A Pieri rule for Sk_{e} shapes

Peter McNamara
 Bucknell University

Joint work with:
Sami Assaf
MIT
$\sum \begin{aligned} & \mathrm{FP}_{\mathrm{A}, \mathrm{C}} \mathrm{C}^{\mathrm{S}}\end{aligned} 4$ August 2010

Full paper available from
www.facstaff.bucknell.edu/pm040/

A Pieri rule for ${ }^{\text {skew }}$ whapes

Peter McNamara
 Bucknell University

Joint work with:
Sami Assaf
MIT

$$
\sum \begin{array}{|c|c|}
\hline \mathrm{F}_{\mathrm{A}}, \mathrm{P} S^{S}
\end{array} 4 \text { August } 2010
$$

Full paper available from

```
www.facstaff.bucknell.edu/pm040/
```


Outline

- Background on skew Schur functions and Pieri rule
- Main result
- Some highlights of the combinatorial proof
- 3 further-development nuggets

Schur functions

Cauchy, 1815

- Partition

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)
$$

- Young diagram Example:
$\lambda=(4,4,3,1)$

Schur functions

Cauchy, 1815

- Partition

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)
$$

- Young diagram Example: $\lambda=(4,4,3,1)$

- Semistandard Young tableau (SSYT)

Schur functions

Cauchy, 1815

- Partition

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)
$$

- Young diagram Example:

$$
\lambda=(4,4,3,1)
$$

- Semistandard Young tableau (SSYT)

The \quad Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example:
$s_{4431}=x_{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

Skew Schur functions

Cauchy, 1815

- Partition

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)
$$

- μ fits inside λ
- Young diagram Example: $\lambda / \mu=(4,4,3,1) /(3,1)$
- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example:
$s_{4431 / 31}=\quad x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

Skew Schur functions

Example:

$$
s_{3}\left(x_{1}, x_{2}, \ldots\right)
$$

Skew Schur functions
Example:

$$
s_{3}\left(x_{1}, x_{2}, \ldots\right)=\sum_{i \leq j \leq k} x_{i} x_{j} x_{k}
$$

Example:

$$
s_{3}\left(x_{1}, x_{2}, \ldots\right)=\sum_{i \leq j \leq k} x_{i} x_{j} x_{k}
$$

Question: Why do we care about skew Schur functions?

Example:

$$
s_{3}\left(x_{1}, x_{2}, \ldots\right)=\sum_{i \leq j \leq k} x_{i} x_{j} x_{k}
$$

Question: Why do we care about skew Schur functions?

- Fact: Skew Schur functions are symmetric in x_{1}, x_{2}, \ldots.

Example:

$$
s_{3}\left(x_{1}, x_{2}, \ldots\right)=\sum_{i \leq j \leq k} x_{i} x_{j} x_{k}
$$

Question: Why do we care about skew Schur functions?

- Fact: Skew Schur functions are symmetric in x_{1}, x_{2}, \ldots.
- Fact: The Schur functions form a basis for the algebra of symmetric functions.

Example:

$$
s_{3}\left(x_{1}, x_{2}, \ldots\right)=\sum_{i \leq j \leq k} x_{i} x_{j} x_{k}
$$

Question: Why do we care about skew Schur functions?

- Fact: Skew Schur functions are symmetric in x_{1}, x_{2}, \ldots.
- Fact: The Schur functions form a basis for the algebra of symmetric functions.
- Strong connections with representation theory of S_{n} and $G L(n, \mathbb{C})$, Schubert Calculus, eigenvalues of Hermitian matrices,

The (classical) Pieri rule expands $s_{\lambda} s_{n}$ in terms of $\left\{s_{\mu}\right\}$.

The (classical) Pieri rule expands $s_{\lambda} s_{n}$ in terms of $\left\{s_{\mu}\right\}$.
Theorem [Pieri, 1893]: For a partition λ and positive integer n,

$$
s_{\lambda} s_{n}=\sum_{\lambda^{+} / \lambda} \sum_{n-\text { hor. strip }} s_{\lambda^{+}},
$$

where the sum is over all λ^{+}such that λ^{+} / λ is a horizontal strip with n boxes.

The (classical) Pieri rule expands $s_{\lambda} s_{n}$ in terms of $\left\{s_{\mu}\right\}$.
Theorem [Pieri, 1893]: For a partition λ and positive integer n,

$$
s_{\lambda} s_{n}=\sum_{\lambda^{+} / \lambda} \sum_{n-\text { hor. strip }} s_{\lambda^{+}},
$$

where the sum is over all λ^{+}such that λ^{+} / λ is a horizontal strip with n boxes.

Example:

$$
s_{322} s_{2}=s_{3222}+s_{3321}+s_{4221}+s_{432}+s_{522}
$$

The (classical) Pieri rule expands $s_{\lambda} s_{n}$ in terms of $\left\{s_{\mu}\right\}$.
Theorem [Pieri, 1893]: For a partition λ and positive integer n,

$$
s_{\lambda} s_{n}=\sum_{\lambda^{+} / \lambda} \sum_{n-\text { hor. strip }} s_{\lambda^{+}},
$$

where the sum is over all λ^{+}such that λ^{+} / λ is a horizontal strip with n boxes.

Example:

$$
s_{322} s_{2}=s_{3222}+s_{3321}+s_{4221}+s_{432}+s_{522}
$$

The (classical) Pieri rule expands $s_{\lambda} s_{n}$ in terms of $\left\{s_{\mu}\right\}$.
Theorem [Pieri, 1893]: For a partition λ and positive integer n,

$$
s_{\lambda} s_{n}=\sum_{\lambda^{+} / \lambda} \sum_{n-\text { hor. strip }} s_{\lambda^{+}},
$$

where the sum is over all λ^{+}such that λ^{+} / λ is a horizontal strip with n boxes.

Example:

$$
s_{(322) *(2)}=s_{322} s_{2}=s_{3222}+s_{3321}+s_{4221}+s_{432}+s_{522} .
$$

- k-Schur functions [Lapointe-Morse]
- Schubert polynomials [Lascoux-Schützenberger, Lenart-Sottile, Manivel, Sottile, Winkel]
- LLT polynomials [Lam]
- Schubert classes in the affine Grassmannian [Lam-Lapointe-Morse-Shimozono]
- Hall-Littlewood polynomials [Morris]
- Jack polynomials [Lassalle, Stanley]
- Macdonald polynomials [Koornwinder, Macdonald]
- Quasisymmetric Schur functions [Haglund, Luoto, Mason, van Willigenburg]
- Grothendieck polynomials [Lenart-Sottile]
- Factorial Grothendieck polynomials [McNamara (no relation!)]
-

Notably absent: skew Schur functions

The skew Pieri rule expands $s_{\lambda / \mu} s_{n}$ in terms of $\left\{s_{\tau / \sigma}\right\}$.

The skew Pieri rule expands $s_{\lambda / \mu} s_{n}$ in terms of $\left\{s_{\tau / \sigma}\right\}$.
Theorem [Assaf-McN.]: For a skew shape λ / μ and positive integer n,

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda \\ \mu / \mu^{-} k-k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}},
$$

where λ^{+} / λ is a horizontal strip with $n-k$ boxes and μ / μ^{-}is a vertical strip with k boxes.

The skew Pieri rule expands $s_{\lambda / \mu} s_{n}$ in terms of $\left\{s_{\tau / \sigma}\right\}$.
Theorem [Assaf-McN.]: For a skew shape λ / μ and positive integer n,

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda(n-k) \text {-hor. strip } \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}}
$$

where λ^{+} / λ is a horizontal strip with $n-k$ boxes and μ / μ^{-}is a vertical strip with k boxes.
Example:

The skew Pieri rule expands $s_{\lambda / \mu} s_{n}$ in terms of $\left\{s_{\tau / \sigma}\right\}$.
Theorem [Assaf-McN.]: For a skew shape λ / μ and positive integer n,

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda(n-k) \text {-hor. strip } \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}}
$$

where λ^{+} / λ is a horizontal strip with $n-k$ boxes and μ / μ^{-}is a vertical strip with k boxes.
Example:

The skew Pieri rule expands $s_{\lambda / \mu} s_{n}$ in terms of $\left\{s_{\tau / \sigma}\right\}$.
Theorem [Assaf-McN.]: For a skew shape λ / μ and positive integer n,

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda(n-k) \text {-hor. strip } \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}}
$$

where λ^{+} / λ is a horizontal strip with $n-k$ boxes and μ / μ^{-}is a vertical strip with k boxes.
Example:

The combinatorial proof

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda(n-k) \text {-hor. strip } \\ \mu / \mu^{-} \\ k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}}
$$

The combinatorial proof

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda(n-k) \text {-hor. strip } \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}}
$$

Technique: a sign-reversing involution on SSYT that:

- Preserves entries appearing in each SSYT;
- Has fixed points with $k=0$ in bijection with SSYT of shape $(\lambda / \mu) *(n)$;
- (Remaining SSYT with k even) \longleftrightarrow (SSYT with k odd).

Robinson-Schensted-Knuth insertion

Robinson-Schensted-Knuth insertion

5				
4	7	8	9	
2	4	7	7	
1	1	3	4	7

Robinson-Schensted-Knuth insertion

5					$\longleftarrow 2$	5						
4	7	8	9			4	7	8	9	9		
2	4	7	7			2	4	7		7		
1	1	3	4	7		1	1	3		4	7	$\leftarrow 2$

Robinson-Schensted-Knuth insertion

Robinson-Schensted-Knuth insertion

5					$\longleftarrow 2$		5				
4	7	8	9				4	4	8	9	
2	4	7	7				2	3	7	7	
1	1	3	4	7			1	1	2	4	

Robinson-Schensted-Knuth insertion

Robinson-Schensted-Knuth insertion

5								
4	7	8	9					
2	4	7	7					
1	1	3	4	$\quad \leftarrow 2 \quad$	5	7		
:---	:---	:---	:---					
4	4	8	9					
2	3	7	7					
1	1	2	4					

Facts:

- The result is an SSYT.
- This process is reversible.

5									
4	7	8	9						
2	4	7	7						
1	1	3	4	7	$\quad-2 \quad$	5	7		
:---	:---	:---	:---						
4	4	8	9						
2	3	7	7						
1	1	2	4						

Facts:

- The result is an SSYT.
- This process is reversible.
- RSK insertion can be used to give a combinatorial proof of the classicial Pieri rule.

External insertion (just like RSK):

Sagan \& Stanley's generalization to skew shapes
External insertion (just like RSK):

Sagan \& Stanley's generalization to skew shapes
External insertion (just like RSK):

Sagan \& Stanley's generalization to skew shapes
External insertion (just like RSK):

Sagan \& Stanley's generalization to skew shapes

External insertion (just like RSK):

2	6				$\leftarrow_{0} 3$	2	6	8		
1	4	8					4	7		
	3	7	7	7			3	4	7	7
		3	4	5				3	3	5

Internal insertion:

5			
2	7	8	9
	3	7	7
2	3	4	7

Sagan \& Stanley's generalization to skew shapes

External insertion (just like RSK):

2	6				$\leftarrow_{0} 3$	2	6	8		
1	4	8					4	7		
	3	7	7	7			3	4	7	7
		3	4	5				3	3	5

Internal insertion:

5			
2	7	8	9
	3	7	7
2	3	4	7

Sagan \& Stanley's generalization to skew shapes

External insertion (just like RSK):

2	6				$\leftarrow_{0} 3$	2	6	8		
1	4	8					4	7		
	3	7	7	7			3	4	7	7
		3	4	5				3	3	5

Internal insertion:

5				
2	7	8	9	
	3	7	7	
2	3	4	7	

Sagan \& Stanley’s generalization to skew shapes

External insertion (just like RSK):

Internal insertion:

5					$\leftarrow 12$	5	57				
2	7	8	9			2	3	8	9	9	
	3	7	7				2	7	7	7	
	2	3	4	7				3	4	4	7

Sagan \& Stanley’s generalization to skew shapes

External insertion (just like RSK):

Internal insertion:

5 2					$\leftarrow 12$	5 7 2 3				
	7	8	9						9	
	3	7	7				2	7	7	
	2	3	4	7					4	7

Sagan \& Stanley’s generalization to skew shapes

External insertion (just like RSK):

Internal insertion:

Would be great: if internal insertion gave the necessary bijection for skew Pieri rule.

Sagan \& Stanley’s generalization to skew shapes

External insertion (just like RSK):

Internal insertion:

Would be great: if internal insertion gave the necessary bijection for skew Pieri rule.
In general, it's not that easy....

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 1: reverse insert until you perform a reverse internal insertion. Then externally insert the overflow.

Example 2: but stop if you're left of an upward path. Then perform the internal insertion, and then insert the overflow.

Bijection between these two types that is sign-reversing.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

Conclusion:

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}},
$$

The sign-reversing involution on SSYT of form λ^{+} / μ^{-}

Example 3: Fixed points.
These should be in bijection with SSYT of shape $(\lambda / \mu) *(n)$.

Conclusion:

$$
s_{\lambda / \mu} s_{n}=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\lambda^{+} / \lambda \\ \mu / \mu^{-} k \text {-vert. strip }}} s_{\lambda^{+} / \mu^{-}},
$$

Proof 2: Algebraic proof given by Thomas Lam (as appendix in full paper).

Development 1: Rectification one row at a time

A possible application of the skew Pieri rule:

Development 1: Rectification one row at a time

A possible application of the skew Pieri rule:

Development 1: Rectification one row at a time

A possible application of the skew Pieri rule:

Development 1: Rectification one row at a time

A possible application of the skew Pieri rule:

Development 1: Rectification one row at a time

A possible application of the skew Pieri rule:

Exactly the same proof works.

A possible application of the skew Pieri rule:

Exactly the same proof works.
Allows you to rectify a skew shape (i.e. expand $s_{\lambda / \mu}$ in terms of $\left\{s_{\nu}\right\}$) one row at a time.

Development 2: Skew Littlewood-Richardson rule

Conjecture [Assaf, McN.]: An expansion of $s_{\lambda / \mu} \boldsymbol{s}_{\sigma / \tau}$ in terms of $\left\{s_{\lambda^{+} / \mu^{-}}\right\}$that generalizes the skew Pieri rule.

Exact statement is coming up in Aaron's talk (in terms of jeu-de-taquin).

Proof [Lam-Lauve-Sottile]: using Hopf algebras.
Open problem: find a combinatorial proof.

Development 3: 2 combinatorial proofs for the $\$$ of 1
Theorem: For λ and a positive integer n,

$$
s_{\lambda} \quad p_{n}=\sum_{\lambda^{+}}(-1)^{h t\left(\lambda^{+} / \lambda\right)} s_{\lambda^{+}}
$$

where λ^{+} / λ is a ribbon with n boxes
Example:

Development 3: 2 combinatorial proofs for the \$ of 1

Theorem: For λ / μ and a positive integer n,

$$
s_{\lambda / \mu} p_{n}=\sum_{\lambda^{+}}(-1)^{h t\left(\lambda^{+} / \lambda\right)} s_{\lambda^{+} / \mu}
$$

where λ^{+} / λ is a ribbon with n boxes
Example:

Development 3: 2 combinatorial proofs for the \$ of 1

Theorem: For λ / μ and a positive integer n,

$$
s_{\lambda / \mu} p_{n}=\sum_{\lambda^{+}}(-1)^{h t\left(\lambda^{+} / \lambda\right)} s_{\lambda^{+} / \mu}-\sum_{\mu^{-}}(-1)^{h t\left(\mu / \mu^{-}\right)} s_{\lambda / \mu^{-}}
$$

where λ^{+} / λ is a ribbon with n boxes and so is μ / μ^{-}.
Example:

Development 3: 2 combinatorial proofs for the $\$$ of 1

Theorem: For λ / μ and a positive integer n,

$$
s_{\lambda / \mu} p_{n}=\sum_{\lambda^{+}}(-1)^{h t\left(\lambda^{+} / \lambda\right)} s_{\lambda^{+} / \mu}-\sum_{\mu^{-}}(-1)^{h t\left(\mu / \mu^{-}\right)} s_{\lambda / \mu^{-}}
$$

where λ^{+} / λ is a ribbon with n boxes and so is μ / μ^{-}.
Example:

Question for you: is this a new result?
Proof 1: Algebraic. Special case of LLS Hopf Formula Lemma (or à la Lam's skew Pieri proof, but easier).
Proof 2 [McN.?]: Combinatorial, except that it uses skew Littlewood-Richardson rule.

Development 3: 2 combinatorial proofs for the $\$$ of 1

Theorem: For λ / μ and a positive integer n,

$$
s_{\lambda / \mu} p_{n}=\sum_{\lambda^{+}}(-1)^{h t\left(\lambda^{+} / \lambda\right)} s_{\lambda^{+} / \mu}-\sum_{\mu^{-}}(-1)^{h t\left(\mu / \mu^{-}\right)} s_{\lambda / \mu^{-}}
$$

where λ^{+} / λ is a ribbon with n boxes and so is μ / μ^{-}.
Example:

- $p_{3}=+$

Question for you: is this a new result?
Proof 1: Algebraic. Special case of LLS Hopf Formula Lemma (or à la Lam's skew Pieri proof, but easier).
Proof 2 [McN.?]: Combinatorial, except that it uses skew Littlewood-Richardson rule.

Easier(?) open problem: or find a combinatorial proof that doesn't need the skew LR-rule.

Full paper available on the arXiv:
Sami H. Assaf and Peter R.W. McNamara. A Pieri rule for skew shapes, JCT-A, to appear, arXiv:0908.0345

Full paper available on the arXiv:
Sami H. Assaf and Peter R.W. McNamara. A Pieri rule for skew shapes, JCT-A, to appear, arXiv:0908.0345

-

