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What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:
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What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:

Define combinatorics

The biggest open problem in algebraic combinatorics:

Define algebraic combinatorics

Combinatorics that takes its problems, or its tools, from commutative
algebra, algebraic geometry, algebraic topology, representation
theory, etc.
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» Symmetric functions

» Schur functions and Littlewood-Richardson coefficients
» The Littlewood-Richardson rule

» Cylindric skew Schur functions
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What are symmetric functions?

Definition
A symmetric polynomial is a polynomial that is invariant under any
permutation of its variables X1, Xo, ... Xn.

Examples
> X1+ X2+ -+ Xn
> X2Xp + XPX3 + X3X1 + X3X3 + X3X1 + X3X2
is a symmetric polynomial in X1, Xz, X3.
Definition

A symmetric function is a formal power series that is invariant under
any permutation of its (infinite set of) variables x = (X1, Xz, ...).

Examples
> > -1 % IS a symmetric function, as is Y7, ; XX

AV i
> Ei<j XX IS not symmetric.
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A basis for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

Monomial symmetric functions: Start with a monomial:

7.4
X1 X
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A basis for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

Monomial symmetric functions: Start with a monomial:
X{XS A+ XXg 4 X X5 4 XFXG Ao

Given a partition A = (A1,..., ), e.9. A =(7,4),

— A1 Ae
m)\ — Z Xll e Xll .
i

1oenig
distinct

Examples

> Mgy =X2+x3+--.

> M(1.11)(X1,X2,X3) = M111(X1, X2, X3) = X1X2X3.
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» Elementary symmetric functions, e).
» Complete homogeneous symmetric functions, hy.
» Power sum symmetric functions, p.

Typical questions: Prove they are bases, convert from one to
another, ...

Combinatorics of Symmetric Functions Peter McNamara



Schur functions

Cauchy, 1815.

» Partition \ = ()\1, A2y ,)\g).

» Young diagram.
Example: A = (4,4,3,1).
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Schur functions

Cauchy, 1815.

» Partition A = (A1, A2, ..., \¢). <

» Young diagram. 7
Example: A = (4,4,3,1). 5 6|6

» Semistandard Young tableau \/ 41 4|1 4| 9
(SSYT) 1131 3] 4

The Schur function s, in the variables x = (x1, X2, ...) is then defined

by
Z X#lslnT #ZsmT .

SSYTT

Example
S4431 = XiXEXFX5XEX7Xg + -+ - .
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Schur functions

Example
<
V12 2 3 3 3 3 3 2
1l1] [a]2] [a]a] [a][38] [2]2] [2]3] [1]2] [1]3]
Hence
S21(X1,X2,X3) = X&Xp + X1XZ + XXz 4 X1X2 + X5X3 + XoX3
+2X1X2X3

= Mp1(Xy, X2,X3) + 2My11(X1, X2, X3).

Fact: Schur functions are symmetric functions.

Question
Why do we care about Schur functions?
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Why do we care about Schur functions?

» Fact: The Schur functions form a basis for the symmetric
functions.

» In fact, they form an orthonormal basis: (sy,S,) = dx,.

» Main reason: they arise in many other areas of mathematics.
» Representation theory of S,.
» Representations of GL(n, C).

» Algebraic Geometry: Schubert Calculus.
» Linear Algebra: eigenvalues of Hermitian matrices.
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Littlewood-Richardson coefficients

Note: The symmetric functions form a ring.
OF 45 +X5 + - )(Xa %o +Xg + ).

_ A
SuSu = Y _Cj,Sx.
B

cﬁl,: Littlewood-Richardson coefficients
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Littlewood-Richardson coefficients

Note: The symmetric functions form a ring.
OF 45 +X5 + - )(Xa %o +Xg + ).

_ A
SuSu = Y _Cj,Sx.
B

cﬁy: Littlewood-Richardson coefficients
Examples

> S51S01 =Sap + Sa11 + S33 + 2S321 + S3111 + So22 + S2011-

> S32S421 =S44211 + S54111 + S4332 + Sa422 + 2S4431 + 2Ss322 +
285331 + 3Ss421 + S52221 + S5511 + Se2211 + Se222 + Sa3221 +
3S6321 1 S43311 + 2S6411 + 2853211 + Se3111 + S444 + 2S543 + Ss52 +
S633 + 2Sp42 + S732 + S741 + S7221 + S7311 + Se651-

(%27161512231)6(3;2234321) = 7869992,

(Maple packages: John Stembridge, Anders Buch.)

> C
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Littlewood-Richardson coefficients are non-negative

_ A
SuSy =Y _C,,Sx-
B

Theorem
For any partitions u, v and A,

A
Cov > 0. (Your take-home fact!)

Terminology: We say thats,s, =), cﬁysA is a Schur-positive
function.
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Littlewood-Richardson coefficients are non-negative

_ A
SuSy =Y _C,,Sx-
B

Theorem
For any partitions u, v and A,

A
Cov > 0. (Your take-home fact!)

Terminology: We say thats,s, =), cﬁysA is a Schur-positive
function.

Proof 1: Use representation theory of S;,.
Proof 2: Use representation theory of GL(n, C).
Proof 3: Use Schubert Calculus.

Want a combinatorial proof:
“They must count something simpler!”
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Skew Schur functions: a generalization of Schur

functions
» Partition A = (A1, A2, ..., \o).

» Young diagram.
Example:
A =(4,4,31)
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Skew Schur functions: a generalization of Schur

functions
» Partition A = (A1, A2, ..., \o).
» . fits inside A.

» Young diagram.
Example:
Ap=(4,4,3,1)/(3,1)
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Skew Schur functions: a generalization of Schur

functions
» Partition A = (A1, A2, ..., \o).
» . fits inside A. <

» Young diagram. 7
Example: 5 6
M= (4,4,3,1)/(3,1) VT4

» Semistandard Young tableau o
(SSYT) T

The skew Schur function s, /,, is the variables x = (xg, X2, .. .) is then

defined b
Y s _ #1'sinT #ZsmT
N = § : Xy T

SSYT T
Sas31/31 = X2X5XEX7Xg + - - . Again, it's a symmetric function.
Remarkable fact:

9
4
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Skew Schur functions: a generalization of Schur

functions

» Partition A = (A1, A2, ..., \o).

» . fits inside A. <

» Young diagram. 7
Example: 5 6
My =(4,4,3,1)/(3.1) V2

» Semistandard Young tableau o
(SSYT) .

The skew Schur function s, /,, is the variables x = (xg, X2, .. .) is then

defined b
Y s _ #1'sinT #ZsmT
N = § : Xy T

SSYT T
Sas31/31 = X2X5XEX7Xg + - - . Again, it's a symmetric function.

Remarkable fact:
Sx/u =Y ChSu-
14

9
4
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The Littlewood-Richardson rule

Littlewood-Richardson 1934, Schiitzenberger 1977, Thomas 1974.

Theorem

cﬁ,, equals the number of SSYT of shape \/u and content v whose
reverse reading word is a ballot sequence.

Example X =(5,5,2,1),u=(3,2),vr =(4,3,1)

11222113 No
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The Littlewood-Richardson rule

Littlewood-Richardson 1934, Schiitzenberger 1977, Thomas 1974.

Theorem

cﬁ,, equals the number of SSYT of shape \/u and content v whose
reverse reading word is a ballot sequence.

Example X =(5,5,2,1),u=(3,2),vr =(4,3,1)

- 12]2]2 12|22 ? 1(2]2

I R R T e R ET

11222113 No 11221213 Yes 11221312 Yes

5221 _
C35431 = 2.
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Expanding a skew Schur function

A
Sx/u =Y ChSu-
14

Can expand s, /,, by looking for all fillings of \/u whose reverse
reading word is a ballot sequence.

Example
M/ = 4431/31.

2
12/2 12/2 123 123

w
N
w

N W

N D

S4431/31 = Sa4 + 2S431 + S422 + S4211 + S332 + S3311-
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The story so far

» Schur functions: (most?) important basis for the symmetric
functions

» Skew Schur functions are Schur-positive
» The coefficients in the expansion are the Littlewood-Richardson
coefficients c;),

» The Littlewood-Richardson rule gives a combinatorial rule for

calculating cﬁy, and hence much information about the other

interpretations of c),,.
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Cylindric skew Schur functions

» Infinite skew shape C
» Invariant under
translation

» Identify (a,b) and K
(a+n—k,b—k).

n-k
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Cylindric skew Schur functions

» Infinite skew shape C

» Invariant under 4
translation 7

» Identify (a,b) and K

(a+n—k,b—k). e —
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Cylindric skew Schur functions

» Infinite skew shape C

» Invariant under 4
translation i

» Identify (a,b) and K 5
(a+n—k,b—k). —
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Cylindric skew Schur functions

.. 717
» Infinite skew shape C 56l s
» Invariant under 4/4]4|86 ; g -
H 3| 4

translation AP P IEGEIE;

» ldentify (a,b) and K 3 4|s5]6]6
44|46
(a+n—Kk,b—Kk). — el

» Entries weakly increase in each row
Strictly increase up each column

» Alternatively: SSYT with relations between entries in first and
last columns

» Cylindric skew Schur function:

Zx#lsmT #ZsmT

e.g. Sc(X) = XaXgXsXSx2 + - -

> Sc is a symmetric function
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Cylindric skew Schur functions

» Infinite skew shape C ; ; 5

» Invariant under 4141416|7]7
translation S =

» ldentify (a,b) and K 34|s5]6l6
(a+n—k,b—k). — 44;?,/

» Entries weakly increase in each row
Strictly increase up each column

» Alternatively: SSYT with relations between entries in first and
last columns

» Cylindric skew Schur function:

Zx#lsmT #ZsmT

e.g. Sc(X) = XaXgXsXSx2 + - -

> Sc is a symmetric function
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Cylindric skew Schur functions

» Infinite skew shape C ; ; 5

» Invariant under 4]14]4]6|7|7
translation S A 5T

» ldentify (a,b) and K 34[5/6]6
(a+n—k,b—k). — 44;?,/

» Entries weakly increase in each row
Strictly increase up each column

» Alternatively: SSYT with relations between entries in first and
last columns

» Cylindric skew Schur function:

Zx#lsmT #ZsmT

e.g. Sc(X) = XaXgXsXSx2 + - -

> Sc is a symmetric function
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Skew shapes are cylindric skew shapes...

... and so skew Schur functions are cylindric skew Schur functions.
Example

n-k
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Skew shapes are cylindric skew shapes...

... and so skew Schur functions are cylindric skew Schur functions.
Example

n-k

» Gessel, Krattenthaler: “Cylindric partitions,” 1997.

» Bertram, Ciocan-Fontanine, Fulton: “Quantum multiplication of
Schur polynomials,” 1999.

» Postnikov: “Affine approach to quantum Schubert calculus,”
mat h. CO' 0205165.

» Stanley: “Recent developments in algebraic combinatorics,”’
mat h. CO/ 0211114.
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Motivation: A “fundamental” open problem

A generalization of Littlewood-Richardson coefficients:
3-point Gromov-Witten invariants C,’)’Vd.

Fact: Cﬁ,’,d > 0 by their geometric definition.

Fundamental open problem: Find a combinatorial proof of this fact.
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Motivation: A “fundamental” open problem

A generalization of Littlewood-Richardson coefficients:
3-point Gromov-Witten invariants Cﬁ’yd.

Fact: Cﬁ,’,d > 0 by their geometric definition.
Fundamental open problem: Find a combinatorial proof of this fact.

Postnikov: Gromov-Witten invariants appear as coefficients when we
expand (certain) cylindric skew Schur functions in terms of Schur
functions.

Fundamental open problem: Find a Littlewood-Richardson rule for
cylindric skew Schur functions.
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Motivation: A “fundamental” open problem

A generalization of Littlewood-Richardson coefficients:
3-point Gromov-Witten invariants Cﬁ’yd.

Fact: Cﬁ,’,d > 0 by their geometric definition.
Fundamental open problem: Find a combinatorial proof of this fact.

Postnikov: Gromov-Witten invariants appear as coefficients when we
expand (certain) cylindric skew Schur functions in terms of Schur
functions.

Fundamental open problem: Find a Littlewood-Richardson rule for
cylindric skew Schur functions.

Rest of talk:
» Why the problem is difficult
» A tool
» A hint?
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When is a cylindric skew Schur function

Schur-positive?

n-k

Theorem (McN.)
For any cylindric skew shape C,

Sc(X1,X2,...) is Schur-positive < C is a skew shape.

Equivalently, if C is a non-trivial cylindric skew shape, then
Sc (X1, X2, . ..) is not Schur-positive.
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Example: cylindric ribbons

A

Y

n-k

Z CASA FS(n—k,1%) ~ S(n—k—1,1k+1)
ACk x (n—k)

+S(n_k_2,1k42) — - + (=1)" s(1n).

Sc(X1,%2,...)
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Formula: cylindric skew Schur functions as signed

sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton
Uses result of Gessel, Krattenthaler

Example
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Formula: cylindric skew Schur functions as signed

sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton
Uses result of Gessel, Krattenthaler

Example
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Formula: cylindric skew Schur functions as signed

sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton
Uses result of Gessel, Krattenthaler

Example
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Formula: cylindric skew Schur functions as signed

sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton
Uses result of Gessel, Krattenthaler

Example
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Formula: cylindric skew Schur functions as signed

sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton
Uses result of Gessel, Krattenthaler
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Formula: cylindric skew Schur functions as signed

sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton
Uses result of Gessel, Krattenthaler

Example
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Formula: cylindric skew Schur functions as signed

sums of skew Schur functions

Idea for formulation: Bertram, Ciocan-Fontanine, Fulton
Uses result of Gessel, Krattenthaler

Example

Sc = Ssz33211/21 — S3322111/21 + S331111111/21
= S3331 + S3322 + S33211 1 S322111 + S31111111

—Sp22211 — S2221111 + S22111111 + S211111111-
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A hint: Cylindric Schur-positivity

Skew Schur functions are Schur-positive:

= + +
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A hint: Cylindric Schur-positivity

Skew Schur functions are Schur-positive:

= + +

Some cylindric skew Schur functions are cylindric Schur-positive:

k

Iy
I'm

Nk ., 1.
nK R ‘
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A hint: Cylindric Schur-positivity

Skew Schur functions are Schur-positive:

= + +

Some cylindric skew Schur functions are cylindric Schur-positive:

k

| k k

n-K

Iy
I'm
o

n-K '“,, n-k

Conjecture
For any cylindric skew shape C, sc is cylindric Schur-positive
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i1
+

'y
/

n-k J Y L1

n-k n-K

Theorem (McN.)

The cylindric Schur functions corresponding to a given translation
(—n + Kk, +k) are linearly independent.

Theorem (McN.)

If sc can be written as a linear combination of cylindric Schur
functions with the same translation as C, then s¢ is cylindric
Schur-positive.

Combinatorics of Symmetric Functions Peter McNamara



Summary of results

» Classification of those cylindric skew Schur functions that are
Schur-positive.

» Full knowledge of negative terms in Schur expansion of ribbons.

» Expansion of any cylindric skew Schur function into skew Schur
functions.

» Conjecture and evidence that every cylindric skew Schur
function is cylindric Schur-positive.

» Outlook
» Prove the conjecture.
» Develop a Littlewood-Richardson rule for cylindric skew Schur
functions - this would solve the “fundamental open problem.”
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Another Schur-positivity research project

Know
A
SuSu = Y _Cp,Sx
A

is Schur-positive.
Question
Given p, v, when is
S¢S+ — SuSy
Schur-positive? In other words, when is ¢, — ¢, > 0 for every
partition \.

@ Fomin, Fulton, Li, Poon: “Eigenvalues, singular values, and
Littlewood-Richardson coefficients,” mat h. AG 0301307.

@ Bergeron, Biagioli, Rosas: “Inequalities between
Littlewood-Richardson Coefficients,” mat h. CO' 0403541.

@ Bergeron, McNamara: “Some positive differences of products of
Schur functions,” mat h. CO/ 0412289.
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Appendices

Like previous two slides, the slides that follow probably won't be
included in the presentation. However, they give more details on
certain aspects of what we covered.
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The Schur function s, is a symmetric function

Proof. Consider SSYTs of shape A and content a = (a1, ag, .. .).

Show: # SSYTs shape A, content o = # SSYTs shape ), content 3,
where 3 is any permutation of «.

Sufficient: 8= (a1, ...,0_1, 41, @), Qit2,...).
Bijection: SSYTs shape A, content « <> SSYTs shape A, content .
i+1 i+1
i i i i I14+1 i4+1 i+1 i+1 i+1
r=2 s=4 H

i
In each such row, converttheri'sandsi+1stosi'sandri 4 1's;
i+1 i+1
i i i i i i i+1 i+1 i+1
s=4 r=2
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s, and ¢, are superstars!

N

1. Representation Theory of Sp:
(s*@8") 19=Hc, 8 so ¥ -x"=> cpxt
A A

We also have that s, = the Frobenius characteristic of x*.
2. Representations of GL(n, C):
Sx(X1,...,%n) = the character of the irreducible rep. V.

VeV =c v

3. Algebraic Geometry: Schubert classes o) form a linear basis for
H*(Gryn). We have

A
ooy = E C/WO')\.

ACK x (n—k)

Thus ¢}, = number of points of Gry, in €, N, N Q.
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There’s more!

4. Linear Algebra: When do there exist Hermitian matrices A, B
and C = A + B with eigenvalue sets u, v and ), respectively?
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There’s more!

4. Linear Algebra: When do there exist Hermitian matrices A, B
and C = A + B with eigenvalue sets u, v and ), respectively?

When c;,, > 0. (Heckman, Klyachko, Knutson, Tao.)

Combinatorics of Symmetric Functions Peter McNamara



Motivation: Positivity of Gromov-Witten invariants

In H*(Gryn),

ooy = Z C;\VO')\.
A
In QH*(Grkn),

oy k0, = Z Z quﬁ;,dcr)\.

d>0 ACk x (n—k)

Cﬁ;,d = 3-point Gromov-Witten invariants

= #{rational curves of degree d in Gr, that meet Q,,, Q, and Qv }.
Example

A0 A
CW =Cpy-

Key point: C[),’,d > 0.
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Motivation: Positivity of Gromov-Witten invariants

In H*(Gryn),

ooy = Z C;\VO')\.
A
In QH*(Grkn),

oy k0, = Z Z quﬁ;,dcr)\.

d>0 ACkx (n—k)

Cﬁ;,d = 3-point Gromov-Witten invariants
= #{rational curves of degree d in Gr, that meet Q,,, Q, and Qv }.

Example

Cio = ch.
Key point: C[),’,d > 0.
“Fundamental open problem”: Find an algebraic or combinatorial
proof of this fact.
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Connection with cylindric skew Schur functions

Theorem (Postnikov)

Su/d/u(xla"'axk): Z C S)\(Xl,..., k)-
ACk x (n—k)

Conclusion: Want to understand the expansions of cylindric skew
Schur functions into Schur functions.
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Connection with cylindric skew Schur functions

Theorem (Postnikov)

Su/d/u(xla"'axk): Z C S)\(Xl,..., k)-
ACk x (n—k)

Conclusion: Want to understand the expansions of cylindric skew
Schur functions into Schur functions.

Corollary

Su/d/v(X1, - - -, Xk) is Schur-positive.

Known: s, /4, (X1, X2, - . .) = S,/d/»(X) need not be Schur-positive.
Example

If S./d/ = S22 + S211 — S1111, then s, /4 /., (X1, X2, X3) is Schur-positive.

(In general: sy(Xi,...,Xk) # 0 < X has at most k parts.)
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Example: cylindric ribbons

A

Y

n-k

Z CASA FS(n—k,1%) ~ S(n—k—1,1k+1)
ACk x (n—k)

+S(n_k_2,1k42) — - + (=1)" s(1n).

Sc(X1,%2,...)
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First consequence: lots of skew Schur function

identities

vl
nbl
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A final thought: shouldn’t cylindric skew Schur
functions be Schur-positive in some sense?

C: «
.
n-k
Sc(Xl,Xz, .. ) = Z CAS) +S(n—k,1k) - S(n—k—l,lk+1)
ACK % (n—k)
+S(n_k—2,10:2) — -+ + (=1)"s(1my.
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A final thought: shouldn’t cylindric skew Schur
functions be Schur-positive in some sense?

C: o« H: []
. ! ||
n-k K|
\B L1,
n-k ‘
Sc(Xl,Xz, .. ) = Z CAS) +S(n—k,1k) - S(n—k—l,lk+1)
ACK x (n—k)
+S(nok_2,042) — - + (1) s(1m).
In fact,
Sc(Xl,Xz,...) = Z CxSy» +SH-
ACk x (n—k)

Sc: cylindric skew Schur function
Sy cylindric Schur function
We say that s¢ is cylindric Schur-positive.
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