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Labeled posets

Poset: partially ordered set

Labeled poset (P, ω): poset P with n elements and
a bijection ω : P → {1,2, . . . ,n}.

(P, ω) =

1

4

2 3 Not a (P, ω)-partition

5

5

6 8

Key definition. A (P, ω)-partition is a map f from P to the positive
integers satsifying:
I f is ordering preserving, i.e. if a <P b then f (a) ≤ f (b);
I if a <P b and ω(a) > ω(b), then f (a) < f (b).

We use double edges to denote the strictness conditions
and then we can (usually) ignore the underlying labeling.
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Motivating examples for (P, ω)-partitions

1

2

2

5

1

2

3

5

1 4 2 1

I (P, ω) chain with all weak edges: get a partition
I (P, ω) chain with all strict edges: get a partition with distinct parts
I (P, ω) is an antichain: get a composition

General (P, ω)-partitions interpolate between these classical objects.
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The (P, ω)-partition enumerator

Example. Resrict to f (p) ∈ {1,2,3}.

1

1

2 2

x2
1 x2

2

1

1

3 3

x2
1 x2

3

2

2

3 3

x2
2 x2

3

1

1

2 3

x2
1 x2x3

1

1

3 2

x2
1 x2x3

1

2

3 3

x1x2x2
3

K(P,ω)(x1, x2, x3) = x2
1 x2

2 + x2
1 x2

3 + x2
2 x2

3 + 2x2
1 x2x3 + x1x2x2

3 .

In general, the (P, ω)-partition enumerator is by given by:

K(P,ω)(x1, x2, . . .) =
∑

(P,ω)-partition f

x#f−1(1)
1 x#f−1(2)

2 · · · .
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Equality question

K(P,ω)(x1, x2, . . .) =
∑

(P,ω)-partition f

x#f−1(1)
1 x#f−1(2)

2 · · · .

Open question. Determine simple necessary and sufficient
conditions on labeled posets (P, ω) and (Q, τ) so that K(P,ω) = K(Q,τ).

[Thomas Browning, Valentin Féray, Takahiro Hasebe, Max Hopkins,
Zander Kelly, Ricky Liu, M., Shuhei Tsujie, Ryan Ward, Michael
Weselcouch]

Generalizes the question of determining when two skew Schur
functions are equal.

To state our goal, we need a little quasisymmetric background....
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Quasisymmetric functions

Same Example. But now with f (p) ∈ 1,2, . . .. With a < b < c < d ,
every (P, ω)-partition falls into one of these classes:

a

a

b b

∑
a<b

x2
a x2

b

a

a

b c

∑
a<b<c

x2
a xbxc2

a

a

c b

a

b

c c

∑
a<b<c

xaxbx2
c

a

b

c d

∑
a<b<c<d

xaxbxcxd2

a

b

d c

For a composition α = (α1, α2, . . . , αk ) the monomial quasisymmetric
function is:

Mα =
∑

i1<i2<···<ik

xα1
i1

xα2
i2
· · · xαk

ik
.

In our example, K(P,ω) = M22 + 2M211 + M112 + 2M1111.

Positivity among P-partition enumerators Lesnevich & McNamara 7



Quasisymmetric functions

Same Example. But now with f (p) ∈ 1,2, . . .. With a < b < c < d ,
every (P, ω)-partition falls into one of these classes:

a

a

b b

∑
a<b

x2
a x2

b

a

a

b c

∑
a<b<c

x2
a xbxc2

a

a

c b

a

b

c c

∑
a<b<c

xaxbx2
c

a

b

c d

∑
a<b<c<d

xaxbxcxd2

a

b

d c

For a composition α = (α1, α2, . . . , αk ) the monomial quasisymmetric
function is:

Mα =
∑

i1<i2<···<ik

xα1
i1

xα2
i2
· · · xαk

ik
.

In our example, K(P,ω) = M22 + 2M211 + M112 + 2M1111.

Positivity among P-partition enumerators Lesnevich & McNamara 7



Quasisymmetric functions

The Mα form a basis for the quasisymmetric functions, stars of 21st
century algebraic combinatorics.

A more important basis for us is Gessel’s fundamental
quasisymmetric functions:

Fα =
∑

β refines α

Mβ.

e.g.
F32 = M32 + M212 + M122 + M1112 + M311 + M2111 + M1211 + M11111.
(M221, for example, does not appear).

Why we care about F -basis:
1. One of the original two bases for quasisymmetric functions
2. Important symmetric function bases expand positively in F -basis
3. One of the candidates for a quasisymmetric analogue of Schur

functions
4. Most importantly for us: Stanley & Gessel’s K(P,ω) expansion
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Gessel & Stanley’s expansion

Stanley (’71) and Gessel (’84): K(P,ω) expands beautifully in F -basis.

Example.

1

2

3

4

Linear extensions: L(P, ω) = {34

|||

12,13

|||

24,134

|||

2,3

|||

124,3

|||

14

|||

2}.

Descent compositions: comp(π) 22 22 31 13 121

K(P,ω) = 2F22 + F31 + F13 + F121.

Theorem [Gessel & Stanley] .For a labeled poset (P, ω),

K(P,ω) =
∑

π∈L(P,ω)

Fcomp(π).

Brigtwell & Winkler (’91): Counting linear extensions is #P-complete.
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Our goal

Theorem [Gessel & Stanley]. For a labeled poset (P, ω),

K(P,ω) =
∑

π∈L(P,ω)

Fcomp(π).

So (P, ω)-parition enumerators are F -positive.

Question. When does one labeled poset have a “more F -positive”
(P, ω)-parition enumerator than another.

Our goal. Determine simple necessary and sufficient conditions on
labeled posets (P, ω) and (Q, τ) so that K(Q,τ) − K(P,ω) is F -positive.

Motivation.
I Positivity questions have (always?) been at the forefront of

algebraic combinatorics
I Natural next question after the equality question
I Symmetric analogue has received a lot of attention (≥ 15 papers)
I Representation theoretic: F -positive functions are characteristics

of 0-Hecke algebra actions.
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The F -positivty poset

An ordering on labeled posets:
(P, ω) ≤F (Q, τ) if K(Q,τ) − K(P,ω) is F -positive.

Our goal restated. Understand these posets.
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Necessary conditions

Since both the equality question and the symmetric analogue are still
wide open, we aim for meaningful partial results.

Necessary conditions. If (P, ω) ≤F (Q, τ), what has to be true about
(P, ω) versus (Q, τ)?

I Must have the same number of elements (degree of K(P,ω)).
I If (P, ω) has all weak (resp. strict) edges, so does (Q, τ).
I The jump sequence of (Q, τ) must dominate that of (P, ω).

I Suppose P and Q are natually labeled (all weak edges). Then
the Greene shape of P dominates that of Q.

1

1 2

3 3

3

Usual dominance order on compositions:

α dominates β if
k∑

i=1

αi ≥
k∑

i=1

βi for all k .

e.g., (2,1,3) dominates (1,2,2,1)
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Necessary conditions

Since both the equality question and the symmetric analogue are still
wide open, we aim for meaningful partial results.

Necessary conditions. If (P, ω) ≤F (Q, τ), what has to be true about
(P, ω) versus (Q, τ)?
I Must have the same number of elements (degree of K(P,ω)).
I If (P, ω) has all weak (resp. strict) edges, so does (Q, τ).
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A sufficient condition

Theorem [Gessel & Stanley]. For a labeled poset (P, ω),

K(P,ω) =
∑

π∈L(P,ω)

Fcomp(π).

So, if L(P, ω) ⊆ L(Q, τ), then certainly (P, ω) ≤F (Q, τ).

Theorem [Lesnevich, M.]. L(P, ω) ⊆ L(Q, τ) if and only if (Q, τ) can
be obtained from (P, ω) by redundancy-before-deletion.

4

1 3

2 6

5
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Poset assembly

What operations on posets preserve F -positivity?
Poset assembly (called “Ur-operation” in [Browning, Hopkins, Kelly])

1

2

3
(P, ω)

2

1 3

4
(P1, ω1)

3

1 4

2

(P2, ω2)

1 3

2 4

(P3, ω3)

2,3

2,1 2,4

2,2

1,2

1,1 1,3

1,4 3,1 3,3

3,2 3,4

(P[i → Pi ]) =
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Poset assembly and F -positivity

Theorem [Lesnevich, M.].
I Labeled posets (P, ω) and (Q, τ) such that L(P, ω) ⊆ L(Q, τ).
I Sequences ((P1, ω1), . . . , (P|P|, ω|P|)) and

((Q1, τ1), . . . , (Q|P|, τ|P|)) of labeled posets satisfying
(Pr , ωr ) ≤F (Qr , τr ) for all r .

Then
(P[i → Pi ]) ≤F (Q[i → Qi ]).

Notes.
I Computationally difficult to test.
I False if replace L(P, ω) ⊆ L(Q, τ) by (P, ω) ≤F (Q, τ).

Counterexamples have 4× 3 elements.
I P = Q = 2-element antichain: disjoint union presevers

F -positivity
I P = Q = 2-element chain (with either strict or weak edge):

ordinal sum preserves F -positivity
Positivity among P-partition enumerators Lesnevich & McNamara 15



Special families

For 2 families of labeled posets, we have a full classification of ≤F .
I Posets of Greene shape (k ,1) with all weak edges:

I Mixed-spine caterpillar posets:

Thanks for your attention!
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Closing remarks

I Families on previous slide are very special and there seems to
be plenty of scope for stronger or related results.

I For simplicity of presentation, we’ve only talked about
F -positivity, but many of results hold for M-positivity and/or
F -support containment.

I In fact, a weakness of our necessary conditions is that they don’t
use the full power of F -positivity, and M-support containment is
often enough.

I In the equality case, get stronger results by restricting to naturally
labeled posets (all weak edges). We have only scratched the
surface of the potential of this restriction for positivity.

Thanks for your attention!
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