A Combinatorial Classification of Skew Schur Functions

Peter McNamara Bucknell University

Joint work with Stephanie van Willigenburg

FPSAC 2007 Nankai University, Tianjin, China 3 July 2007

Slides and paper available from www.facstaff.bucknell.edu/pm040/

When are Two Skew Schur Functions Equal?

Peter McNamara Bucknell University

Joint work with Stephanie van Willigenburg

FPSAC 2007 Nankai University, Tianjin, China 3 July 2007

Slides and paper available from www.facstaff.bucknell.edu/pm040/

- Background: skew Schur functions
- Recent work on skew Schur function equality
- Composition of skew diagrams, main results
- Conjectures, open problems

Schur functions

- Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$
- Young diagram. Example:

$$\lambda = (4, 4, 3, 1)$$

Schur functions

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

- Young diagram.
 Example:
 - $\lambda = (4, 4, 3, 1)$
- Semistandard Young tableau (SSYT)

The Schur function s_{λ} in the variables $x = (x_1, x_2, ...)$ is then defined by

$$s_{\lambda} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots$$

Example

$$s_{4431} = x_1 x_3^2 x_4^4 x_5 x_6^2 x_7 x_9 + \cdots$$

Skew Schur functions

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

- μ fits inside λ .
- Young diagram. Example:
 - $\lambda/\mu = (4, 4, 3, 1)/(3, 1)$ Semistandard Young table
- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda/\mu}$ in the variables $x = (x_1, x_2, ...)$ is then defined by

$$s_{\lambda/\mu} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots$$

Example

 $s_{4431/31} = x_4^3 x_5 x_6^2 x_7 x_9 + \cdots$

- Skew Schur functions are symmetric in the variables $x = (x_1, x_2, ...)$.
- The Schur functions form a basis for the algebra of symmetric functions (over Q, say).
- Connections with Algebraic Geometry, Representation Theory.

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Big Question: When is $s_{\lambda/\alpha} = s_{\mu/\beta}$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

- HDL II: Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):
 - The more general setting of binomial syzygies

$$c s_{D_1} s_{D_2} \cdots s_{D_m} = c' s_{E_1} s_{E_2} \cdots s_{E_n}$$

is equivalent to understanding equalities among connected skew diagrams.

- 3 operations for generating skew diagrams with equal skew Schur functions.
- For $\#boxes \le 18$, there are 6 examples that escape explanation.
- Necessary conditions, but of a different flavor.

- HDL III: McN., Steph van Willigenburg (2006):
 - An operation that encompasses the operation of HDL I and the three operations of HDL II.
 - ► Theorem that generalizes all previous results. Explains all equivalences where #boxes ≤ 20.
 - Conjecture for necessary and sufficient conditions for s_{λ/α} = s_{μ/β}. Reflects classification of HDL I for ribbons.

Skew diagrams (skew shapes) *D*, *E*. If $s_D = s_E$, we will write $D \sim E$.

We want to classify all equivalences classes, thereby classifying all skew Schur functions.

The basic building block

EC2, Exercise 7.56(a) [2-]

Theorem

 $D\sim D^*,$ where D^* denotes D rotated by 180°.

The basic building block

EC2, Exercise 7.56(a) [2-]

Theorem

 $D\sim D^*,$ where D^* denotes D rotated by $180^\circ.$

Goal: Use this equivalence to build other skew equivalences.

The basic building block

EC2, Exercise 7.56(a) [2-]

Theorem

 $D\sim D^*,$ where D^* denotes D rotated by $180^\circ.$

Goal: Use this equivalence to build other skew equivalences.

Where we're headed:

Theorem

Suppose we have skew diagrams D, D' and E satisfying certain assumptions. If $D \sim D'$ then

$$D' \circ E \sim D \circ E \sim D \circ E^*.$$

Main definition: composition of skew diagrams.

Theorem [McN., van Willigenburg] If $D \sim D'$, then

 $D' \circ E \sim D \circ E \sim D \circ E^*.$

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.

Our interest: *W* lies in both the top and bottom of *E*. We write E = WOW.

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.

Our interest: *W* lies in both the top and bottom of *E*. We write E = WOW.

Hypotheses: (inspired by hypotheses of RSvW)

- 1. W_{ne} and W_{sw} are separated by at least one diagonal.
- 2. $E \setminus W_{ne}$ and $E \setminus W_{sw}$ are both connected skew diagrams.
- 3. W is maximal given its set of diagonals.

15 boxes: first of the non-RSvW examples

15 boxes: first of the non-RSvW examples If $W = \emptyset$, we get the regular compositions:

Construction of \overline{W} and \overline{O} :

Construction of \overline{W} and \overline{O} :

Construction of \overline{W} and \overline{O} :

Hypothesis 4. \overline{W} is never adjacent to \overline{O} .

Construction of \overline{W} and \overline{O} :

Hypothesis 4. \overline{W} is never adjacent to \overline{O} .

Hypothesis 5. In E = WOW, at least one copy of W has just one cell adjacent to O.

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams D, D' with $D \sim D'$ and E = WOW satisfying Hypotheses 1-5. Then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*$$

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams D, D' with $D \sim D'$ and E = WOW satisfying Hypotheses 1-5. Then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*$$

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams D, D' with $D \sim D'$ and E = WOW satisfying Hypotheses 1-5. Then

$$D' \circ_W E \sim D \circ_W E \sim D \circ_{W^*} E^*.$$

is a skew equivalence with 145 boxes.

The key: An expression for $s_{D_{\odot_W}E}$ in terms of s_D , s_E , $s_{\overline{W}}$, $s_{\overline{O}}$.

Proof of expression uses:

 Hamel-Goulden determinants.
 Angèle M. Hamel and Ian P. Goulden:
 Planar decompositions of tableaux and Schur function determinants.

William Y. C. Chen, Guo-Guang Yan and Arthur L. B. Yang: *Transformations of border strips and Schur function determinants.*

Sylvester's Determinantal Identity.

Open problems

Removing Hypothesis 5 (at least one copy of W has just one cell adjacent to O).

 $D \circ_W E$ has 23 boxes, and $D \circ_W E \sim D^* \circ_W E$:

(Software of Anders Buch, John Stembridge)

Main open problem

Theorem. [McN, van Willigenburg] Skew diagrams E_1, E_2, \ldots, E_r $E_i = W_i O_i W_i$ satisfies Hypotheses 1-5 E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i . Then

 $((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \ \sim \ ((\cdots (E_1' \circ_{W_2'} E_2') \circ_{W_3'} E_3') \cdots) \circ_{W_r} E_r' .$

Main open problem

Theorem. [McN, van Willigenburg] Skew diagrams E_1, E_2, \ldots, E_r $E_i = W_i O_i W_i$ satisfies Hypotheses 1-5 E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i . Then

$$((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \sim ((\cdots (E_1' \circ_{W_2'} E_2') \circ_{W_3'} E_3') \cdots) \circ_{W_r} E_r'.$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams *E* and *E'* satisfy $E \sim E'$ if and only if, for some *r*,

$$\begin{array}{lll} E & = & ((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \\ E' & = & ((\cdots (E'_1 \circ_{W'_2} E'_2) \circ_{W'_3} E'_3) \cdots) \circ_{W_r} E'_r \ , \ \text{where} \end{array}$$

• $E_i = W_i O_i W_i$ satisfies Hypotheses 1-4 for all i, • E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i .

Main open problem

Theorem. [McN, van Willigenburg] Skew diagrams E_1, E_2, \ldots, E_r $E_i = W_i O_i W_i$ satisfies Hypotheses 1-5 E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i . Then

$$((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \sim ((\cdots (E_1' \circ_{W_2'} E_2') \circ_{W_3'} E_3') \cdots) \circ_{W_r} E_r'.$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams *E* and *E'* satisfy $E \sim E'$ if and only if, for some *r*,

$$\begin{array}{rcl} E & = & ((\cdots (E_1 \circ_{W_2} E_2) \circ_{W_3} E_3) \cdots) \circ_{W_r} E_r \\ E' & = & ((\cdots (E'_1 \circ_{W'_2} E'_2) \circ_{W'_3} E'_3) \cdots) \circ_{W_r} E'_r \ , \ \text{where} \end{array}$$

• $E_i = W_i O_i W_i$ satisfies Hypotheses 1-4 for all i, • E'_i and W'_i denote either E_i and W_i , or E^*_i and W^*_i .

True when $\#boxes \leq 20$.

- A definition of skew diagram composition. Encompasses the operation of BTvW and the three operations of RSvW.
- Theorem that generalizes all previous results. In particular, explains the 6 missing equivalences from RSvW.
- Conjecture for necessary and sufficient conditions for $E \sim E'$.