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Definition P : partially ordered set (poset)

x, y: elements of P

If x and y have a least upper bound, then we call

it the join x and y and denote it by x ∨ y.

If x and y have a greatest lower bound, then we

call it the meet of x and y and denote it by x ∧ y.

A lattice is a poset in which every two elements

have a meet and a join.

(All our posets will be finite.)
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We say that a lattice L is distributive if

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all elements x, y and z of L.

x y z

Example An order ideal of a poset P is a subset

I of P such that if x ∈ I and y ≤ x, then y ∈ I.

The lattice of order ideals of a poset P is a

distributive lattice.
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Theorem(FTFDL Birkhoff) A finite lattice L is

distributive if and only if it is the lattice J(P ) of

order ideals of some poset P .

P:
L=J(P):2
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Definition An edge labelling of a poset P is said

to be an EL-labelling if:

1. Every interval [x, y] of P has exactly one

maximal chain with increasing labels

2. The sequence of labels along this increasing

maximal chain lexicographically precede the

labels along any other maximal chain of [x, y].
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Who cares? P is a bounded graded poset of rank

n. Let S be any subset of [n − 1].
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• Flag f -vector αP (S): number of chains in P

with rank set S.

If P has an EL-labelling: number of maximal

chains of P with descent set contained in S.

• Flag h-vector βP (S):

βP (S) =
∑

T⊆S

(−1)|S−T |αP (T ).

If P has an EL-labelling: number of maximal

chains of P with descent set S. So βP (S) ≥ 0.

• Möbius function: µ(0̂, 1̂) = (−1)nβP ([n − 1]).

• EL-labelling ⇒ Shellable ⇒ Cohen-Macaulay
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Definition An edge labelling of a poset P is said

to be an Sn EL-labelling if:

1. Every interval [x, y] of P has exactly one

maximal chain with increasing labels

2. The labels along any maximal chain form a

permutation of [n].

b

a

What other classes of posets have Sn

EL-labellings?
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What other classes of posets have Sn

EL-labellings?
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Definition (R. Stanley, ’72) A finite lattice L is

said to be supersolvable if it contains a maximal

chain m, called an M-chain of L which together

with any other chain of L generates a distributive

sublattice.

Examples

• Distributive lattices

• Modular lattices

• The lattice of partitions of [n]

• The lattice of non-crossing partitions of [n]

• The lattice of subgroups of a supersolvable

group
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Question (Stanley) “Are there any other lattices

that have Sn EL-labellings?”

Theorem (McN.) A lattice is supersolvable if

and only if it has an Sn EL-labelling.

Example Biagioli & Chapoton: Lattice of leaf

labelled binary trees

www.arxiv.org/math.CO/0304132
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Example A partition of [n] into unordered

blocks is said to be non-crossing if

i < j < k < l with i, k ∈ B and j, l ∈ B′

implies B = B′.
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Sn EL-labelling: Björner and Edelman
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Connections with modularity...

Suppose L is lattice with y ≤ z. Always true:

(x ∨ y) ∧ z (x ∧ z) ∨ y.

Definition An element x of a lattice L is said to

be left modular if, for all y ≤ z in L, we have

(x ∨ y) ∧ z = (x ∧ z) ∨ y.

A chain of L is left modular if each of its elements

is left modular.

Suppose L is a graded lattice.

L is

supersolvable
⇐⇒

L has an

Sn EL-labelling

Stanley ⇐
=

=⇒Liu

L has a left modular

maximal chain
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Theorem Let L be graded lattice. TFAE:

1. L is supersolvable

2. L has an Sn EL-labelling

3. L has a left modular maximal chain

4.

How can we extend this?

• 3: L need not be graded

• 2: L need not be a lattice
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Definition Let P be a bounded poset. An

EL-labelling γ of P is said to be interpolating if,

for any y l u l z, either

(i) γ(y, u) < γ(u, z) or

(ii) the increasing chain from y to z , say

y = w0 l w1 l · · · l wr = z, has the

properties that its labels are strictly

increasing and that γ(w0, w1) = γ(u, z) and

γ(wr−1, wr) = γ(y, u).
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Theorem (Thomas) A lattice has an

interpolating EL-labelling if and only if it has a

left modular maximal chain.
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Example A partition of [n] into unordered

blocks is said to be

non-crossingnon-straddling

if

i < j < k < l with

i, ki, l

∈ B and

j, lj, k

∈ B′

implies B = B′.
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Ordering, edge labelling: Analogous to

non-crossing partitions
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Generalizing to non-lattices:

P : a bounded poset with an Sn EL-labelling.

m: its increasing maximal chain.

Some “left modularity” property ?
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When x ∈ m, x ∨ y and x ∧ y are well-defined.

In a lattice: (x ∨ y) ∧ z ≥ y whenever z ≥ y.

When x ∈ m, (x∨ y)∧y z is well-defined for y ≤ z.

Similarly, (x ∧ z) ∨z y is well-defined.

We call x a viable element of P .

We call m a viable maximal chain.

Theorem (McN.-Thomas) A bounded poset has

an interpolating EL-labelling if and only if it has

a viable left modular maximal chain.
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Example A partition of [n] into unordered

blocks is said to be

non-straddlingnon-nesting

if

i < j < k < l with i, l

∈adjacent in

B and

j, k ∈ B′ implies B = B′.
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• Ordering, edge labelling: Analogous to

non-crossing partitions

• Like non-straddling partitions, poset is not

graded

• Not even a lattice: Consider

136-25-4 ∧ 146-25-3.
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Finally, generalizing supersolvability:

Suppose P has a viable maximal chain m. So

(x ∨ y) ∧y z and (x ∧ z) ∨z y are well-defined for

x ∈ m and y ≤ z in P .

Given any chain c of P , we define Rm(c) to be the

smallest subposet of P satisfying:

(i) m and c are contained in Rm(c),

(ii) If y ≤ z in P and y and z are in Rm(c), then

so are (x ∨ y) ∧y z and (x ∧ z) ∨z y for any x

in m.

Definition We say that a finite bounded poset P

is supersolvable with M-chain m if m is a viable

maximal chain and Rm(c) is a distributive lattice

for any chain c of P .

Theorem (McN.-Thomas) Let P be a bounded

graded poset of rank n. TFAE:

1. P has an Sn EL-labelling

2. P has a viable left modular maximal chain

3. P is supersolvable
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Graded Not nec. graded

1. Supersolvable 1. ?

Lattice 2. Sn EL-labelling 2. Interp. EL-labelling

3. Left mod. max. chain 3. Left mod. max. chain

Not 1. Supersolvable 1. ?

nec. 2. Sn EL-labelling 2. Interp. EL-labelling

Lattice 3. Viable left mod. m.c. 3. Viable left mod. m.c.

1
7



How can generalise supersolvability to the

non-graded case?

Recall:

Definition A finite lattice L is said to be

supersolvable if it contains a maximal chain which

together with any other chain of L generates a

distributive sublattice.

Definitions of distributive:

1. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z.

Problem:

x
1

2

3
1

3

z
y
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2. No sublattices of the following two forms:

What about:

A lattice is distributive if it has no sublattices

of the following two forms:

Difficult to work with.
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3. The lattice of order ideals of some poset.

What about:

A lattice is distributive if it is the lattice of

augmented order ideals of some augmented

poset.

Example
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