The Schur-Positivity Poset

Peter McNamara

Bucknell University

MIT Combinatorics Seminar 18 February 2009

Slides and papers available from
www.facstaff.bucknell.edu/pm040/

Outline

- Introduction to the Schur-positivity poset
- Some known properties
- Some unknown properties
- Focus on necessary conditions for $A \leq_{s} B$.

Preview

$$
n=4
$$

Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram.

Example:
$\lambda=(4,4,3,1)$

Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram. Example: $\lambda=(4,4,3,1)$
- Semistandard Young tableau (SSYT)

Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram. Example:

$$
\lambda=(4,4,3,1)
$$

- Semistandard Young tableau (SSYT)

The \quad Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example. $s_{4431}=x_{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- μ fits inside λ.
- Young diagram. Example:

$$
\lambda / \mu=(4,4,3,1) /(3,1)
$$

- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 ' s \text { in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example.
$s_{4431 / 31}=\quad x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

- Skew Schur functions are symmetric in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$.
- The Schur functions form a basis for the algebra of symmetric functions (over \mathbb{Q}, say).
- Connections to algebraic geometry (Schubert calculus), representation theory $\left(S_{n}, G L(n, \mathbb{C})\right)$.

Littlewood-Richardson Rule

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}
$$

Littlewood-Richardson Rule

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}
$$

Littlewood-Richardson rule [Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974].
$c_{\mu \nu}^{\lambda}$ is the number of SSYT of shape λ / μ and content ν whose reverse reading word is a ballot sequence.

$$
\boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu}
$$

Littlewood-Richardson rule [Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974].
$c_{\mu \nu}^{\lambda}$ is the number of SSYT of shape λ / μ and content ν whose reverse reading word is a ballot sequence.
Example.
When $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$, we get $c_{\mu \nu}^{\lambda}=2$.

11222113 No

11221213 Yes

11221312 Yes

Main definitions

Key point: $c_{\mu \nu}^{\lambda} \geq 0$.
$s_{\lambda / \mu}$ is Schur-positive, i.e. coefficients in Schur expansion are all non-negative.

Natural connections between Schur-positivity and representation theory.

Main definitions

Key point: $c_{\mu \nu}^{\lambda} \geq 0$.
$s_{\lambda / \mu}$ is Schur-positive, i.e. coefficients in Schur expansion are all non-negative.

Natural connections between Schur-positivity and representation theory.

$$
\boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu}
$$

When is $\quad s_{\lambda / \mu}-s_{\sigma / \tau} \quad$ Schur-positive?

Main definitions

Key point: $c_{\mu \nu}^{\lambda} \geq 0$.
$s_{\lambda / \mu}$ is Schur-positive, i.e. coefficients in Schur expansion are all non-negative.

Natural connections between Schur-positivity and representation theory.

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}
$$

When is $\quad s_{\lambda / \mu}-s_{\sigma / \tau} \quad$ Schur-positive?
Definition.
Let A, B be skew shapes. We say that

$$
A \leq_{s} B \quad \text { if } \quad s_{B}-s_{A}
$$

is Schur-positive.
Goal: Characterize the Schur-positivity order \leq_{s} in terms of skew shapes.

Example of a Schur-positivity poset

If $A \leq_{s} B$ then $|A|=|B|$.
Call the resulting ordered set P_{n}. Then P_{4} :

More examples

Known properties: first things first

\leq_{s} is not yet anti-symmetric. So identify skew shapes such as
1.

[EC2, Exercise 7.56(a), 2-]
2.

3.

Known properties: first things first

\leq_{s} is not yet anti-symmetric. So identify skew shapes such as
1.

[EC2, Exercise 7.56(a), 2-]
2.

3.

Definition.
A ribbon is a connected skew shape containing no 2×2 rectangle.

Known properties: skew Schur equality

Question: When is $s_{A}=s_{B}$?

- Lou Billera, Hugh Thomas, Stephanie van Willigenburg (2004):

Known properties: skew Schur equality

Question: When is $s_{A}=s_{B}$?

- Lou Billera, Hugh Thomas, Stephanie van Willigenburg (2004):

Known properties: skew Schur equality

Question: When is $s_{A}=s_{B}$?

- Lou Billera, Hugh Thomas, Stephanie van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

Question: When is $s_{A}=s_{B}$?

- Lou Billera, Hugh Thomas, Stephanie van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

- Vic Reiner, Kristin Shaw, Stephanie van Willigenburg (2006)
- McN., Stephanie van Willigenburg (2006)

Enough for our purposes: we can consider P_{n} to be a poset.
Open Problem: Find necessary and sufficient conditions on A and B for $s_{A}=s_{B}$.

Known properties: Sufficient conditions

Sufficient conditions for $A \leq_{s} B$:

- Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
- Andrei Okounkov (1997)
- Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon (2003)
- Anatol N. Kirillov (2004)
- Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
- François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
- ...

Note: $s_{\lambda / \mu} s_{\sigma / \tau}$ is a special case of s_{A}.

Lam, Postnikov and Pylyavskyy's result

Theorem [LPP]. For skew shapes λ / μ and σ / τ,

$$
s_{\lambda / \mu} s_{\sigma / \tau} \leq_{s} s_{\lambda \cup \sigma / \mu \cup \tau} s_{\lambda \cap \sigma / \mu \cap \tau}
$$

Examples.

Known properties: special classes of skew shapes

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

- Macdonald's "Symmetric functions and Hall polynomials": For horizontal strips, $A \leq_{s} B$ if and only if row lengths of $A \succcurlyeq$ row lengths of B
 \leq_{s}

P_{n} restricted to horizontal strips: (dual of the) dominance lattice.

Known properties: special classes of skew shapes

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

- Macdonald's "Symmetric functions and Hall polynomials": For horizontal strips, $A \leq_{s} B$ if and only if
row lengths of $A \succcurlyeq$ row lengths of B

P_{n} restricted to horizontal strips: (dual of the) dominance lattice.
- Ron King, Trevor Welsh, Stephanie van Willigenburg (2007): For ribbons with decreasing row lengths and equal numbers of rows, same is true.
$321=\square \square$

$$
\leq_{s}
$$

$$
\square \square
$$

$$
=222
$$

Known properties: special classes of skew shapes

- McN., Stephanie van Willigenburg (2007): For a given number of boxes and rows, the poset of multiplicity-free ribbons is always of the form

Unknown properties: general ribbons

Open Problem: Explain the Schur-positivity order for general ribbons.
Suffices to fix \#boxes and \#rows.

Ribbons with 9 boxes and 4 rows:

Unknown properties: maximal connected skew shapes

> Question: What are the maximal elements of P_{n} among the connected skew shapes?

Conjecture [McN., Pylyavskyy]. For each $r=1, \ldots, n$, there is a unique maximal connected element with r rows, namely the ribbon marked out by the diagonal of an r-by- $(n-r+1)$ box.
Examples.

The Schur-Positivity Poset

Question: Suppose $A \leq_{s} B$ (i.e. $s_{B}-s_{A}$ is Schur-positive). Then what can we say about the shapes A and B ?

Such necessary conditions for $A \leq_{s} B$ give us a way to show that $C \not \Sigma_{s} D$.

Example. If $A \leq_{s} B$, then $|A|=|B|$.

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} . \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\} .
\end{aligned}
$$

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\text { support }(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\}
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} . \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\} .
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\text { support }(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\}
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let $\operatorname{rows}(A)$ denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\}
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\text { support }(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\}
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\} .
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let rows (A) denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\} .
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let $\operatorname{rows}(A)$ denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\} .
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let $\operatorname{rows}(A)$ denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\} .
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Notation. For a skew shape A, let $\operatorname{rows}(A)$ denote the partition of row lengths of A. Define cols (A) similarly.
Example. $\operatorname{rows}(A)=43211, \operatorname{cols}(A)=32222$.

$$
\begin{aligned}
s_{A}= & s_{551}+s_{542}+2 s_{5411}+s_{533}+2 s_{5321}+s_{53111} \\
& +s_{52211}+s_{4421}+s_{44111}+s_{4331}+s_{43211} \\
\operatorname{support}(A)= & \{551,542,5411,533,5321,53111 \\
& 52211,4421,44111,4331,43211\} .
\end{aligned}
$$

Proposition. In the Schur expansion of A :

- $\operatorname{rows}(A)$ is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.
"Proof":

Classical necessary conditions

Proposition. In the Schur expansion of A :

- rows (A) is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.

Corollary. If $A \leq_{s} B$, then

$$
\operatorname{rows}(A) \succcurlyeq \operatorname{rows}(B) \text { and } \operatorname{cols}(A) \succcurlyeq \operatorname{cols}(B)
$$

Classical necessary conditions

Proposition. In the Schur expansion of A :

- rows (A) is the least dominant partition in the support of A.
- $(\operatorname{cols}(A))^{t}$ is the most dominant partition in the support of A.

Corollary. If $A \leq_{s} B$, then

$$
\operatorname{rows}(A) \succcurlyeq \operatorname{rows}(B) \text { and } \operatorname{cols}(A) \succcurlyeq \operatorname{cols}(B) .
$$

Proof: $\quad A \leq_{s} B$
$\Leftrightarrow s_{B}-s_{A}$ is Schur-positive
$\Rightarrow \operatorname{support}(A) \subseteq \operatorname{support}(B)$
$\Rightarrow \operatorname{rows}(A) \succcurlyeq \operatorname{rows}(B)$ and $(\operatorname{cols}(A))^{t} \preccurlyeq(\operatorname{cols}(B))^{t}$
$\Leftrightarrow \operatorname{rows}(A) \succcurlyeq \operatorname{rows}(B)$ and $\operatorname{cols}(A) \succcurlyeq \operatorname{cols}(B)$.

Classical necessary conditions

Corollary. If $A \leq_{s} B$, then

$$
\operatorname{rows}(A) \succcurlyeq \operatorname{rows}(B) \text { and } \operatorname{cols}(A) \succcurlyeq \operatorname{cols}(B)
$$

Example.

$\operatorname{rows}(C)=2221 \prec 3211=\operatorname{rows}(D)$.
Thus $C \not \mathbb{Z}_{s} D$.

Key definitions: generalize rows (A) and cols (A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows $_{k}(A)$ is the weakly decreasing rearrangment of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).
Define cols $_{k}(A)$ similarly.
Example.

Key definitions: generalize rows (A) and cols (A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows ${ }_{k}(A)$ is the weakly decreasing rearrangment of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.
Define cols $_{k}(A)$ similarly.
Example.

- overlap $_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=\operatorname{rows}(A)$.

Key definitions: generalize rows (A) and cols (A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows ${ }_{k}(A)$ is the weakly decreasing rearrangment of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.
Define cols $_{k}(A)$ similarly.
Example.

- overlap $_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=\operatorname{rows}(A)$.
- $\operatorname{overlap}_{2}(1)=2$, overlap $_{2}(2)=3, \operatorname{overlap}_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1$, so rows $2(A)=3211$.

Key definitions: generalize rows (A) and cols (A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows ${ }_{k}(A)$ is the weakly decreasing rearrangment of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.
Define cols $_{k}(A)$ similarly.
Example.

- overlap $_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=\operatorname{rows}(A)$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, overlap $_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1$, so rows $2(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$,

Key definitions: generalize rows (A) and cols (A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows ${ }_{k}(A)$ is the weakly decreasing rearrangment of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.
Define cols $_{k}(A)$ similarly.
Example.

- overlap $_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=\operatorname{rows}(A)$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, overlap $_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1$, so rows $2(A)=3211$.
- $\operatorname{rows}_{3}(A)=11, \operatorname{rows}_{k}(A)=\emptyset$ for $k>3$.

Key definitions: generalize rows (A) and cols (A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows $_{k}(A)$ is the weakly decreasing rearrangment of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).
Define cols $_{k}(A)$ similarly.
Example.

- overlap $_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=\operatorname{rows}(A)$.
- $\operatorname{overlap}_{2}(1)=2$, overlap $_{2}(2)=3, \operatorname{overlap}_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1$, so rows $2(A)=3211$.
- $\operatorname{rows}_{3}(A)=11, \operatorname{rows}_{k}(A)=\emptyset$ for $k>3$.
- $\operatorname{cols}_{1}(A)=\operatorname{cols}(A)=33222, \operatorname{cols}_{2}(A)=2221, \operatorname{cols}_{3}(A)=211$, $\operatorname{cols}_{4}(A)=11, \operatorname{cols}_{k}(A)=\emptyset$ for $k>4$.

Theorem [RSvW]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then
$\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k.

Necessary conditions

Theorem [RSvW]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

Theorem [McN.]. Let A and B be skew shapes. If $s_{B}-s_{A}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \succcurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

Necessary conditions

Theorem [RSvW]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

Theorem [McN.]. Let A and B be skew shapes. If $s_{B}-s_{A}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \succcurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that support $(A) \subseteq \operatorname{support}(B)$.

Theorem [RSvW]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

Theorem [McN.]. Let A and B be skew shapes. If $s_{B}-s_{A}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \succcurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that support $(A) \subseteq \operatorname{support}(B)$.
Corollary. Let A and B be skew shapes. If support $(A)=\operatorname{support}(B)$, then

$$
\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B) \text { for all } k
$$

Relating $\operatorname{rows}_{k}(A)$ and $\operatorname{cols}_{k}(A)$

Let rects ${ }_{k, \ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.

$\operatorname{rects}_{3,1}(A)=2, \operatorname{rects}_{2,2}(A)=3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- $\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A)=\operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A)=\operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

Relating $\operatorname{rows}_{k}(A)$ and $\operatorname{cols}_{k}(A)$

Let rects ${ }_{k, \ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.

$\operatorname{rects}_{3,1}(A)=2, \operatorname{rects}_{2,2}(A)=3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- $\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A)=\operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A)=\operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

Theorem [McN]. Let A and B be skew shapes. TFAE:

- $\operatorname{rows}_{k}(A) \succcurlyeq \operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A) \succcurlyeq \operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A) \geq \operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

Theorem [McN]. Let A and B be skew shapes. If $A \leq_{s} B$, i.e. $s_{B}-s_{A}$ is Schur-positive, or if A and B satisfy the weaker condition that $\operatorname{support}(A) \subseteq \operatorname{support}(B)$, then the following three equivalent sets of conditions are true:

- $\operatorname{rows}_{k}(A) \succcurlyeq \operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A) \succcurlyeq \operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A) \geq \operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

Example.

$\operatorname{rows}(C)=2221 \prec 3211=\operatorname{rows}(D)$. Thus $C \not \mathbb{L s}_{s} D$.

Theorem [McN]. Let A and B be skew shapes. If $A \leq_{s} B$, i.e. $s_{B}-s_{A}$ is Schur-positive, or if A and B satisfy the weaker condition that $\operatorname{support}(A) \subseteq \operatorname{support}(B)$, then the following three equivalent sets of conditions are true:

- $\operatorname{rows}_{k}(A) \succcurlyeq \operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A) \succcurlyeq \operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A) \geq \operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

Example.

$$
C=\begin{array}{|c|}
\square \square \\
\square \square
\end{array} \quad D=\begin{array}{|}
\square \\
\square & \square \\
\square
\end{array}
$$

rows $(C)=2221 \prec 3211=\operatorname{rows}(D)$. Thus $C \not \leq_{s} D$.
$\operatorname{rows}_{2}(C)=21 \succ 111=\operatorname{rows}_{2}(D)$. Thus $D \not \leq_{s} C$.

Outlook

- Instead of looking at the Schur-positivity poset, could look at the support containment poset; it seems to have more structure.
- Almost nothing is known about the covering relations in P_{n}.
- Why restrict to skew Schur functions? Could try:
- Stanley symmetric functions
- Hall-Littlewood polynomials
- LLT-polynomials
- Cylindric Schur functions
- Skew Grothendieck polynomials
- Poset quasisymmetric functions
- Wave Schur functions
- ...

