 \quad i+1
$$

In each such row, convert the $r i$'s and $s i+1$'s to $s i$'s and $r i+1$'s:

$$
\begin{array}{cc}
i+1 & i+1 \\
i & \underbrace{i \quad i \quad i \quad i}_{s=4} \\
\underbrace{i+1 \quad i+1}_{r=2} & i+1 \\
i
\end{array}
$$

1. Representation Theory of S_{n} :

$$
\left(S^{\mu} \otimes S^{\nu}\right) \uparrow^{\mathcal{S}_{n}}=\bigoplus_{\lambda} c_{\mu \nu}^{\lambda} S^{\lambda}, \text { so } \chi^{\mu} \cdot \chi^{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} \chi^{\lambda} \text {. }
$$

We also have that $s_{\lambda}=$ the Frobenius characteristic of χ^{λ}.
2. Representations of $\mathrm{GL}(n, \mathbb{C})$:
$s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=$ the character of the irreducible rep. V^{λ}.

$$
V^{\mu} \otimes V^{\nu}=\bigoplus c_{\mu \nu}^{\lambda} V^{\lambda} .
$$

3. Algebraic Geometry: Schubert classes σ_{λ} form a linear basis for $H^{*}\left(\operatorname{Gr}_{k n}\right)$. We have

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq k \times(n-k)} c_{\mu \nu}^{\lambda} \sigma_{\lambda} .
$$

Thus $c_{\mu \nu}^{\lambda}=$ number of points of $\operatorname{Gr}_{k n}$ in $\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda^{\nu}}$.

There's more!
4. Linear Algebra: When do there exist Hermitian matrices A, B and $C=A+B$ with eigenvalue sets μ, ν and λ, respectively?
4. Linear Algebra: When do there exist Hermitian matrices A, B and $C=A+B$ with eigenvalue sets μ, ν and λ, respectively? When $c_{\mu \nu}^{\lambda}>0$. (Heckman, Klyachko, Knutson, Tao.)

Motivation: Positivity of Gromov-Witten invariants

In $H^{*}\left(\mathrm{Gr}_{k n}\right)$,

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

In $Q H^{*}\left(\mathrm{Gr}_{k n}\right)$,

$$
\sigma_{\mu} * \sigma_{\nu}=\sum_{d \geq 0} \sum_{\lambda \subseteq k \times(n-k)} q^{d} C_{\mu \nu}^{\lambda, d} \sigma_{\lambda} .
$$

$C_{\mu \nu}^{\lambda, d}=3$-point Gromov-Witten invariants
$=\#\left\{\right.$ rational curves of degree d in $\operatorname{Gr}_{k n}$ that meet $\tilde{\Omega}_{\mu}, \tilde{\Omega}_{\nu}$ and $\left.\tilde{\Omega}_{\lambda \vee}\right\}$.
Example

$$
C_{\mu, \nu}^{\lambda, 0}=C_{\mu \nu}^{\lambda}
$$

Key point: $C_{\mu \nu}^{\lambda, d} \geq 0$.

Motivation: Positivity of Gromov-Witten invariants

In $H^{*}\left(\mathrm{Gr}_{k n}\right)$,

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} \sigma_{\lambda}
$$

In $Q H^{*}\left(\mathrm{Gr}_{k n}\right)$,

$$
\sigma_{\mu} * \sigma_{\nu}=\sum_{d \geq 0} \sum_{\lambda \subseteq k \times(n-k)} q^{d} C_{\mu \nu}^{\lambda, d} \sigma_{\lambda} .
$$

$C_{\mu \nu}^{\lambda, d}=3$-point Gromov-Witten invariants
$=\#\left\{\right.$ rational curves of degree d in $\operatorname{Gr}_{k n}$ that meet $\tilde{\Omega}_{\mu}, \tilde{\Omega}_{\nu}$ and $\left.\tilde{\Omega}_{\lambda \vee}\right\}$.
Example

$$
C_{\mu, \nu}^{\lambda, 0}=C_{\mu \nu}^{\lambda}
$$

Key point: $C_{\mu \nu}^{\lambda, d} \geq 0$.
"Fundamental open problem": Find an algebraic or combinatorial proof of this fact.

Connection with cylindric skew Schur functions

Theorem (Postnikov)

$$
s_{\mu / d / \nu}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\lambda \subseteq k \times(n-k)} C_{\mu \nu}^{\lambda, d} s_{\lambda}\left(x_{1}, \ldots, x_{k}\right) .
$$

Conclusion: Want to understand the expansions of cylindric skew Schur functions into Schur functions.

Connection with cylindric skew Schur functions

Theorem (Postnikov)

$$
s_{\mu / d / \nu}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\lambda \subseteq k \times(n-k)} C_{\mu \nu}^{\lambda, d} s_{\lambda}\left(x_{1}, \ldots, x_{k}\right) .
$$

Conclusion: Want to understand the expansions of cylindric skew Schur functions into Schur functions.
Corollary
$s_{\mu / d / \nu}\left(x_{1}, \ldots, x_{k}\right)$ is Schur-positive.
Known: $s_{\mu / d / \nu}\left(x_{1}, x_{2}, \ldots\right) \equiv s_{\mu / d / \nu}(x)$ need not be Schur-positive.
Example
If $s_{\mu / d / \nu}=s_{22}+s_{211}-s_{1111}$, then $s_{\mu / d / \nu}\left(x_{1}, x_{2}, x_{3}\right)$ is Schur-positive.
(In general: $s_{\lambda}\left(x_{1}, \ldots, x_{k}\right) \neq 0 \Leftrightarrow \lambda$ has at most k parts.)

Example: cylindric ribbons

$$
\begin{aligned}
s_{C}\left(x_{1}, x_{2}, \ldots\right)= & \sum_{\lambda \subseteq k \times(n-k)} c_{\lambda} s_{\lambda}+s_{\left(n-k, 1^{k}\right)}-s_{\left(n-k-1,1^{k+1}\right)} \\
& +s_{\left(n-k-2,1^{k+2}\right)}-\cdots+(-1)^{n-k} s_{\left(1^{n}\right)} .
\end{aligned}
$$

First consequence: lots of skew Schur function identities

A final thought: shouldn't cylindric skew Schur functions be Schur-positive in some sense?

C :

$s_{C}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\lambda \subseteq k \times(n-k)} c_{\lambda} s_{\lambda}+s_{\left(n-k, 1^{k}\right)}-s_{\left(n-k-1,1^{k+1}\right)}$

$$
+s_{\left(n-k-2,1^{k+2}\right)}-\cdots+(-1)^{n-k} s_{\left(1^{n}\right)} .
$$

A final thought: shouldn't cylindric skew Schur functions be Schur-positive in some sense?

C:

$$
\begin{aligned}
s_{C}\left(x_{1}, x_{2}, \ldots\right)= & \sum_{\lambda \subseteq k \times(n-k)} c_{\lambda} s_{\lambda}+s_{\left(n-k, 1^{k}\right)}-s_{\left(n-k-1,1^{k+1}\right)} \\
& +s_{\left(n-k-2,1^{k+2}\right)}-\cdots+(-1)^{n-k} s_{\left(1^{n}\right)}
\end{aligned}
$$

In fact,

$$
s_{C}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\lambda \subseteq k \times(n-k)} c_{\lambda} s_{\lambda}+s_{H}
$$

s_{C} : cylindric skew Schur function
s_{H} : cylindric Schur function
We say that s_{C} is cylindric Schur-positive.

