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Outline

I Recent work on skew Schur function equality
I Skew Schur equivalence
I Composition of skew diagrams, main results
I Conjectures, open problems
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Skew Schur functions

I English notation
I Infinite number of variables

Example:
λ/µ = (4, 4, 3, 1)/(3, 1)

6
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4

The skew Schur function sλ/µ in the variables x = (x1, x2, . . .) is
defined by

sλ/µ =
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

I All the usual reasons we care about Schur functions and skew
Schur functions:

I They are symmetric functions
I Schur functions form a basis
I Connections with Algebraic Geometry, Rep. Theory, etc.
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The HDL series

Big Question: When is sλ/α = sµ/β ?

I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions
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The HDL series

I HDL II: Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):
I The more general setting of binomial syzygies

csD1sD2 · · · sDm = c′sD′
1
sD′

2
· · · sD′

n

is equivalent to understanding equalities among connected skew
diagrams.

I 3 operations for generating skew diagrams with equal skew Schur
functions.

I Necessary conditions, but of a different flavor.
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The HDL series

I HDL III: McN., Steph van Willigenburg (2006):
I An operation that encompasses the three operations of HDL II.

I Theorem that generalizes all previous results.
Explains the 6 missing equivalences from HDL II.

I Conjecture for necessary and sufficient conditions for sλ/α = sµ/β .
Reflects classification of HDL I for ribbons.
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The setting

Skew diagrams (skew shapes) D, E.
If sD = sE , we will write D ∼ E .

Example

We want to classify all equivalences classes, thereby classifying all
skew Schur functions.
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The basic building block

EC2, Exercise 7.56(a) [2-]

Theorem
D ∼ D∗, where D∗ denotes D rotated by 180◦.

Goal: Use this equivalence to build other skew equivalences.

Where we’re headed:

Theorem
Suppose we have skew diagrams D, D′ and E satisfying certain
assumptions. If D ∼ D′ then

D′ ◦W E ∼ D ◦W E ∼ D ◦W∗ E∗.

Main definition: composition of skew diagrams.
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Composition of skew diagams

Theorem [McN., van Willigenburg] If D ∼ D′, then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.
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Amalgamated Compositions
Actually, the previous slide was just a warm-up....

A skew diagram W lies in the top of a skew diagram E if W appears
as a connected subdiagram of E that includes the northeasternmost
cell of E .

WW
W W

W

Similarly, W lies in the bottom of E .
Our interest: W lies in both the top and bottom of E . We write
E = WOW .
Hypotheses: (inspired by hypotheses of RSvW)
1. Wne and Wsw are separated by at least one diagonal.
2. E \ Wne and E \ Wsw are both connected skew diagrams.
3. W is maximal given its set of diagonals.
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Amalgamated Compositions

15 boxes: first of the non-RSvW examples
If W = ∅, we get the regular compositions:
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What are the results?

Construction of W and O:

W
W
W W

W

W
W W W

W

W
W W

W
W

Hypothesis 4. W is never adjacent to O.

Conjecture. Suppose we have skew diagrams D, D′ with D ∼ D′ and
E = WOW satisfying Hypotheses 1-4, then

D′ ◦W E ∼ D ◦W E ∼ D ◦W∗ E∗.

Hypothesis 5. In E = WOW , at least one copy of W has just one cell
adjacent to O.

W

W
W
W W

W

W
W W W

W

W
WW
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What are the results?

Theorem.[McN., van Willigenburg] Suppose we have skew diagrams
D, D′ with D ∼ D′ and E = WOW satisfying Hypotheses 1-5, then

D′ ◦W E ∼ D ◦W E ∼ D ◦W∗ E∗.

15 boxes: second of the non-RSvW examples
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A word or two about the proof

The hard part: An expression for sD◦W E in terms of sD, sE , sW , sO:

sD◦W E
(
sW

)|bD| (sO

)|eD|
= ±(sD ◦W sE).

The easy part: The blue portion is invariant if we replace D by D′

when D′ ∼ D. Similary, can replace E by E∗.

Proof of expression uses:
I Hamel-Goulden determinants. See also paper of Chen, Yan,

Yang.
I Sylvester’s Determinantal Identity.
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Open problems

I Removing Hypothesis 5.

D= E=

D ◦W E has 23 boxes, and D ◦W E ∼ D∗ ◦W E :
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Main open problem

Theorem. [McN, van Willigenburg]
Skew diagrams E1, E2, . . . , Er
Ei = WiOiWi satisfies Hypotheses 1-5
E ′

i and W ′
i denote either Ei and Wi , or E∗

i and W ∗
i .

Then

((· · · (E1◦W2E2)◦W3E3) · · · )◦Wr Er ∼ ((· · · (E ′
1◦W ′

2
E ′

2)◦W ′
3
E ′

3) · · · )◦Wr E
′
r .

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW]
Two skew diagrams E and E ′ satisfy E ∼ E ′ if and only if, for some r ,

E = ((· · · (E1 ◦W2 E2) ◦W3 E3) · · · ) ◦Wr Er

E ′ = ((· · · (E ′
1 ◦W ′

2
E ′

2) ◦W ′
3

E ′
3) · · · ) ◦Wr E ′

r , where

◦ Ei = WiOiWi satsifies Hypotheses 1-4 for all i ,
◦ E ′

i and W ′
i denote either Ei and Wi , or E∗

i and W ∗
i .

True for n ≤ 20.
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Summary

I A definition of skew diagram composition. Encompasses the
composition, amalgamated composition and staircase
operations of RSvW.

I Theorem that generalizes all previous results.
In particular, explains the 6 missing equivalences from HDL II.

I Conjecture for necessary and sufficient conditions for E ∼ E ′.
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