Tilings from the floor up

Peter McNamara
Bucknell University

Dublin University Mathematical Society
6 February 2013

Slides available (soon) from www.facstaff.bucknell.edu/pm040/

What is a tiling?

Tangrams:

Tilings

- No overlap allowed
- Must completely cover the region

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating bandwidth, scheduling airline flights.

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating bandwidth, scheduling airline flights.

The kind of questions a mathematician might ask:

- Is there a tiling with the given pieces?

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating bandwidth, scheduling airline flights.

The kind of questions a mathematician might ask:

- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating bandwidth, scheduling airline flights.

The kind of questions a mathematician might ask:

- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?
- How many tilings are there?

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating bandwidth, scheduling airline flights.

The kind of questions a mathematician might ask:

- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?
- How many tilings are there?
- What does a typical tiling look like?

Tilings

- No overlap allowed
- Must completely cover the region: area of region equals the sum of the areas of the tiles.

Applications:

- Archaeology: reassembling fragments.
- Packing: loading trucks, allocating bandwidth, scheduling airline flights.
The kind of questions a mathematician might ask:
- Is there a tiling with the given pieces?
- Is it easy to prove that a tiling doesn't exist?
- How many tilings are there?
- What does a typical tiling look like?

Based on an expository paper of Richard Stanley and Federico Ardila.

Is there a tiling?

Tetris pieces:

Can we tile a 6×5 rectangle with the tetris pieces, using each piece as many times as we like?

Is there a tiling?

Tetris pieces:

Can we tile a 6×5 rectangle with the tetris pieces, using each piece as many times as we like?

No.

Is there a tiling?

Tetris pieces:

Can we tile a 6×5 rectangle with the tetris pieces, using each piece as many times as we like?

No.
Each piece has 4 boxes.
There are 30 boxes to fill.
4 does not divide into 30 evenly. (Divisibility argument)

Is there a tiling of a chessboard with dominoes?

Dominoes:

\square
Can we tile a chessboard with dominoes? 64 squares.

Is there a tiling of a chessboard with dominoes?

Dominoes:

\square
Can we tile a chessboard with dominoes? Yes. 64 squares.

Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes? 62 squares: 30 black, 32 white.

Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes? No. 62 squares: 30 black, 32 white.

Is there a tiling of a holey chessboard?

Can we tile a this modified chessboard with dominoes? No. 62 squares: 30 black, 32 white.

Every domino covers exactly one black square and one white square.
But there are not the same number of white squares as black squares. (Coloring argument)

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove 1 black and 1 white square? Yes. 62 squares: 31 black, 31 white.

Is there a tiling of a fair holey chessboard?

What if we remove any 2 black and any 2 white squares? 60 squares: 30 black, 30 white.

Is there a tiling of a fair holey chessboard?

What if we remove any 2 black and any 2 white squares? No. 60 squares: 30 black, 30 white.

Is there a tiling of a fair holey chessboard?

What if we remove any 2 black and any 2 white squares? No. 60 squares: 30 black, 30 white.

Question
What if the holey chessboard has to be connected?

Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.
Question
If a tiling doesn't exist, is there an "easy" way to demonstrate that?

Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.
Question
If a tiling doesn't exist, is there an "easy" way to demonstrate that?

No, in general.
Beauquier, Nivat, Rémila and Robson (1995): for $1 \times n$ tiles with $n>2$, determining if a region can be tiled is an NP-complete problem.

Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.
Question
If a tiling doesn't exist, is there an "easy" way to demonstrate that?

No, in general.
Beauquier, Nivat, Rémila and Robson (1995): for $1 \times n$ tiles with $n>2$, determining if a region can be tiled is an NP-complete problem.

Yes, for domino tilings.

Demonstrating that a tiling does not exist

If a tiling of a region exists: easy to demonstrate.
Question
If a tiling doesn't exist, is there an "easy" way to demonstrate that?

No, in general.
Beauquier, Nivat, Rémila and Robson (1995): for $1 \times n$ tiles with $n>2$, determining if a region can be tiled is an NP-complete problem.

Yes, for domino tilings.

Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)
n women, n men.
Each woman W, compatible husbands S_{W}.
Perfect matching exists if and only if:
for all i and for every subset of i women, the union of the corresponding S_{W} has size at least i.

Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)
n women, n men.
Each woman W, compatible husbands S_{W}.
Perfect matching exists if and only if:
for all i and for every subset of i women, the union of the corresponding S_{W} has size at least i.

Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)
n women, n men.
Each woman W, compatible husbands S_{W}.
Perfect matching exists if and only if: for all i and for every subset of i women, the union of the corresponding S_{W} has size at least i.

Hall's Marriage Theorem

Theorem (Hall's Marriage Theorem, 1935)
n women, n men.
Each woman W, compatible husbands S_{W}.
Perfect matching exists if and only if: for all i and for every subset of i women, the union of the corresponding S_{W} has size at least i.

Application
Women: black squares.
Men: white squares.
Tiling \Longleftrightarrow perfect matching.
No tiling: some subset of black squares which shows this.

How many tilings of a chessboard with dominoes?

How many tilings of a chessboard with dominoes?

Fisher \& Temperley, Kasteleyn (independently, 1961):
The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right) .
$$

For example, for a chessboard $m=n=4$, and we get

$$
4^{16} \prod_{j=1}^{4} \prod_{k=1}^{4}\left(\cos ^{2} \frac{j \pi}{9}+\cos ^{2} \frac{k \pi}{9}\right) .
$$

How many tilings of a chessboard with dominoes?

Fisher \& Temperley, Kasteleyn (independently, 1961):
The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right) .
$$

For example, for a chessboard $m=n=4$, and we get

$$
4^{16} \prod_{j=1}^{4} \prod_{k=1}^{4}\left(\cos ^{2} \frac{j \pi}{9}+\cos ^{2} \frac{k \pi}{9}\right) .
$$

This is an amazing formula!
e.g. $\cos ^{2} 20^{\circ}=0.8830222216 \ldots$

How many tilings of a chessboard with dominoes?

Fisher \& Temperley, Kasteleyn (independently, 1961):
The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right) .
$$

For example, for a chessboard $m=n=4$, and we get

$$
4^{16} \prod_{j=1}^{4} \prod_{k=1}^{4}\left(\cos ^{2} \frac{j \pi}{9}+\cos ^{2} \frac{k \pi}{9}\right)
$$

This is an amazing formula!
e.g. $\cos ^{2} 20^{\circ}=0.8830222216 \ldots$

Answer $=12,988,816$.

How many tilings of Aztec diamonds with dominoes?

How many tilings of Aztec diamonds with dominoes?

Tilings with dominoes:
$\square \square$

How many tilings of Aztec diamonds (continued)

$2,8,64,1024, \ldots$

Elkies, Kuperberg, Larsen \& Propp (1992):
In general, $\mathrm{AZ}(n)$ has $2^{\frac{n(n+1)}{2}}$ tilings with dominoes. (4 proofs)

Now around 12 proofs, but none are really simple.

Open Problem
Find a simple proof that the number of tilings of $A Z(n)$ is $2 \frac{n(n+1)}{2}$.

$$
2^{\frac{n(n+1)}{2}}=2^{\binom{n+1}{2}}=2^{1+2+\cdots+n}
$$

What does a typical tiling look like?

No obvious structure.
But if we work with Aztec diamonds....

A typical tiling of $A Z(50)$

Tilings and global warming

Jockusch, Propp and Shor (1995).
The Arctic Circle Theorem. Fix $\varepsilon>0$. Then for all sufficiently large n, all but an ε fraction of the domino tilings of $A Z(n)$ will have a temperate zone whose boundary stays uniformly within distance εn of the inscribed circle.

In other words: almost everything outside and not too close to the circle is "frozen" in place.

Similar phenomena observed for other cases.

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2-dim verison of the Cantor Set

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2-dim verison of the Cantor Set

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2 -dim verison of the Cantor Set

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2-dim verison of the Cantor Set

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2 -dim verison of the Cantor Set

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2-dim verison of the Cantor Set

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2-dim verison of the Cantor Set

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.
Conclusion: in the limit, the white triangles tile the big triangle.

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2-dim verison of the Cantor Set

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.
Conclusion: in the limit, the white triangles tile the big triangle.

$$
\text { Area of white potion }=\frac{1}{4}+\frac{1}{4}\left(\frac{3}{4}\right)+\frac{1}{4}\left(\frac{3}{4}\right)^{2}+\cdots
$$

"To infinity and beyond" - Lightyear, Buzz (1995)

Sierpinski triangle/gasket/sieve: like a 2-dim verison of the Cantor Set

Area of black portion $=1 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdots=0$.
Conclusion: in the limit, the white triangles tile the big triangle.

$$
\begin{aligned}
\text { Area of white potion } & =\frac{1}{4}+\frac{1}{4}\left(\frac{3}{4}\right)+\frac{1}{4}\left(\frac{3}{4}\right)^{2}+\cdots \\
& =\frac{\frac{1}{4}}{1-\frac{3}{4}}=1
\end{aligned}
$$

Sierpinski triangle side comment

The Sierpinski triangle is very fashionable:

Sierpinski triangle side comment

The Sierpinski triangle is very fashionable:

Designer: Eri Matsui

Another Sierpinski triangle side comment

Another famous triangle is Pascal's triangle.
Take the first 2^{n} rows:

Another Sierpinski triangle side comment

Another famous triangle is Pascal's triangle.
Take the first 2^{n} rows:

From a series to a tiling

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

From a series to a tiling

$$
\begin{aligned}
& \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
= & \sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)
\end{aligned}
$$

From a series to a tiling

$$
\begin{aligned}
& \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
= & \sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)
\end{aligned}
$$

From a series to a tiling

$$
\begin{aligned}
& \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
= & \sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)=1 .
\end{aligned}
$$

From a series to a tiling

$$
\begin{aligned}
& \quad \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
& =\sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)=1 . \\
& \\
& { }^{1 / 2}+{ }^{1 / 3} \square_{1 / 2}^{1 / 2}++_{1 / 3}^{1 / 4}+\cdots \\
& ?
\end{aligned}
$$

From a series to a tiling

$$
\begin{aligned}
& \quad \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
& =\sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)=1 . \\
& \quad{ }^{1 / 2}+_{1 / 2}^{1 / 2}+_{1 / 3}^{1 / 2}+_{1 / 4}^{1 / 5}+\cdots \\
& ?
\end{aligned}
$$

From a series to a tiling

$$
\begin{aligned}
& \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
& =\sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)=1 \text {. } \\
& \text { - } \\
& 12
\end{aligned}
$$

From a series to a tiling

$$
\begin{aligned}
& \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
& =\sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)=1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 12
\end{aligned}
$$

From a series to a tiling

$$
\begin{aligned}
& \quad \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
& =\sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)=1 . \\
& \quad{ }^{1 / 2} \underbrace{1 / 2}+{ }^{1 / 4} \square_{1 / 3}+{ }^{1 / 5} \square_{1 / 4}+\cdots \\
& ?
\end{aligned}
$$

Open Problem
Find a way to tile the whole region, or show that no tiling exists.

From a series to a tiling

$$
\begin{aligned}
& \quad \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
& =\sum_{n=1}^{\infty}\left(\frac{A}{n}+\frac{B}{n+1}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{-1}{n+1}\right)=1 . \\
& \quad{ }^{1 / 2}+{ }^{1 / 3}+_{1 / 2}^{1 / 2} \square_{1 / 3}^{1 / 5} \square_{1 / 4}^{1 / 2}+\cdots \\
& ?
\end{aligned}
$$

Open Problem
Find a way to tile the whole region, or show that no tiling exists.
Paulhus (1998): side length 1.000000001

Tiling infinite regions

Alhambra palace, Granada, Spain.

Tiling infinite regions

Alhambra palace, Granada, Spain.

Abstract Algebra: There are essentially 17 different tiling patterns of the plane that have translation symmetries in two different directions.
Plane crystallographic groups / wallpaper groups

Another Alhambra tiling

Escher tilings

Maurits Cornelis Escher (1898-1972): Although I am absolutely without training in the exact sciences, I often seem to have more in common with mathematicians that with my fellow artists.

Another Escher tiling

Opposite direction: no symmetry at all!

Sir Roger Penrose

Another Penrose tiling

