$Two\ New\ Characterizations\ of\ Lattice$ Supersolvability

Peter McNamara

MIT Combinatorics Seminar 5th December 2001

Slides and paper available from

http://www-math.mit.edu/~mcnamara/

Definition A partially ordered set P is said to be a *lattice* if every two elements x and y of P have a least upper bound and a greatest lower bound.

We call the least upper bound the *join* of x and y and denote it by $x \vee y$.

We call the greatest lower bound the meet of x and y and denote it by $x \wedge y$.

We say that a lattice L is distributive if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
 and
 $x \land (y \lor z) = (x \land y) \lor (x \land z)$

for all elements x, y and z of L.

EXAMPLE An order ideal of a poset P is a subset I of P such that if $x \in I$ and $y \leq x$, then $y \in I$. The lattice of order ideals of a poset P is a distributive lattice.

The Fundamental Theorem of Finite Distributive Lattices (Birkhoff):

THEOREM A finite lattice L is distributive if and only if it is the lattice of order ideals of some poset P.

We write L = J(P).

Definition (R. Stanley, '72) A finite lattice L is said to be *supersolvable* if it contains a maximal chain \mathfrak{m} , called an M-chain of L which together with any other chain of L generates a distributive sublattice.

EXAMPLES

• Distributive lattices

• The lattice L(G) of subgroups of a supersolvable group G.

An edge-labeling of a poset P is said to be an EL-labeling if it satisfies the following 2 conditions:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. This chain has the lexicographically least set of labels

EXAMPLE

Why do we care?

EL-labeling \Rightarrow Shellable \Rightarrow Cohen-Macaulay

Key Example Supersolvable Lattices

Remark Our EL-labelings of supersolvable lattices have the additional nice property that the labels along any maximal chain give a permutation of [n].

In this case, we call our labeling an S_n EL-labeling or snelling, for short. If L has a snelling, then we say it is S_n EL-shellable or snellable, for short.

Stanley: "Could it be that L is supersolvable if and only if L has an S_n EL-labeling?"

THEOREM A lattice is supersolvable if and only if it has an S_n EL-labeling.

We want the chain \mathfrak{m}_0 with labels $1, 2, 3, \ldots, n$ to be an M-chain. Let \mathfrak{m} be any other chain of L. (It suffices to consider only maximal chains.) The proof relies on the equivalence of the following 3 posets:

- 1. The sublattice $L_{\mathfrak{m}}$ of L generated by \mathfrak{m} and \mathfrak{m}_0
- 2. Let $\omega_{\mathfrak{m}}$ be the permutation labeling \mathfrak{m} . We construct a poset $P_{\omega_{\mathfrak{m}}}$ on the numbers $1, 2, \ldots, n$ defined by:

 $i < j \text{ in } P_{\omega_{\mathfrak{m}}} \iff (i,j) \text{ isn't an inversion in } \omega_{\mathfrak{m}}$ for all i < j. Then we construct and label

 $J(P_{\omega_{\mathfrak{m}}})$ as before.

3. If m has a descent at i, then we define S_i(m) to be the unique chain in L differing from m only at rank i and having no descent at i. If m doesn't have a descent at i then we set S_i(m) = m. We define Q_m to be the "closure" of m in L under the action of S₁, S₂,..., S_{n-1}.

Leaving supersolvability behind...

Let P denote a finite graded poset of rank n with $\hat{0}$ and $\hat{1}$ and with an S_n EL-labeling.

The action of $S_1, S_2, \ldots, S_{n-1}$ has the following properties:

- 1. It is a local action: $S_i(\mathfrak{m})$ equals \mathfrak{m} except possibly at rank i
- 2. $S_i^2 = S_i$
- 3. $S_i S_j = S_j S_i \text{ if } |i j| \ge 2$
- 4. $S_i S_{i+1} S_i = S_{i+1} S_i S_{i+1}$
- 5. $\operatorname{ch}(\chi_P(x)) = \omega(F_P(x))$

An action on the maximal chains of a lattice having all of these properties is called a good $\mathcal{H}_n(0)$ action.

"Good": Simion and Stanley.

What the Hecke does $\operatorname{ch}(\chi_P(x)) = \omega(F_P(x))$ mean?

P is a finite graded poset of rank n with $\hat{0}$ and $\hat{1}$. Let $S \subseteq [n-1]$.

We let $\alpha_P(S)$ denote the number of chains in P whose elements, other than $\hat{0}$ and $\hat{1}$, have rank set equal to S.

 $\alpha_P: 2^{[n-1]} \to \mathbb{Z}$ is called the *flag f-vector* of P

Define the flag h-vector β_P by

$$\alpha_P(S) = \sum_{T \subseteq S} \beta_P(T)$$
 or

$$\beta_P(S) = \sum_{T \subseteq S} (-1)^{|S-T|} \alpha_P(T).$$

We define *Ehrenborg's flag function* by

$$F_P(x) = \sum_{\hat{0} = t_0 < \dots < t_{k-1} < t_k = \hat{1}} x_1^{\operatorname{rk}(t_0, t_1)} \cdots x_k^{\operatorname{rk}(t_{k-1}, t_k)}.$$

In general, it's a *quasisymmetric function*, i.e., for every sequence n_1, n_2, \ldots, n_m of exponents, $x_{i_1}^{n_1} x_{i_2}^{n_2} \cdots x_{i_m}^{n_m}$ and $x_{j_1}^{n_1} x_{j_2}^{n_2} \cdots x_{j_m}^{n_m}$ appear with equal coefficients whenever $i_1 < i_2 < \cdots < i_m$ and $j_1 < j_2 < \cdots < j_m$.

Fundamental quasisymmetric functions, $L_{S,n}(x)$:

$$L_{S,n}(x) = \sum_{\substack{1 \le i_1 \le i_2 \le \dots \le i_n \\ i_j < i_{j+1} \text{ if } j \in S}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

In this basis:

$$F_P(x) = \sum_{S \subseteq [n-1]} \beta_P(S) L_{S,n}(x) .$$

The involution ω for quasisymmetric functions:

$$\omega(L_{S,n}) = L_{[n-1]-S,n}.$$

Then $\omega(s_{\lambda}) = s_{\lambda^t}$.

Background for $ch(\chi_P(x))....$

Definition The θ -Hecke algebra $\mathcal{H}_n(0)$ of type

 A_{n-1} is the \mathbb{C} -algebra generated by T_1, T_2, \dots, T_{n-1} with relations:

(i)
$$T_i^2 = -T_i$$
 for $i = 1, 2, ..., n - 1$.

(ii)
$$T_i T_j = T_j T_i$$
 if $|i - j| \ge 2$.

(iii)
$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
 for $i = 1, 2, \dots, n-2$.

Duchamp, Hivert, Krob, Leclerc, Thibon.

Setting, $S_i = -T_i$, we see that our action is a local $\mathcal{H}_n(0)$ algebra action.

- 2^{n-1} irreducible representations of $\mathcal{H}_n(0)$.
- All have dimension 1.
- They're labeled by subsets S of [n-1].

Since
$$T_i^2 = -T_i$$
,

$$\psi_S(T_i) = \left\{ egin{array}{ll} -1 & ext{if } i \in S, \ 0 & ext{if } i
ot\in S. \end{array}
ight.$$

$$\psi_S(S_i) = \left\{ egin{array}{ll} 1 & ext{if } i \in S, \ 0 & ext{if } i
ot\in S. \end{array}
ight.$$

The character χ_S of ψ_S :

$$\chi_S(S_{i_1}S_{i_2}\cdots S_{i_k}) = \begin{cases}
1 & \text{if } i_j \in S \text{ for } j = 1,\ldots,k, \\
0 & \text{otherwise.}
\end{cases}$$

We let χ_P denote the character of the defining representation of our local $\mathcal{H}_n(0)$ action on $\mathbb{C}\mathcal{M}(P)$, the vector space over \mathbb{C} with basis consisting of the maximal chains of P.

Following Krob and Thibon, we define its characteristic by $ch(\chi_S) = L_{S,n}(x)$.

In the case when P has an S_n EL-labeling, $\operatorname{ch}(\chi_P(x)) = \omega(F_P(x))$ boils down to: For all $S \subseteq [n-1]$, the number of maximal chains of P with "descent set" S equals $\beta_P(S)$. [EC1, Thm. 3.13.2] What other posets have good $\mathcal{H}_n(0)$ actions? Example

This gives a local $\mathcal{H}_n(0)$ action.

								S_1	
$_{S}$	l ø	∫1l	∫9 l	$\{1,2\}$		χ_{\emptyset} $\chi_{\{1\}}$ $\chi_{\{2\}}$ $\chi_{\{1,2\}}$	1	0	0
			_ ` _		•	$\chi_{\{1\}}$	1	1	0
$\alpha_P(S)$						χ_{121}	1	0	1
$eta_P(S)$	1	1	1	1		76 <u>7</u> 2	1	1	1
						$\chi_{\{1,2\}}$	1	1	1
						χ_P	4	2	2

 $S_2(\mathfrak{m})$

 \mathfrak{m}_2

 \mathfrak{m}_2

 \mathfrak{m}_4

 \mathfrak{m}_4

We see that $\chi_P = \chi_{\emptyset} + \chi_{\{1\}} + \chi_{\{2\}} + \chi_{\{1,2\}}$. Therefore,

$$ch(\chi_P) = L_{\emptyset,3} + L_{\{1\},3} + L_{\{2\},3} + L_{\{1,2\},3}$$

$$= F_P(x)$$

$$= \omega F_P(x)$$

Definition A graded poset P is said to be bowtie-free if it does not contain distinct elements a, b, c, d such that a covers both c and d, and such that b covers both c and d.

THEOREM Let P be a finite graded bowtie-free poset of rank n with $\hat{0}$ and $\hat{1}$. Then P is S_n EL-shellable if and only if P has a good $\mathcal{H}_n(0)$ action.

COROLLARY Let L be a finite lattice. TFAE:

- 1. L is supersolvable
- 2. L has an S_n EL-labeling
- 3. L has a good $\mathcal{H}_n(0)$ action

Idea of proof (Stanley):

- 1. Suppose P has a unique chain \mathfrak{m}_0 fixed under $S_1, S_2, \ldots, S_{n-1}$.
- 2. Given \mathfrak{m} we can find $S_{i_1}, S_{i_2}, \ldots, S_{i_r}$ with r minimal such that $S_{i_1}S_{i_2}\cdots S_{i_r}(\mathfrak{m})=\mathfrak{m}_0$.
- 3. Define $\omega_{\mathfrak{m}} = s_{i_1} s_{i_2} \cdots s_{i_r}$. Then $\omega_{\mathfrak{m}}$ is well-defined.
- 4. Label the edges of m from bottom to top by $\omega_{\mathfrak{m}}(1), \omega_{\mathfrak{m}}(2), \ldots, \omega_{\mathfrak{m}}(n)$. This gives an edge-labeling of P and this edge-labeling is an S_n EL-labeling.

What about posets that aren't bowtie-free?
EXAMPLE

EXAMPLE

QUESTION Let C denote the class of finite graded posets with $\hat{0}$, $\hat{1}$ and a good $\mathcal{H}_n(0)$ action. Is there some "nice" characterization of C, possibly in terms of edge-labelings?