# A Combinatorial Classification of Skew Schur Functions 

Peter McNamara<br>Bucknell University

Joint work with Stephanie van Willigenburg
FPSAC 2007
Nankai University, Tianjin, China
3 July 2007

Slides and paper available from
www.facstaff.bucknell.edu/pm040/

# When are Two Skew Schur Functions Equal? 

## Peter McNamara <br> Bucknell University

Joint work with Stephanie van Willigenburg
FPSAC 2007
Nankai University, Tianjin, China 3 July 2007

Slides and paper available from
www.facstaff.bucknell.edu/pm040/

- Background: skew Schur functions
- Recent work on skew Schur function equality
- Composition of skew diagrams, main results
- Conjectures, open problems


## Schur functions

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram.


## Example:

$\lambda=(4,4,3,1)$


- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- Young diagram. Example: $\lambda=(4,4,3,1)$
- Semistandard Young tableau (SSYT)


The $\quad$ Schur function $s_{\lambda}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

## Example

$s_{4431}=x_{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- $\mu$ fits inside $\lambda$.
- Young diagram. Example: $\lambda / \mu=(4,4,3,1) /(3,1)$
- Semistandard Young tableau (SSYT)


The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

## Example

$s_{4431 / 31}=\quad x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

- Skew Schur functions are symmetric in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$.
- The Schur functions form a basis for the algebra of symmetric functions (over $\mathbb{Q}$, say).
- Connections with Algebraic Geometry, Representation Theory.

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$ ?

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$ ?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):


## The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$ ?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):



## The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$ ?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):


Complete classification of equality of ribbon Schur functions

$\sim$


- HDL II: Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):
- The more general setting of binomial syzygies

$$
c s_{D_{1}} s_{D_{2}} \cdots s_{D_{m}}=c^{\prime} s_{E_{1}} s_{E_{2}} \cdots s_{E_{n}}
$$

is equivalent to understanding equalities among connected skew diagrams.

- 3 operations for generating skew diagrams with equal skew Schur functions.
- For \#boxes $\leq 18$, there are 6 examples that escape explanation.
- Necessary conditions, but of a different flavor.
- HDL III: McN., Steph van Willigenburg (2006):
- An operation that encompasses the operation of HDL I and the three operations of HDL II.
- Theorem that generalizes all previous results. Explains all equivalences where $\#$ boxes $\leq 20$.
- Conjecture for necessary and sufficient conditions for $s_{\lambda / \alpha}=s_{\mu / \beta}$. Reflects classification of HDL I for ribbons.


## Skew diagrams (skew shapes) $D, E$. If $s_{D}=s_{E}$, we will write $D \sim E$.

## Example



We want to classify all equivalences classes, thereby classifying all skew Schur functions.

The basic building block

EC2, Exercise 7.56(a) [2-]
Theorem
$D \sim D^{*}$, where $D^{*}$ denotes $D$ rotated by $180^{\circ}$.


The basic building block

EC2, Exercise 7.56(a) [2-]
Theorem
$D \sim D^{*}$, where $D^{*}$ denotes $D$ rotated by $180^{\circ}$.


Goal: Use this equivalence to build other skew equivalences.

EC2, Exercise 7.56(a) [2-]
Theorem
$D \sim D^{*}$, where $D^{*}$ denotes $D$ rotated by $180^{\circ}$.


Goal: Use this equivalence to build other skew equivalences.
Where we're headed:
Theorem
Suppose we have skew diagrams $D, D^{\prime}$ and $E$ satisfying certain assumptions. If $D \sim D^{\prime}$ then

$$
D^{\prime} \circ E \sim D \circ E \sim D \circ E^{*} .
$$

Main definition: composition of skew diagrams.

## Composition of skew diagrams

$D \circ E=$


## Composition of skew diagrams




## Composition of skew diagrams

$D \circ E=$


## Composition of skew diagrams



## Composition of skew diagrams

$D \circ E=$


Theorem [McN., van Willigenburg] If $D \sim D^{\prime}$, then

$$
D^{\prime} \circ E \sim D \circ E \sim D \circ E^{*} .
$$



## Amalgamated Compositions

A skew diagram $W$ lies in the top of a skew diagram $E$ if $W$ appears as a connected subdiagram of $E$ that includes the northeasternmost cell of $E$.


## Amalgamated Compositions

A skew diagram $W$ lies in the top of a skew diagram $E$ if $W$ appears as a connected subdiagram of $E$ that includes the northeasternmost cell of $E$.


Similarly, W lies in the bottom of $E$.
Our interest: $W$ lies in both the top and bottom of $E$. We write $E=W O W$.

## Amalgamated Compositions

A skew diagram $W$ lies in the top of a skew diagram $E$ if $W$ appears as a connected subdiagram of $E$ that includes the northeasternmost cell of $E$.


Similarly, $W$ lies in the bottom of $E$.
Our interest: $W$ lies in both the top and bottom of $E$. We write $E=W O W$.
Hypotheses: (inspired by hypotheses of RSvW)

1. $W_{n e}$ and $W_{s w}$ are separated by at least one diagonal.
2. $E \backslash W_{n e}$ and $E \backslash W_{s w}$ are both connected skew diagrams.
3. $W$ is maximal given its set of diagonals.

## Amalgamated Compositions



## Amalgamated Compositions

$D \circ{ }_{W} E=$


## Amalgamated Compositions

$$
D \circ{ }_{W} E=
$$


${ }^{\circ}$ 日


## Amalgamated Compositions

$D \circ{ }_{w} E=$


## Amalgamated Compositions

$D \circ{ }_{w} E=$

${ }^{\circ}$ 日

$=$

${ }^{\circ}$ 日

$=$


15 boxes: first of the non-RSvW examples

## Amalgamated Compositions

$D \circ{ }_{w} E=$

${ }^{\circ}$ 日


15 boxes: first of the non-RSvW examples


If $W=\emptyset$, we get the regular compositions:


What are the results?

Construction of $\bar{W}$ and $\bar{O}$ :


What are the results?

Construction of $\bar{W}$ and $\bar{O}$ :


What are the results?

Construction of $\bar{W}$ and $\bar{O}$ :


Hypothesis $4 . \bar{W}$ is never adjacent to $\bar{O}$.

What are the results?

Construction of $\bar{W}$ and $\bar{O}$ :


Hypothesis 4. $\bar{W}$ is never adjacent to $\bar{O}$.
Hypothesis $5 . \ln E=$ WOW, at least one copy of $W$ has just one cell adjacent to $O$.


## What are the results?

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams $D, D^{\prime}$ with $D \sim D^{\prime}$ and $E=$ WOW satisfying Hypotheses 1-5. Then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$

## What are the results?

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams $D, D^{\prime}$ with $D \sim D^{\prime}$ and $E=$ WOW satisfying Hypotheses 1-5. Then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$




${ }^{\circ} \square$


What are the results?

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams $D, D^{\prime}$ with $D \sim D^{\prime}$ and $E=$ WOW satisfying Hypotheses 1-5. Then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$


${ }^{\circ} \square$


O

is a skew equivalence with 145 boxes.

## A word about the proof

The key: An expression for $s_{D_{o_{W}} E}$ in terms of $s_{D}, s_{E}, s_{\bar{W}}, s_{\bar{O}}$.

Proof of expression uses:

- Hamel-Goulden determinants.

Angèle M. Hamel and lan P. Goulden:
Planar decompositions of tableaux and Schur function determinants.

William Y. C. Chen, Guo-Guang Yan and Arthur L. B. Yang:
Transformations of border strips and Schur function determinants.

- Sylvester's Determinantal Identity.


## Open problems

- Removing Hypothesis 5 (at least one copy of $W$ has just one cell adjacent to $O$ ).

$$
D=\frac{\square}{\square \square} \quad E=\square \square \square
$$

$D{ }_{w} E$ has 23 boxes, and $D{ }_{w} E \sim D^{*}{ }_{w} E$ :

(Software of Anders Buch, John Stembridge)

## Main open problem

Theorem. [McN, van Willigenburg]
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$
$E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-5
$E_{i}^{\prime}$ and $W_{i}^{\prime}$ denote either $E_{i}$ and $W_{i}$, or $E_{i}^{*}$ and $W_{i}^{*}$.
Then
$\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ W_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}$.

## Main open problem

Theorem. [McN, van Willigenburg]
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$
$E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-5
$E_{i}^{\prime}$ and $W_{i}^{\prime}$ denote either $E_{i}$ and $W_{i}$, or $E_{i}^{*}$ and $W_{i}^{*}$.
Then

$$
\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime} .
$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams $E$ and $E^{\prime}$ satisfy $E \sim E^{\prime}$ if and only if, for some $r$,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ W_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime} \text {, where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-4 for all $i$,
$\circ E_{i}^{\prime}$ and $W_{i}^{\prime}$ denote either $E_{i}$ and $W_{i}$, or $E_{i}^{*}$ and $W_{i}^{*}$.


## Main open problem

Theorem. [McN, van Willigenburg]
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$
$E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-5
$E_{i}^{\prime}$ and $W_{i}^{\prime}$ denote either $E_{i}$ and $W_{i}$, or $E_{i}^{*}$ and $W_{i}^{*}$.
Then

$$
\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime} .
$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams $E$ and $E^{\prime}$ satisfy $E \sim E^{\prime}$ if and only if, for some $r$,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ W_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ W_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime} \text {, where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-4 for all $i$,
- $E_{i}^{\prime}$ and $W_{i}^{\prime}$ denote either $E_{i}$ and $W_{i}$, or $E_{i}^{*}$ and $W_{i}^{*}$.

True when \#boxes $\leq 20$.

- A definition of skew diagram composition. Encompasses the operation of BTvW and the three operations of RSvW.
- Theorem that generalizes all previous results. In particular, explains the 6 missing equivalences from RSvW.
- Conjecture for necessary and sufficient conditions for $E \sim E^{\prime}$.

