Questions of Schur-Positivity

Peter McNamara
LaCIM, UQAM

joint project with
François Bergeron, Riccardo Biagioli

McGill Discrete Mathematics and Optimization Seminar
10 November 2003

Slides available from
http://www.lacim.uqam.ca/~mcnamara/
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$
$f(\mathbf{x})$ is a symmetric function if f has finite degree and

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots\right)
$$

for all permutations σ of the positive integers.
Example $f(\mathbf{x})=\sum_{i \neq j} x_{i}^{2} x_{j}$ is symmetric but $\sum_{i<j} x_{i}^{2} x_{j}$ is not.
Λ : the ring of symmetric functions
A partition λ of a non-negative integer n is a sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ of non-negative integers such that $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $\sum_{i} \lambda_{i}=n$.
Example $\lambda=(4,4,3,1)$ is represented by its Young diagram as:

Bases for Λ :

- Monomial Symmetric Functions:

$$
m_{\lambda}=\sum_{\alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots
$$

where the sum ranges over all permutations $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ of the vector $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$.

Example

$$
m_{(1)} \equiv m_{1}=x_{1}+x_{2}+\cdots
$$

Example

$$
m_{(2,1)} \equiv m_{21}=\sum_{i<j} x_{i}^{2} x_{j}+\sum_{i<j} x_{i} x_{j}^{2}=\sum_{i \neq j} x_{i}^{2} x_{j}
$$

- Elementary Symmetric Functions:

$$
e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} \ldots x_{i_{n}}, \quad e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \ldots
$$

- Complete Homogeneous Symmetric Functions:

$$
h_{n}=\sum_{i_{1} \leq \cdots \leq i_{n}} x_{i_{1}} \ldots x_{i_{n}}, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \ldots
$$

- Power Sum Symmetric Functions:

$$
p_{n}=\sum_{i} x_{i}^{n}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \ldots
$$

NOTE $b_{\lambda} b_{\mu}=b_{\lambda_{1}} b_{\lambda_{2}} \ldots b_{\mu_{1}} b_{\mu_{2}} \ldots=b_{\lambda \sqcup \mu} \quad$ if $\quad b=e, h$ or p.

- Schur functions s_{λ}
- Cauchy, 1815
- Representation theory: symmetric group, general linear group, special linear group
- Algebraic geometry: cohomology ring of the Grassmannian
- Linear algebra: eigenvalues of Hermitian matrices

$$
\left\langle s_{\lambda}, s_{\mu}\right\rangle= \begin{cases}1 & \text { if } \lambda=\mu \\ 0 & \text { otherwise }\end{cases}
$$

$-\omega\left(s_{\lambda}\right)=s_{\lambda^{t}}$

- Lots of interesting problems!

Semistandard Young Tableaux of shape $\lambda, \operatorname{SSYT}(\lambda)$:

Denote

$$
\mathbf{x}^{T}=x_{1}^{\# 1 ' s} \text { in } T x_{2}^{\# 2 ' s} \text { in } T \ldots
$$

Then

$$
s_{\lambda}(\mathbf{x})=\sum_{T \in \operatorname{SSYT}(\lambda)} \mathbf{x}^{T}
$$

EXAMPLE $\lambda=(2,1)$, restrict to x_{1}, x_{2}, x_{3}.

Hence

$$
\begin{aligned}
s_{21}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
& +2 x_{1} x_{2} x_{3} \\
= & m_{21}\left(x_{1}, x_{2}, x_{3}\right)+2 m_{111}\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

It follows that

$$
s_{21}=m_{21}+2 m_{111}
$$

Note

$$
s_{\lambda}(\mathbf{x})=\sum_{T \in \operatorname{SSYT}(\lambda)} \mathbf{x}^{T}=\sum_{\alpha:\left(\alpha_{1}, \alpha_{2}, \ldots\right)} K_{\lambda \alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots
$$

$K_{\lambda \alpha}=\#\{$ SSYT of shape λ and content $\alpha\}=$ "Kostka number".

Theorem The Schur function s_{λ} is a symmetric function.
To show: $K_{\lambda \alpha}=K_{\lambda \tilde{\alpha}}$
Sufficient: $\tilde{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \alpha_{i}, \alpha_{i+2}, \ldots\right)$
Bijection: SSYT shape λ, content $\alpha \leftrightarrow$ SSYT shape λ, content $\tilde{\alpha}$ i

$$
\begin{array}{ccc}
i & i \\
i+1 & i+1
\end{array} \underbrace{i}_{r=2} \quad \underbrace{i+1}_{s=4} \quad i+1 \quad i+1 \quad i+1 \quad i+1
$$

In each such row, convert the $r i$'s and $s i+1$'s to $s i$'s and $r i+1$'s:

$$
\begin{array}{cc}
i & i \\
i+1 & i+1
\end{array} \underbrace{i \quad i \quad i}_{s=4} \quad i \quad \underbrace{i+1 \quad i+1}_{r=2} \quad i+1
$$

Multiplying Schur functions:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda}
$$

$c_{\mu \nu}^{\lambda}$: Littlewood-Richardson coefficient
Representation Theory, Algebraic Geometry, Linear Algebra

Examples

- $s_{21} s_{21}=s_{33}+s_{42}+s_{2211}+s_{222}+2 s_{321}+s_{411}+s_{3111}$
- $\lambda=(12,11,10,9,8,7,6,5,4,3,2,1)$
$\mu=(8,7,6,5,4,3,2,1)$
$\nu=(8,7,6,6,5,4,3,2,1)$
$c_{\mu \nu}^{\lambda}=7869992 \quad$ (Anders Buch, John Stembridge)
Theorem(Littlewood-Richardson, Schützenberger-Thomas) $c_{\mu \nu}^{\lambda} \in \mathbb{Z}$. In fact, $c_{\mu \nu}^{\lambda} \geq 0$.

Littlewood-Richardson Rule: $c_{\mu \nu}^{\lambda}=$ the number of SSYT of skew shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

Note Since $s_{\mu} s_{\nu}=s_{\nu} s_{\mu}, c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$. This is not at all obvious from the rule above.

Littlewood-Richardson Rule: $c_{\mu \nu}^{\lambda}=$ the number of SSYT of skew shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

Note Since $s_{\mu} s_{\nu}=s_{\nu} s_{\mu}, c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$. This is not at all obvious from the rule above.

Littlewood-Richardson Rule: $c_{\mu \nu}^{\lambda}=$ the number of SSYT of skew shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

1

Note Since $s_{\mu} s_{\nu}=s_{\nu} s_{\mu}, c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$. This is not at all obvious from the rule above.

Littlewood-Richardson Rule: $c_{\mu \nu}^{\lambda}=$ the number of SSYT of skew shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

11

Note Since $s_{\mu} s_{\nu}=s_{\nu} s_{\mu}, c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$. This is not at all obvious from the rule above.

Littlewood-Richardson Rule: $c_{\mu \nu}^{\lambda}=$ the number of SSYT of skew shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

1122

Note Since $s_{\mu} s_{\nu}=s_{\nu} s_{\mu}, c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$. This is not at all obvious from the rule above.

Littlewood-Richardson Rule: $c_{\mu \nu}^{\lambda}=$ the number of SSYT of skew shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

11221

Note Since $s_{\mu} s_{\nu}=s_{\nu} s_{\mu}, c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$. This is not at all obvious from the rule above.

Littlewood-Richardson Rule: $c_{\mu \nu}^{\lambda}=$ the number of SSYT of skew shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Example $\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1)$

11222113 No

11221213 Yes

11221312 Yes

Note Since $s_{\mu} s_{\nu}=s_{\nu} s_{\mu}, c_{\mu \nu}^{\lambda}=c_{\nu \mu}^{\lambda}$. This is not at all obvious from the rule above.

Since $c_{\mu \nu}^{\lambda} \geq 0$, we say that $s_{\mu} s_{\nu}$ is a Schur-positive or s-positive function.
Question When is

$$
s_{\theta} s_{\phi}-s_{\mu} s_{\nu}
$$

s-positive?

Conjecture (Fomin-Fulton-Li-Poon) For a pair (μ, ν) of partitions, let $\gamma: \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{2 p}$ be the decreasing rearrangement of the μ_{i} and ν_{j} 's. Define two partitions

$$
\tilde{\mu}=\left(\gamma_{1}, \gamma_{3}, \ldots, \gamma_{2 p-1}\right), \quad \tilde{\nu}=\left(\gamma_{2}, \gamma_{4}, \ldots, \gamma_{2 p}\right)
$$

Then $s_{\tilde{\mu}} s_{\tilde{\nu}}-s_{\mu} s_{\nu}$ is s-positive.
EXAMPLE $\mu=(5,1), \nu=(4,3,1,0)$

$$
\begin{aligned}
s_{\mu} s_{\nu}= & 2 s_{743}+s_{752}+s_{7322}+2 s_{7331}+3 s_{7421}+s_{7511}+s_{54311} \\
& +s_{64211}+s_{74111}+s_{5432}+s_{5531}+s_{6332}+s_{6422}+3 s_{6431} \\
& +s_{6521}+s_{63311}+s_{73211}+s_{653}+s_{833}+2 s_{842}+s_{851}+s_{932} \\
& +s_{941}+2 s_{8321}+2 s_{8411}+s_{9311}+s_{5441}+s_{83111}+s_{644} .
\end{aligned}
$$

$$
\gamma=(5,4,3,1,1,0) \text { so } \tilde{\mu}=(5,3,1), \tilde{\nu}=(4,1,0)
$$

$$
s_{\tilde{\mu}} s_{\tilde{\nu}}-s_{\mu} s_{\nu}=s_{752}+s_{7511}+s_{55211}+s_{65111}+s_{5522}+s_{5531}
$$

$$
+2 s_{6521}+s_{653}+s_{761}+s_{6611}+s_{554}+s_{662}
$$

Some special cases:

- True when $|\mu|+|\nu| \leq 35$, i.e. when $s_{\mu} s_{\nu}$ has degree ≤ 35.
- True when μ and ν are both hooks or both have just two rows.

- Fomin-Fulton-Li-Poon: If $c_{\mu \nu}^{\lambda}>0$, then $c_{\tilde{\mu} \tilde{\nu}}^{\lambda}>0$. In other words, the support of $s_{\mu} s_{\nu}$ is contained in the support of $s_{\tilde{\mu}} s_{\tilde{\nu}}$. Question(Fomin) Could it be true that if the support of $s_{\mu} s_{\nu}$ is contained in the support of $s_{\theta} s_{\phi}$, then $s_{\theta} s_{\phi}-s_{\mu} s_{\nu}$ is s-positive?

Some special cases:

- True when $|\mu|+|\nu| \leq 35$, i.e. when $s_{\mu} s_{\nu}$ has degree ≤ 35.
- True when μ and ν are both hooks or both have just two rows.

- Fomin-Fulton-Li-Poon: If $c_{\mu \nu}^{\lambda}>0$, then $c_{\tilde{\mu} \tilde{\nu}}^{\lambda}>0$. In other words, the support of $s_{\mu} s_{\nu}$ is contained in the support of $s_{\tilde{\mu}} s_{\tilde{\nu}}$. Question(Fomin) Could it be true that if the support of $s_{\mu} s_{\nu}$ is contained in the support of $s_{\theta} s_{\phi}$, then $s_{\theta} s_{\phi}-s_{\mu} s_{\nu}$ is s-positive?
No. Buch, 4 hours later. Consider the coefficient of s_{5432} in $s_{3311} s_{321}-s_{4321} s_{211}$.

Stembridge: a classification of all pairs (μ, ν) such that $s_{\mu} s_{\nu}$ has all coefficients 0 or 1.
Fat hooks, near-rectangles, two-line rectangles,
Aside for linear algebra connection:
Theorem(Heckman 1982; Klyachko, 1998) Let α, β and γ be partitions with at most n rows. If the Saturation Conjecture is true, then TFAE:

- $c_{\alpha, \beta}^{\gamma}>0$
- There exist $n \times n$ Hermitian matrices $A+B=C$ with eigenvalues α, β and γ.

Theorem(Knutson and Tao, 1999) The Saturation Conjecture is true, i.e.

$$
c_{N \alpha, N \beta}^{N \gamma}>0 \Rightarrow c_{\alpha, \beta}^{\gamma}>0
$$

One last special case of Conjecture:
Proposition For a pair (μ, ν) of partitions, let $\gamma: \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{2 p}$ be the decreasing rearrangement of the μ_{i} and ν_{j} 's. As before, define

$$
\tilde{\mu}=\left(\gamma_{1}, \gamma_{3}, \ldots, \gamma_{2 p-1}\right), \quad \tilde{\nu}=\left(\gamma_{2}, \gamma_{4}, \ldots, \gamma_{2 p}\right)
$$

If $\left\{\mu_{i}, \nu_{i}\right\}=\left\{\gamma_{2 i-1}, \gamma_{2 i}\right\}$ for all i, then $s_{\tilde{\mu}} s_{\tilde{\nu}}-s_{\mu} s_{\nu}$ is s-positive.
Proof uses Jacobi-Trudi Identity, Plücker relations.
New perspective:

- Let $P D(\gamma)$ be the set of all possible "dealings" (μ, ν) of γ.
- Ordering of $P D(\gamma):(\mu, \nu) \leq(\theta, \phi)$ if $s_{\theta} s_{\phi}-s_{\mu} s_{\nu}$ is s-positive.
- $P D(\gamma)$ is then a partially ordered set (poset).

Example $P D(5,4,3,1,1)$:

Conjecture(FFLP reformulated) $P D(\gamma)$ has a top element, namely ($\tilde{\mu}, \tilde{\nu}$).

Big Question Fix n. Consider all pairs of partitions (μ, ν) satisfying $|\mu|+|\nu|=n$. Order them in the same way to form a poset $P(n)$. What can we say about $P(n)$?

Finish with two more conjectures...
Recall: SSYT of skew shape $\mu / \alpha, \operatorname{SSYT}(\mu / \alpha)$:

We define skew Schur functions in the analogous way:

$$
s_{\mu / \alpha}(\mathbf{x})=\sum_{T \in \operatorname{SSYT}(\mu / \alpha)} \mathbf{x}^{T}
$$

- Symmetric: exactly the same argument as before
- Lots of these: 254,777 skew shapes with 12 boxes
- Example: $s_{4431 / 21}=s_{3321}+s_{4221}+s_{4311}+s_{333}+2 s_{432}+s_{441}$
- Suppose $\alpha \subseteq \mu, \beta \subseteq \nu$.
- Construct ($\tilde{\mu}, \tilde{\nu})$ from (μ, ν).
- Construct $(\tilde{\alpha}, \tilde{\beta})$ from (α, β).
- Easy to show: $\tilde{\alpha} \subseteq \tilde{\mu}, \tilde{\beta} \subseteq \tilde{\nu}$.

We get the following skew-shape analogue of FFLP's Conjecture:
Conjecture $s_{\tilde{\mu} / \tilde{\alpha}} s_{\tilde{\nu} / \tilde{\beta}}-s_{\mu / \alpha} s_{\nu / \beta}$ is s-positive.
Checked for $|\mu / \alpha|+|\nu / \beta| \leq 12$. (966,137 pairs of skew shapes).

Recall our original question: starting with any pair (μ, ν), how can we define (θ, ϕ) to get

$$
s_{\theta} s_{\phi}-s_{\mu} s_{\nu}
$$

s-positive?
For geometrical reasons, Fomin, Fulton, Li \& Poon suggest the following:

Conjecture Given an ordered pair (μ, ν) of partitions with the same number of parts, define a new ordered pair $\left(\mu^{*}, \nu^{*}\right)$ by the following recipe:

$$
\begin{aligned}
\mu_{k}^{*} & =\mu_{k}-k+\#\left\{l \mid \nu_{l}-l \geq \mu_{k}-k\right\} \\
\nu_{l}^{*} & =\nu_{l}-l+1+\#\left\{k \mid \mu_{k}-k>\nu_{l}-l\right\}
\end{aligned}
$$

Then $s_{\mu^{*}} s_{\nu^{*}}-s_{\mu} s_{\nu}$ is s-positive.
See www. arxiv.org/math.AG/0301307 for more details.

