Poset Edge-Labellings and Left Modularity

Peter McNamara

Joint work with **Hugh Thomas**

FPSAC 27th June 2003

Slides and papers available from

http://www-math.mit.edu/~mcnamara/

P: a partially ordered set (poset)

x, y: elements of P

If x and y have a least upper bound, then we call it the *join* of x and y and denote it by $x \vee y$.

If x and y have a greatest lower bound, then we call it the meet of x and y and denote it by $x \wedge y$.

A *lattice* is a poset in which every two elements have a meet and a join.

Definition We say that a lattice L is distributive if

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

and

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

for all elements x, y and z of L.

Example The lattice of order ideals of a poset.

An edge-labelling of a poset P is said to be an S_n EL-labelling if:

- 1. Every interval [x, y] of P has exactly one maximal chain with increasing labels
- 2. The labels along any maximal chain form a permutation of n.

Special case of *EL-labelling* (A. Björner):

2. The sequence of labels along this increasing maximal chain lexicographically precede the labels along any other maximal chain of [x, y].

Who cares?

- EL-labelling \Rightarrow Shellable \Rightarrow Cohen-Macaulay
- Simple combinatorial interpretations of Möbius function, flag h-vector, etc.

What other classes of posets have S_n EL-labellings?

Definition(R. Stanley, 1972) A finite lattice L is said to be *supersolvable* if it contains a maximal chain \mathfrak{m} , called an M-chain of L, which together with any other chain of L generates a distributive sublattice.

EXAMPLES

- Distributive lattices
- Modular lattices
- The lattice of partitions of $\{1, 2, \dots, n\}$
- The lattice of subgroups of a supersolvable group

QUESTION (Stanley) Are there any other lattices that have S_n EL-labellings?

THEOREM (McN.) A finite lattice has an S_n EL-labelling if and only if it is supersolvable.

EXAMPLES

• Lattice of non-crossing partitions of $\{1, 2, \ldots, n\}$.

• Biagioli & Chapoton: Lattices of leaf labelled binary trees

www.arxiv.org/math.CO/0304132

Connections with modularity...

Definition An element x of a lattice L is said to be *left-modular* if, for all $y \leq z$ in L, we have

$$(x \lor y) \land z = (x \land z) \lor y.$$

A chain of L is left-modular if each of its elements is left-modular.

Suppose L is a graded lattice.

$$\begin{bmatrix} L \text{ has an} \\ S_n \text{ EL-labelling} \end{bmatrix} \iff \begin{bmatrix} L \text{ is} \\ \text{supersolvable} \end{bmatrix}$$

L has a left-modular maximal chain

THEOREM Let L be graded lattice. TFAE:

- $1.\ L$ is supersolvable
- 2. L has an S_n EL-labelling
- 3. L has a left-modular maximal chain

4.

How can we extend this?

- 3: L need not be graded
- 2: L need not be a lattice

Definition Let P be a (bounded) poset. An EL-labelling γ of P is said to be *interpolating* if, for any $y \lessdot u \lessdot z$, either

- (i) $\gamma(y,u) < \gamma(u,z)$ or
- (ii) the increasing chain from y to z, say $y = w_0 \lessdot w_1 \lessdot \cdots \lessdot w_r = z$, has the properties that its labels are strictly increasing and that $\gamma(w_0, w_1) = \gamma(u, z)$ and $\gamma(w_{r-1}, w_r) = \gamma(y, u)$.

THEOREM (Thomas) A lattice has an interpolating EL-labelling if and only if it has a left modular maximal chain.

Generalizing to non-lattices:

P: a bounded poset with an S_n EL-labelling.

m: its increasing maximal chain.

Some "left modularity" property?

When $x \in \mathfrak{m}$, $x \vee y$ and $x \wedge y$ are well-defined.

In a lattice: $(x \lor y) \land z \ge y$ whenever $z \ge y$.

When $x \in \mathfrak{m}$, $(x \vee y) \wedge_y z$ is well-defined for $y \leq z$. Similarly, $(x \wedge z) \vee^z y$ is well-defined.

We call x a **viable** element of P.

We call \mathfrak{m} a *viable* maximal chain.

THEOREM (McN.-Thomas) A bounded poset has an interpolating EL-labelling if and only if it has a viable left modular maximal chain.

Finally, generalizing supersolvability:

Suppose P has a viable maximal chain \mathfrak{m} . So $(x \vee y) \wedge_y z$ and $(x \wedge z) \vee^z y$ are well-defined for $x \in \mathfrak{m}$ and $y \leq z$ in P.

Given any chain \mathfrak{c} of P, we define $R_{\mathfrak{m}}(\mathfrak{c})$ to be the smallest subposet of P satisfying:

- (i) \mathfrak{m} and \mathfrak{c} are contained in $R_{\mathfrak{m}}(\mathfrak{c})$,
- (ii) If $y \leq z$ in P and y and z are in $R_{\mathfrak{m}}(\mathfrak{c})$, then so are $(x \vee y) \wedge_y z$ and $(x \wedge z) \vee^z y$ for any x in \mathfrak{m} .

Definition We say that a finite bounded poset P is supersolvable with M-chain \mathfrak{m} if \mathfrak{m} is a viable maximal chain and $R_{\mathfrak{m}}(\mathfrak{c})$ is a distributive lattice for any chain \mathfrak{c} of P.

THEOREM (McN.-Thomas) Let P be a bounded graded poset of rank n. TFAE:

- 1. P has an S_n EL-labelling
- 2. P has a viable left modular maximal chain
- 3. P is supersolvable

_	_
_	
N	າ

	Graded	Not nec. graded
	1. Supersolvable	1. ?
Lattice	1. Supersolvable 2. S_n EL-labelling	2. Interp. EL-labelling
	3. Left mod. max. chain	3. Left mod. max. chain
Not	1. "Supersolvable"	1. ?
nec.	2. S_n EL-labelling	2. Interp. EL-labelling
Lattice	3. Viable left mod. m.c.	3. Viable left mod. m.c.