Edge Labellings of Partially Ordered Sets and Their Implications

Peter McNamara

joint work with
Hugh Thomas

Le Séminaire de Combinatoire et d'Informatique Théorique du LaCIM

12 septembre 2003

Slides and papers available from http://www.lacim.uqam.ca/~mcnamara/

Definition P : partially ordered set (poset) x, y : elements of P

If x and y have a least upper bound, then we call it the join x and y and denote it by $x \vee y$.

If x and y have a greatest lower bound, then we call it the meet of x and y and denote it by $x \wedge y$.

A lattice is a poset in which every two elements have a meet and a join.
(All our posets will be finite.)

We say that a lattice L is distributive if

$$
\begin{aligned}
& x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \quad \text { and } \\
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
\end{aligned}
$$

for all elements x, y and z of L.

Example An order ideal of a poset P is a subset I of P such that if $x \in I$ and $y \leq x$, then $y \in I$.
The lattice of order ideals of a poset P is a distributive lattice.

Theorem(FTFDL Birkhoff) A finite lattice L is distributive if and only if it is the lattice $J(P)$ of order ideals of some poset P.

Definition An edge labelling of a poset P is said to be an EL-labelling if:

1. Every interval $[x, y]$ of P has exactly one maximal chain with increasing labels
2. The sequence of labels along this increasing maximal chain lexicographically precede the labels along any other maximal chain of $[x, y]$.

Who cares? P is a bounded graded poset of rank n. Let S be any subset of $[n-1]$.

- Flag f-vector $\alpha_{P}(S)$: number of chains in P with rank set S.
If P has an EL-labelling: number of maximal chains of P with descent set contained in S.
- Flag h-vector $\beta_{P}(S)$:

$$
\beta_{P}(S)=\sum_{T \subseteq S}(-1)^{|S-T|} \alpha_{P}(T)
$$

If P has an EL-labelling: number of maximal chains of P with descent set S. So $\beta_{P}(S) \geq 0$.

- Möbius function: $\mu(\hat{0}, \hat{1})=(-1)^{n} \beta_{P}([n-1])$.
- EL-labelling \Rightarrow Shellable \Rightarrow Cohen-Macaulay

Definition An edge labelling of a poset P is said to be an S_{n} EL-labelling if:

1. Every interval $[x, y]$ of P has exactly one maximal chain with increasing labels
2. The labels along any maximal chain form a permutation of $[n]$.

What other classes of posets have S_{n}
EL-labellings?

Definition (R. Stanley, '72) A finite lattice L is said to be supersolvable if it contains a maximal chain \mathfrak{m}, called an M-chain of L which together with any other chain of L generates a distributive sublattice.

Examples

- Distributive lattices
- Modular lattices
- The lattice of partitions of $[n]$
- The lattice of non-crossing partitions of $[n]$
- The lattice of subgroups of a supersolvable group

Question (Stanley) "Are there any other lattices that have S_{n} EL-labellings?"

Theorem (McN.) A lattice is supersolvable if and only if it has an S_{n} EL-labelling.

Example Biagioli \& Chapoton: Lattice of leaf labelled binary trees
www.arxiv.org/math.CO/0304132

Example A partition of $[n]$ into unordered blocks is said to be non-crossing if

$$
i<j<k<l \text { with } i, k \in B \text { and } j, l \in B^{\prime}
$$ implies $B=B^{\prime}$.

1-24-3678-5
crossing

1-2678-34-5 non-crossing
S_{n} EL-labelling: Björner and Edelman

Connections with modularity...
Suppose L is lattice with $y \leq z$. Always true:

$$
(x \vee y) \wedge z \quad(x \wedge z) \vee y
$$

Definition An element x of a lattice L is said to be left modular if, for all $y \leq z$ in L, we have

$$
(x \vee y) \wedge z=(x \wedge z) \vee y
$$

A chain of L is left modular if each of its elements is left modular.

Suppose L is a graded lattice.

| L is
 supersolvable |
| :--- |\Longleftrightarrow| L has an |
| :--- |
| S_{n} EL-labelling |

L has a left modular
maximal chain

Theorem Let L be graded lattice. TFAE:

1. L is supersolvable
2. L has an S_{n} EL-labelling
3. L has a left modular maximal chain 4.

How can we extend this?

- 3: L need not be graded
- 2: L need not be a lattice

Definition Let P be a bounded poset. An EL-labelling γ of P is said to be interpolating if, for any $y \lessdot u \lessdot z$, either
(i) $\gamma(y, u)<\gamma(u, z)$ or
(ii) the increasing chain from y to z, say $y=w_{0} \lessdot w_{1} \lessdot \cdots \lessdot w_{r}=z$, has the properties that its labels are strictly increasing and that $\gamma\left(w_{0}, w_{1}\right)=\gamma(u, z)$ and $\gamma\left(w_{r-1}, w_{r}\right)=\gamma(y, u)$.

Theorem (Thomas) A lattice has an interpolating EL-labelling if and only if it has a left modular maximal chain.

Example A partition of $[n]$ into unordered blocks is said to be if

$$
\begin{gathered}
i<j<k<l \text { with } \in B \text { and } \in B^{\prime} \\
\text { implies } B=B^{\prime} .
\end{gathered}
$$

1357-26-4
straddling

14-25-36
non-straddling

Ordering, edge labelling: Analogous to non-crossing partitions

non-crossing
i, k
j, l

$$
\begin{array}{cl}
\text { non-straddling } \\
i, l & j, k
\end{array}
$$

Generalizing to non-lattices:

P : a bounded poset with an S_{n} EL-labelling.
\mathfrak{m} : its increasing maximal chain.
Some "left modularity" property ?

When $x \in \mathfrak{m}, x \vee y$ and $x \wedge y$ are well-defined.
In a lattice: $(x \vee y) \wedge z \geq y$ whenever $z \geq y$.
When $x \in \mathfrak{m},(x \vee y) \wedge_{y} z$ is well-defined for $y \leq z$.
Similarly, $(x \wedge z) \vee^{z} y$ is well-defined.
We call x a viable element of P.
We call \mathfrak{m} a viable maximal chain.
Theorem (McN.-Thomas) A bounded poset has an interpolating EL-labelling if and only if it has a viable left modular maximal chain.

Example A partition of $[n]$ into unordered blocks is said to be $j, k \in B^{\prime}$ implies $B=B^{\prime}$.

135-24
straddling non-nesting

15-24-3
straddling nesting

- Ordering, edge labelling: Analogous to non-crossing partitions
- Like non-straddling partitions, poset is not graded
- Not even a lattice: Consider $136-25-4 \wedge 146-25-3$.

non-straddling

ϵ

non-nesting
 adjacent in

Finally, generalizing supersolvability:
Suppose P has a viable maximal chain \mathfrak{m}. So $(x \vee y) \wedge_{y} z$ and $(x \wedge z) \vee^{z} y$ are well-defined for $x \in \mathfrak{m}$ and $y \leq z$ in P.
Given any chain \mathfrak{c} of P, we define $R_{\mathfrak{m}}(\mathfrak{c})$ to be the smallest subposet of P satisfying:
(i) \mathfrak{m} and \mathfrak{c} are contained in $R_{\mathfrak{m}}(\mathfrak{c})$,
(ii) If $y \leq z$ in P and y and z are in $R_{\mathfrak{m}}(\mathfrak{c})$, then so are $(x \vee y) \wedge_{y} z$ and $(x \wedge z) \vee^{z} y$ for any x in \mathfrak{m}.

Definition We say that a finite bounded poset P is supersolvable with M-chain \mathfrak{m} if \mathfrak{m} is a viable maximal chain and $R_{\mathfrak{m}}(\mathfrak{c})$ is a distributive lattice for any chain \mathfrak{c} of P.

Theorem (McN.-Thomas) Let P be a bounded graded poset of rank n. TFAE:

1. P has an S_{n} EL-labelling
2. P has a viable left modular maximal chain
3. P is supersolvable

	Graded	Not nec. graded
	L. Supersolvable	1. ?
Lattice	2. S_{n} EL-labelling	2. Interp. EL-labelling
	3. Left mod. max. chain	3. Left mod. max. chain
Not	1. Supersolvable	1. ?
nec.	2. S_{n} EL-labelling	2. Interp. EL-labelling
Lattice	3. Viable left mod. m.c.	3. Viable left mod. m.c.

How can generalise supersolvability to the non-graded case?

Recall:
Definition A finite lattice L is said to be supersolvable if it contains a maximal chain which together with any other chain of L generates a distributive sublattice.

Definitions of distributive:

1. $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for all x, y, z. Problem:

2. No sublattices of the following two forms:

What about:
A lattice is distributive if it has no sublattices of the following two forms:

Difficult to work with.
3. The lattice of order ideals of some poset. What about:

A lattice is distributive if it is the lattice of augmented order ideals of some augmented poset.
Example

