The Schur-Positivity Poset

Peter McNamara

Bucknell University

Dartmouth Combinatorics Seminar 7 May 2009

Slides and papers available from

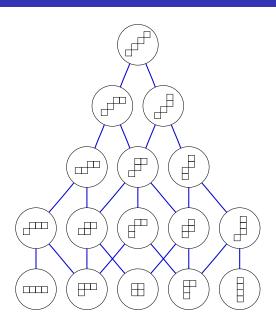
www.facstaff.bucknell.edu/pm040/

Outline

- Symmetric functions background
- Definition of the Schur-positivity poset
- Some known and unknown properties
- ▶ Focus on necessary conditions for $A \leq_s B$.

Preview

$$n = 4$$



What are symmetric functions?

Definition. A symmetric polynomial is a polynomial that is invariant under any permutation of its variables $x_1, x_2, \dots x_n$.

Example.

 $X_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$ is a symmetric polynomial in x_1, x_2, x_3 .

What are symmetric functions?

Definition. A symmetric polynomial is a polynomial that is invariant under any permutation of its variables $x_1, x_2, ... x_n$.

Example.

 $x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$ is a symmetric polynomial in x_1, x_2, x_3 .

Definition. A symmetric function is a formal power series that is invariant under any permutation of its (infinite set of) variables $x = (x_1, x_2, ...)$.

Examples.

- $(x_1 + x_2 + x_3 + \cdots)(x_1^2 + x_2^2 + x_3^2 + \cdots)$ is a symmetric function.
- $ightharpoonup \sum_{i < j} x_i^2 x_j$ is not symmetric.

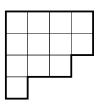
Fact: The symmetric functions (over Q, say) form an algebra.

Schur functions

Cauchy, 1815

- ▶ Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$
- Young diagram. Example:

$$\lambda = (4, 4, 3, 1)$$



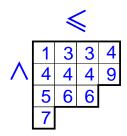
Schur functions

Cauchy, 1815

- ▶ Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$
- Young diagram. Example:

$$\lambda = (4, 4, 3, 1)$$

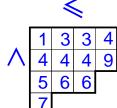
Semistandard Young tableau (SSYT)



Schur functions

Cauchy, 1815

▶ Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$



Young diagram. Example:

$$\lambda = (4, 4, 3, 1)$$

Semistandard Young tableau (SSYT)

The Schur function s_{λ} in the variables $x=(x_1,x_2,...)$ is then defined by

$$s_{\lambda} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots$$

Example.

$$s_{4431} = x_1 x_3^2 x_4^4 x_5 x_6^2 x_7 x_9 + \cdots$$

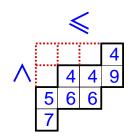
Cauchy, 1815

▶ Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

- $\blacktriangleright \mu$ fits inside λ .
- Young diagram. Example:

$$\lambda/\mu = (4,4,3,1)/(3,1)$$

Semistandard Young tableau (SSYT)



The skew Schur function $s_{\lambda/\mu}$ in the variables $x=(x_1,x_2,\ldots)$ is then defined by

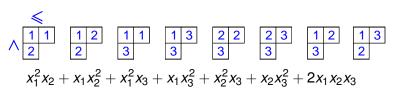
$$S_{\lambda/\mu} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots.$$

Example.

$$s_{4431/31} = x_4^3 x_5 x_6^2 x_7 x_9 + \cdots$$

Examples.

$$s_{21}(x_1, x_2, x_3) =$$



Examples.

$$s_{21}(x_1, x_2, x_3) =$$

 $s_{22/1}(x_1, x_2, x_3)$ happens to be the same:

Examples.

$$s_{21}(x_1, x_2, x_3) =$$

 $s_{22/1}(x_1, x_2, x_3)$ happens to be the same:

$$s_{21}(x) = s_{22/1}(x) = \sum_{i \neq j} x_i^2 x_j + 2 \sum_{i < j < k} x_i x_j x_k$$

Examples.

$$s_{21}(x_1, x_2, x_3) =$$

 $s_{22/1}(x_1, x_2, x_3)$ happens to be the same:

Fact: Skew Schur functions are symmetric functions.

Question: Why do we care about Schur functions?

s_{λ} and $c_{\mu\nu}^{\lambda}$ are superstars!

Fact: The Schur functions form a basis for the algebra of symmetric functions.

$$s_{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu
u} s_{
u}.$$

 $c_{\mu\nu}^{\lambda}$: Littlewood-Richardson coefficients

s_{λ} and $c_{\mu\nu}^{\lambda}$ are superstars!

Fact: The Schur functions form a basis for the algebra of symmetric functions.

$$s_{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu
u} s_{
u}.$$

 c_{uv}^{λ} : Littlewood-Richardson coefficients

- 1. Multiplicative coefficients: $s_{\mu}s_{\nu}=\sum_{\lambda}c_{\mu\nu}^{\lambda}s_{\lambda}$.
- 2. Representation Theory of S_n : $\chi^{\mu} \cdot \chi^{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} \chi^{\lambda}$.
- 3. Representations of $GL(n, \mathbb{C})$: $s_{\lambda}(x_1, \dots, x_n) = \text{the character of the irreducible rep. } V^{\lambda}.$
- 4. Algebraic Geometry: Schubert classes σ_{λ} form a linear basis for $H^*(Gr_{kn})$.

$$\sigma_{\mu}\sigma_{
u} = \sum_{\lambda\subseteq k\times(n-k)} \mathbf{c}_{\mu
u}^{\lambda}\sigma_{\lambda}.$$

There's more!

4. Linear Algebra: When do there exist Hermitian matrices A, B and C = A + B with eigenvalue sets μ , ν and λ , respectively?

There's more!

4. Linear Algebra: When do there exist Hermitian matrices A, B and C = A + B with eigenvalue sets μ , ν and λ , respectively? When $c_{\mu\nu}^{\lambda} > 0$. (Heckman, Klyachko, Knutson, Tao.)

There's more!

4. Linear Algebra: When do there exist Hermitian matrices A, B and C = A + B with eigenvalue sets μ , ν and λ , respectively? When $c_{\mu\nu}^{\lambda} > 0$. (Heckman, Klyachko, Knutson, Tao.)

By 2 we get:

$$\emph{c}_{\mu
u}^{\lambda} \geq 0.$$
 (Your take-home fact!)

Consequences:

- ▶ We say that $s_{\lambda/\mu} = \sum_{\nu} c_{\mu\nu}^{\lambda} s_{\nu}$ is a Schur-positive function, i.e., coefficients in Schur expansion are all non-negative.
- Want a combinatorial proof: "They must count something simpler!"

Littlewood-Richardson Rule

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

Littlewood-Richardson Rule

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

Littlewood-Richardson rule [Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974].

 $c_{\mu\nu}^{\lambda}$ is the number of SSYT of shape λ/μ and content ν whose reverse reading word is a ballot sequence.

Littlewood-Richardson Rule

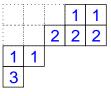
$$s_{\lambda/\mu} = \sum_{
u} {\it c}_{\mu
u}^{\lambda} s_{
u}.$$

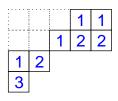
Littlewood-Richardson rule [Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974].

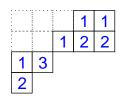
 $c_{\mu\nu}^{\lambda}$ is the number of SSYT of shape λ/μ and content ν whose reverse reading word is a ballot sequence.

Example.

When
$$\lambda=(5,5,2,1), \mu=(3,2), \nu=(4,3,1),$$
 we get $c_{\mu\nu}^{\lambda}=2.$







11222113 No

11221213 Yes

11221312 Yes

The story so far

Consequences of the Littlewood Richardson rule:

- ▶ A combinatorial proof that $s_{\lambda/\mu} = \sum_{\nu} c_{\mu\nu}^{\lambda} s_{\nu}$ is Schur-positive.
- A way to calculate $c_{\mu\nu}^{\lambda}$.

(Natural connections between Schur-positivity and representation theory.)

Summary so far:

- Schur functions form important basis for symmetric functions.
- Skew Schur functions indexed by skew shapes.
- Skew Schur functions are Schur-positive.
- Littlewood-Richardson rule gives a way to determine the Schur expansion of a skew Schur function.

Schur-positivity order

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

When is $s_{\lambda/\mu} - s_{\sigma/\tau}$ Schur-positive?

Schur-positivity order

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

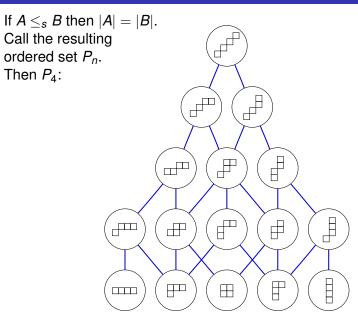
When is $s_{\lambda/\mu} - s_{\sigma/\tau}$ Schur-positive?

Definition. Let A, B be skew shapes. We say that

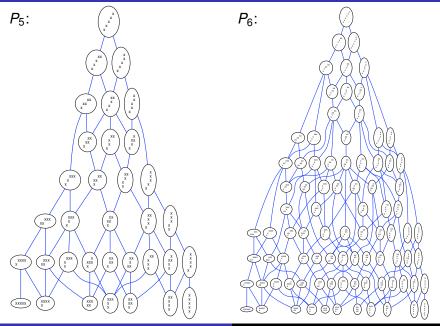
 $A \leq_{s} B$ if $s_{B} - s_{A}$ is Schur-positive.

Goal: Characterize the Schur-positivity order \leq_s in terms of skew shapes.

Example of a Schur-positivity poset

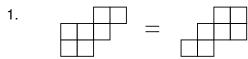


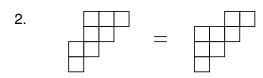
More examples

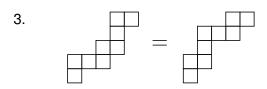


Known properties: first things first

 \leq_s is not yet anti-symmetric. So identify skew shapes such as

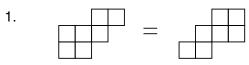


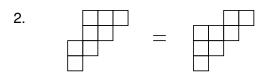


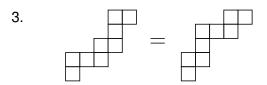


Known properties: first things first

 \leq_s is not yet anti-symmetric. So identify skew shapes such as







Definition.

A ribbon is a connected skew shape containing no 2×2 rectangle.

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Question: When is $s_A = s_B$?

▶ Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

Question: When is $s_A = s_B$?

▶ Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

- ▶ Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- ► McN., Steph van Willigenburg (2006)

Enough for our purposes: we can consider P_n to be a poset.

Open Problem: Find necessary and sufficient conditions on A and B for $s_A = s_B$.

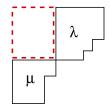
Known properties: Sufficient conditions

Sufficient conditions for $A \leq_{s} B$:

- ► Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
- ► Andrei Okounkov (1997)
- Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon (2003)
- ► Anatol N. Kirillov (2004)
- ▶ Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
- ► François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)

...

Note: $s_{\lambda}s_{\mu}$ is a special case of s_{A} .

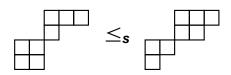


Lam, Postnikov and Pylyavskyy's result

Theorem [LPP]. For skew shapes λ and μ ,

$$s_{\lambda}s_{\mu} \leq_{s} s_{\lambda \cup \mu}s_{\lambda \cap \mu}$$

Example.



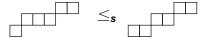
Known properties: special classes of skew shapes

Notation. Write $\lambda \leq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$$
 for all i .

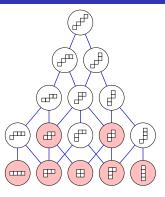
► Macdonald's "Symmetric functions and Hall polynomials": For horizontal strips, $A \leq_s B$ if and only if

row lengths of A > row lengths of B



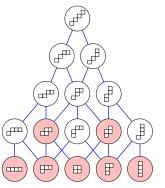
 P_n restricted to horizontal strips: (dual of the) dominance lattice.

Unknown property: maximal connected skew shapes



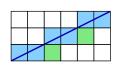
Question: What are the maximal elements of P_n among the connected skew shapes?

Unknown property: maximal connected skew shapes



Question: What are the maximal elements of P_n among the connected skew shapes?

Conjecture [McN., Pylyavskyy]. For each r = 1, ..., n, there is a unique maximal connected element with r rows, namely the ribbon marked out by the diagonal of an r-by-(n - r + 1) box.



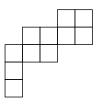
Question: Suppose $A \leq_s B$ (i.e. $s_B - s_A$ is Schur-positive). Then what can we say about the shapes A and B?

Such necessary conditions for $A \leq_s B$ give us a way to show that $C \not\leq_s D$.

Example. If $A \leq_s B$, then |A| = |B|.

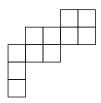
Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.



Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.



Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

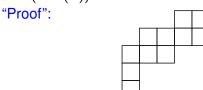
Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the least dominant partition in the support of A.
- ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

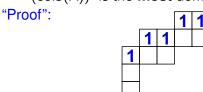
- ▶ rows(A) is the **least** dominant partition in the support of A.
- ▶ $(cols(A))^t$ is the **most** dominant partition in the support of A.



Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
 - ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.



Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
 - ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
- ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
- ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
 - ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
 - ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

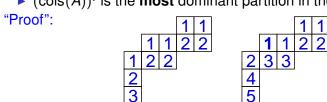
Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
- ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(
$$A$$
) = 43211, cols(A) = 32222.
 $s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}$.
support(A) = {551,542,5411,533,5321,53111,52211,4421,44111,4331,43211}.

- ▶ rows(A) is the **least** dominant partition in the support of A.
- ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.



Proposition. In the Schur expansion of *A*:

- rows(A) is the least dominant partition in the support of A.
- ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Corollary. If $A \leq_s B$, then

 $rows(A) \succcurlyeq rows(B)$ and $cols(A) \succcurlyeq cols(B)$.

Proposition. In the Schur expansion of *A*:

- ▶ rows(A) is the least dominant partition in the support of A.
- ightharpoonup (cols(A))^t is the **most** dominant partition in the support of A.

Corollary. If $A \leq_s B$, then

$$rows(A) \succcurlyeq rows(B)$$
 and $cols(A) \succcurlyeq cols(B)$.

Proof: $A \leq_s B$

- \Leftrightarrow $s_B s_A$ is Schur-positive
- \Rightarrow support(A) \subseteq support(B)
- \Rightarrow rows(A) \succcurlyeq rows(B) and $(cols(A))^t \preccurlyeq (cols(B))^t$
- \Leftrightarrow rows(A) \geq rows(B) and cols(A) \geq cols(B).

Corollary. If $A \leq_s B$, then

$$rows(A) \succcurlyeq rows(B)$$
 and $cols(A) \succcurlyeq cols(B)$.

Example.

$$C = D = D$$

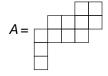
$$rows(C) = 2221 \prec 3211 = rows(D).$$

Thus $C \not\leq_{s} D$.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

Define $\operatorname{cols}_k(A)$ similarly.



Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

Define $\operatorname{cols}_k(A)$ similarly.

Example.

▶ overlap₁(i)=length of the ith row. Thus rows₁(A) = rows(A).

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

Define $\operatorname{cols}_k(A)$ similarly.

- overlap₁(i)=length of the ith row. Thus rows₁(A) = rows(A).
- overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so $rows_2(A) = 3211$.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

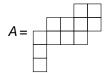
Define $\operatorname{cols}_k(A)$ similarly.

- ▶ overlap₁(i)=length of the ith row. Thus rows₁(A) = rows(A).
- ▶ overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so $rows_2(A) = 3211$.
- ▶ $rows_3(A) = 11$,

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

Define $\operatorname{cols}_k(A)$ similarly.

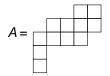


- ▶ overlap₁(i)=length of the ith row. Thus rows₁(A) = rows(A).
- ▶ overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so $rows_2(A) = 3211$.
- ▶ $rows_3(A) = 11$, $rows_k(A) = \emptyset$ for k > 3.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

Define $\operatorname{cols}_k(A)$ similarly.



- ▶ overlap₁(i)=length of the ith row. Thus rows₁(A) = rows(A).
- ▶ overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so $rows_2(A) = 3211$.
- ▶ $rows_3(A) = 11$, $rows_k(A) = \emptyset$ for k > 3.
- ▶ $cols_1(A) = cols(A) = 33222$, $cols_2(A) = 2221$, $cols_3(A) = 211$, $cols_4(A) = 11$, $cols_k(A) = \emptyset$ for k > 4.

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then $rows_k(A) = rows_k(B) \text{ for all } k.$

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then

$$rows_k(A) = rows_k(B)$$
 for all k .

Theorem [McN.]. Let A and B be skew shapes. If $s_B - s_A$ is Schur-positive, then

$$rows_k(A) > rows_k(B)$$
 for all k .

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then

$$rows_k(A) = rows_k(B)$$
 for all k .

Theorem [McN.]. Let A and B be skew shapes. If $s_B - s_A$ is Schur-positive, then

$$rows_k(A) \succcurlyeq rows_k(B)$$
 for all k .

In fact, it suffices to assume that support(A) \subseteq support(B).

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then

$$rows_k(A) = rows_k(B)$$
 for all k .

Theorem [McN.]. Let A and B be skew shapes. If $s_B - s_A$ is Schur-positive, then

$$rows_k(A) \succcurlyeq rows_k(B)$$
 for all k .

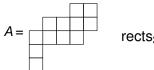
In fact, it suffices to assume that $support(A) \subseteq support(B)$.

Corollary. Let A and B be skew shapes. If support(A) = support(B), then

$$rows_k(A) = rows_k(B)$$
 for all k .

Relating $rows_k(A)$ and $cols_k(A)$

Let $\operatorname{rects}_{k,\ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.



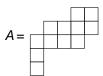
 $rects_{3,1}(A) = 2$, $rects_{2,2}(A) = 3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- ▶ $rows_k(A) = rows_k(B)$ for all k;
 - ▶ $cols_{\ell}(A) = cols_{\ell}(B)$ for all ℓ ;
 - ▶ $\operatorname{rects}_{k,\ell}(A) = \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Relating $rows_k(A)$ and $cols_k(A)$

Let $\operatorname{rects}_{k,\ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.



$$rects_{3,1}(A) = 2$$
, $rects_{2,2}(A) = 3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- $ightharpoonup \operatorname{rows}_k(A) = \operatorname{rows}_k(B) \text{ for all } k;$
- ▶ $cols_{\ell}(A) = cols_{\ell}(B)$ for all ℓ ;
- ▶ $\operatorname{rects}_{k,\ell}(A) = \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Theorem [McN]. Let A and B be skew shapes. TFAE:

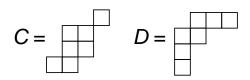
- ▶ $rows_k(A) \succcurlyeq rows_k(B)$ for all k;
- ▶ $cols_{\ell}(A) \succcurlyeq cols_{\ell}(B)$ for all ℓ ;
- ▶ $\operatorname{rects}_{k,\ell}(A) \ge \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Summary result

Theorem [McN]. Let A and B be skew shapes. If $A \leq_s B$, i.e. $s_B - s_A$ is Schur-positive, or if A and B satisfy the weaker condition that support(A) \subseteq support(B), then the following three equivalent sets of conditions are true:

- ▶ $rows_k(A) \succcurlyeq rows_k(B)$ for all k;
- ▶ $cols_{\ell}(A) \succcurlyeq cols_{\ell}(B)$ for all ℓ ;
- ▶ $\operatorname{rects}_{k,\ell}(A) \ge \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

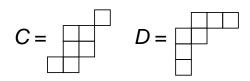
Example.



Summary result

Theorem [McN]. Let A and B be skew shapes. If $A \leq_s B$, i.e. $s_B - s_A$ is Schur-positive, or if A and B satisfy the weaker condition that support(A) \subseteq support(B), then the following three equivalent sets of conditions are true:

- ▶ $rows_k(A) \succcurlyeq rows_k(B)$ for all k;
- ▶ $cols_{\ell}(A) \succcurlyeq cols_{\ell}(B)$ for all ℓ ;
- ▶ $\operatorname{rects}_{k,\ell}(A) \ge \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .



rows
$$(C) = 2221 \prec 3211 = \text{rows}(D)$$
. Thus $C \not\leq_s D$. rows $_2(C) = 21 \succ 111 = \text{rows}_2(D)$. Thus $D \not\leq_s C$.

Outlook

- Instead of looking at the Schur-positivity poset, could look at the support containment poset; it seems to have more structure.
- ► Almost nothing is known about the covering relations in P_n.
- Why restrict to skew Schur functions? Could try:
 - Stanley symmetric functions
 - Hall-Littlewood polynomials
 - LLT-polynomials
 - Cylindric Schur functions
 - Skew Grothendieck polynomials
 - Poset quasisymmetric functions
 - Wave Schur functions