Edge Labellings of Partially Ordered Sets and Their Implications

Peter McNamara

joint work with Hugh Thomas

Le Séminaire de Combinatoire et d'Informatique Théorique du LaCIM 12 septembre 2003

Slides and papers available from http://www.lacim.uqam.ca/~mcnamara/

Definition P: partially ordered set (poset) x, y: elements of P

If x and y have a least upper bound, then we call it the *join* x and y and denote it by $x \lor y$.

If x and y have a greatest lower bound, then we call it the *meet* of x and y and denote it by $x \wedge y$.

A *lattice* is a poset in which every two elements have a meet and a join.

(All our posets will be finite.)

We say that a lattice L is *distributive* if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z) \quad \text{and} \\ x \land (y \lor z) = (x \land y) \lor (x \land z)$$

for all elements x, y and z of L.

EXAMPLE An order ideal of a poset P is a subset I of P such that if $x \in I$ and $y \leq x$, then $y \in I$. The lattice of order ideals of a poset P is a distributive lattice.

THEOREM(FTFDL Birkhoff) A finite lattice L is distributive if and only if it is the lattice J(P) of order ideals of some poset P.

Definition An edge labelling of a poset P is said to be an *EL-labelling* if:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. The sequence of labels along this increasing maximal chain lexicographically precede the labels along any other maximal chain of [x, y].

Who cares? P is a bounded graded poset of rank n. Let S be any subset of [n-1].

• Flag *f*-vector $\alpha_P(S)$: number of chains in *P* with rank set *S*.

If P has an EL-labelling: number of maximal chains of P with descent set contained in S.

• Flag *h*-vector $\beta_P(S)$:

$$\beta_P(S) = \sum_{T \subseteq S} (-1)^{|S-T|} \alpha_P(T).$$

If P has an EL-labelling: number of maximal chains of P with descent set S. So $\beta_P(S) \ge 0$.

- Möbius function: $\mu(\hat{0}, \hat{1}) = (-1)^n \beta_P([n-1]).$
- EL-labelling \Rightarrow Shellable \Rightarrow Cohen-Macaulay

Definition An edge labelling of a poset P is said to be an S_n *EL-labelling* if:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. The labels along any maximal chain form a permutation of [n].

What other classes of posets have S_n EL-labellings?

Definition (R. Stanley, '72) A finite lattice L is said to be *supersolvable* if it contains a maximal chain \mathfrak{m} , called an *M*-*chain* of L which together with any other chain of L generates a distributive sublattice.

EXAMPLES

- Distributive lattices
- Modular lattices
- The lattice of partitions of [n]
- The lattice of non-crossing partitions of [n]
- The lattice of subgroups of a supersolvable group

QUESTION (Stanley) "Are there any other lattices that have S_n EL-labellings?"

THEOREM (McN.) A lattice is supersolvable if and only if it has an S_n EL-labelling.

EXAMPLE Biagioli & Chapoton: Lattice of leaf labelled binary trees www.arxiv.org/math.CO/0304132 EXAMPLE A partition of [n] into unordered blocks is said to be *non-crossing* if

i < j < k < l with $i, k \in B$ and $j, l \in B'$ implies B = B'. 8 8 ___1 _1 2 2 7 7 3 3 6 6 5 5 1-24-3678-5 1-2678-34-5 crossing non-crossing

 S_n EL-labelling: Björner and Edelman

Connections with modularity...

Suppose L is lattice with $y \leq z$. Always true:

 $(x \lor y) \land z \qquad (x \land z) \lor y.$

Definition An element x of a lattice L is said to be *left modular* if, for all $y \leq z$ in L, we have

 $(x \lor y) \land z = (x \land z) \lor y.$

A chain of L is *left modular* if each of its elements is left modular.

Suppose L is a **graded** lattice.

THEOREM Let L be graded lattice. TFAE:

- 1. L is supersolvable
- 2. L has an S_n EL-labelling
- 3. L has a left modular maximal chain4.

How can we extend this?

- 3: L need not be graded
- 2: L need not be a lattice

Definition Let P be a bounded poset. An EL-labelling γ of P is said to be *interpolating* if, for any $y \leq u \leq z$, either

- (i) $\gamma(y, u) < \gamma(u, z)$ or
- (ii) the increasing chain from y to z, say $y = w_0 \lt w_1 \lt \cdots \lt w_r = z$, has the properties that its labels are strictly increasing and that $\gamma(w_0, w_1) = \gamma(u, z)$ and $\gamma(w_{r-1}, w_r) = \gamma(y, u)$.

THEOREM (Thomas) A lattice has an interpolating EL-labelling if and only if it has a left modular maximal chain. EXAMPLEA partition of [n] into unorderedblocks is said to beif

i < j < k < l with $\in B$ and $\in B'$ implies B = B'.

Ordering, edge labelling: Analogous to non-crossing partitions

Generalizing to non-lattices:

P: a bounded poset with an S_n EL-labelling.

m: its increasing maximal chain.

Some "left modularity" property ?

When $x \in \mathfrak{m}$, $x \lor y$ and $x \land y$ are well-defined.

In a lattice: $(x \lor y) \land z \ge y$ whenever $z \ge y$.

When $x \in \mathfrak{m}$, $(x \lor y) \land_y z$ is well-defined for $y \le z$. Similarly, $(x \land z) \lor^z y$ is well-defined. We call x a *viable* element of P.

We call \mathfrak{m} a *viable* maximal chain.

THEOREM (McN.-Thomas) A bounded poset has an interpolating EL-labelling if and only if it has a viable left modular maximal chain. EXAMPLE A partition of [n] into unordered blocks is said to be if

$$i < j < k < l$$
 with i, l B and
 $j, k \in B'$ implies $B = B'.$

- Ordering, edge labelling: Analogous to non-crossing partitions
- Like non-straddling partitions, poset is not graded
- Not even a lattice: Consider $136-25-4 \wedge 146-25-3$.

Finally, generalizing supersolvability:

Suppose P has a viable maximal chain \mathfrak{m} . So $(x \lor y) \land_y z$ and $(x \land z) \lor^z y$ are well-defined for $x \in \mathfrak{m}$ and $y \leq z$ in P.

Given any chain \mathfrak{c} of P, we define $R_{\mathfrak{m}}(\mathfrak{c})$ to be the smallest subposet of P satisfying:

- (i) \mathfrak{m} and \mathfrak{c} are contained in $R_{\mathfrak{m}}(\mathfrak{c})$,
- (ii) If $y \leq z$ in P and y and z are in $R_{\mathfrak{m}}(\mathfrak{c})$, then so are $(x \lor y) \land_y z$ and $(x \land z) \lor^z y$ for any xin \mathfrak{m} .

Definition We say that a finite bounded poset P is *supersolvable* with M-chain \mathfrak{m} if \mathfrak{m} is a viable maximal chain and $R_{\mathfrak{m}}(\mathfrak{c})$ is a distributive lattice for any chain \mathfrak{c} of P.

THEOREM (McN.-Thomas) Let P be a bounded graded poset of rank n. TFAE:

1. P has an S_n EL-labelling

- 2. P has a viable left modular maximal chain
- 3. P is supersolvable

	Graded	Not nec. graded
	1. Supersolvable	1. ?
Lattice	2. S_n EL-labelling	2. Interp. EL-labelling
	3. Left mod. max. chain	3. Left mod. max. chain
Not	1. Supersolvable	1. ?
nec.	2. S_n EL-labelling	2. Interp. EL-labelling
Lattice	3. Viable left mod. m.c.	3. Viable left mod. m.c.

How can generalise supersolvability to the non-graded case?

Recall:

Definition A finite lattice L is said to be *supersolvable* if it contains a maximal chain which together with any other chain of L generates a distributive sublattice.

Definitions of distributive:

1. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for all x, y, z.

Problem:

2. No sublattices of the following two forms:

What about:

A lattice is *distributive* if it has no sublattices of the following two forms:

Difficult to work with.

3. The lattice of order ideals of some poset. What about:

A lattice is *distributive* if it is the lattice of *augmented order ideals* of some *augmented poset*.

EXAMPLE

