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Classical patterns

Definition. An occurrence of a permutation σ as a pattern in a
permutation τ is a subsequence of τ whose letters are in the same
relative order as those in σ.

Example. 231 occurs in twice in 416325: 416325 and 416325.

Example. An inversion in τ is equivalent to an occurrence of 21,
e.g. 1423 and 1423.

I Huge area of study in the last three decades.
I Most work is enumerative, esp. counting the number of

permutations that avoid a given pattern.
I Knuth (1975), Rogers (1978): For any permutation σ ∈ S3, the

number of permutations in Sn avoiding σ is Cn.
I Open: closed formula for number avoiding 1324.
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Consecutive patterns

Our focus:

Definition. An occurrence of a consecutive pattern σ in a permutation
τ is a subsequence of adjacent letters of τ in the same relative order
as those in σ.

Examples.
I 123 occurs twice in 7245136: 7245136 and 7245136.
I 416325 avoids the consecutive pattern 231.
I A descent is an occurrence of the consecutive pattern 21,

e.g 4132 and 4132.
I A peak is an occurrence of 132 or 231, e.g., 13415.
I A permutation is alternating (up-down or down-up) iff it avoids

123 and 321 as consecutive patterns.

I Elizalde–Noy (2003), Aldred, Amigó, Atkinson, Bandt, Baxter, Bernini, Bóna, Dotsenko,
Duane, Dwyer, Ehrenborg, Ferrari, Keller, Kennel, Khoroshkin, Kitaev, Liese, Liu,
Mansour, McCaughan, Mendes, Nakamura, Perarnau, Perry, Pompe, Pudwell, Rawlings,
Remmel, Sagan, Shapiro, Steingrímsson, Warlimont, Willenbring, Zeilberger, . . .
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Pattern posets

Pattern order: order permutations by pattern containment.
σ ≤ τ if σ occurs as a pattern it τ .

132

142314323142 4132

1542341523 5142341532

516423

Classical pattern

132

14323142

1542341532

516423

Consecutive pattern

Consecutive pattern poset is more manageable.
I Consecutive case: every permutation covers at most two others.
I Wilf (2002): Möbius function µ(σ, τ) of the pattern poset?

I Known only in consecutive case: Bernini–Ferrari–Steingrímsson,
Sagan–Willenbring (2011).
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Consecutive pattern poset

When σ occurs just once in τ ,
[σ, τ ] is a product of two chains [BFS11].

123

4123 2341

54123 52341 34512

465123 652341 634512

5762341 7634512

68734512

Classical case: wide open even in this special case.
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Main questions

Unless otherwise specified: consecutive pattern poset.

321

3214 1432

2154332154

321654

1. Which open intervals are disconnected?
2. Which intervals are shellable?
3. Which intervals are rank-unimodal?
4. Which intervals are strongly Sperner?
5. Which intervals have Möbius function equal to 0?
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1. Which open intervals are disconnected?

Definition. For σ < τ , we say that σ straddles τ if σ is both a prefix
and suffix of τ and has no other occurrences in τ .

321

3214765

3214 1432

32145 12543

213654321465

Theorem [Elizalde, McN.]. For σ < τ with |τ | − |σ| ≥ 3, we have that
the open interval (σ, τ) is disconnected if and only if σ straddles τ .
In this case, (σ, τ) consists of two disjoint chains.
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2. Which intervals are shellable?

Some combinatorial topology...

Poset P −→ Simplicial complex ∆(P)

Order complex of [p,q]: faces of ∆(p,q) are the chains in (p,q).

Example.

a b

c d

e f

p

q

p

q

d b

a f

e c

1 2
3 4

Definition. A pure d-dimensional complex is shellable if its facets can
be ordered F1,F2, . . . ,Fn such that, for all 2 ≤ i ≤ n,

Fi ∩ (F1 ∪ F2 ∪ · · · ∪ Fi−1)

is pure and (d − 1)-dimensional.
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Shellability

Non-shellable example.

1

2

3
4

Why we care about shellability:

I If ∆(p,q) is shellable, then it’s either contractible, or homotopic
to a wedge of |µ(p,q)| spheres in the top dimension.

I Combinatorial tools for showing shellability of ∆(P):
EL-shellability, CL-shellability, etc.
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Disconnected and non-shellable

Main non-shellable example. (p,q) disconnected with d ≥ 1:
∆(p,q) is not shellable.

321

3214 1432

2154332154

321654

321

321⊕ 1 1⊕ 321

321⊕ 21 21⊕ 321

321⊕ 321

The interval above is said to be non-trivially disconnected.

Direct sum: 21⊕ 3214 = 215436.
Skew sum: 21	 3214 = 653214.

π is indecomposable if π 6= α⊕ β for any non-empty α, β.

Lemma. If π is indecomposable with |π| ≥ 3, then ∆(π, π ⊕ π) is
non-trivially disconnected and so not shellable.
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Almost all intervals are not shellable

Theorem [McN. & Steingrímsson; Elizalde & McN.].
Fix σ. Randomly choosing τ of length n,

lim
n→∞

(Probability that ∆(σ, τ) is shellable) = 0.

Idea of proof.
I Björner: If [σ, τ ] is shellable (i.e. ∆(σ, τ) is), then so is every

subinterval of [σ, τ ].
I Thus, if [σ, τ ] contains a non-trivial disconnected subinterval,

then it can’t be shellable.
I Show every [σ, τ ] as n→∞ contains [π, π ⊕ π] with π

indecomposable,
or contains [π, π 	 π] with π skew indecomposable.

What’s the good news?
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2. Which intervals are shellable?

We know: if [σ, τ ] contains a non-trivial disconnected subinterval,
then [σ, τ ] is not shellable.

What about intervals without disconnected subintervals?

Theorem [Elizalde & McN.] The interval [σ, τ ] is shellable if and only if
it contains no non-trivial disconnected subintervals.

Example. [21, 12 · · · r ⊕ 21⊕ 21⊕ · · · ⊕ 21⊕ 12 · · · s]
is shellable.

Idea of proof. Show [σ, τ ] is dual CL-shellable.
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A related shellability result

Theorem [Elizalde & McN.] The interval [σ, τ ] is shellable if it contains
no open subinterval consisting of two disjoint chains of length ≥ 2.

Theorem [Billera & Myers, ’99] Any poset is shellable if it contains no
induced subposet of the form 2+2.

Has 2+2 as induced subposet, but
has no open subinterval consisting of two disjoint chains
of length ≥ 2:

123

4123 2341

54123 52341 34512

652341 634512

7634512
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3. Which intervals are rank-unimodal?

12

123 213 132

2134 1243 1324

21354 12435

213546

Rank sizes: 1, 3, 3, 2, 1.

So [σ, τ ] is not rank-symmetric.

Theorem [Elizalde & McN.] Every interval [σ, τ ] is rank-unimodal.

Idea of proof.
I Top part is grid-like.
I Use explicit injection for all other ranks.

Conjecture [McN. & Steingrímsson] Every interval [σ, τ ] in the
classical pattern poset is rank-unimodal.
True for intervals of rank ≤ 8.
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4. Which intervals are strongly Sperner?

Definition. A poset P is Sperner if the largest rank size equals the
size of the largest antichain.
In other words, some rank level is an antichain of maximum size.

Example.

Not Sperner:Not Sperner:Not Sperner:
but 2-Sperner:

A k -family is a union of k antichains.

Definition. A poset P is k -Sperner if the sum of the sizes of the k
largest ranks equals the size of the largest k -family.
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4. Which intervals are strongly Sperner?

Theorem [Elizalde & McN.] Every interval [σ, τ ] is strongly Sperner.

Idea of proof.
I A 1980 result of Griggs gives a condition equivalent to strongly

Sperner for rank-unimodal posets.
I We prove this condition, using the injections from our

rank-unimodality proof.
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5. Which intervals have Möbius function equal to 0?

Interior i(τ): the permutation pattern obtained by deleting first and
last element of τ .
Exterior x(τ): the longest proper prefix that is also a suffix.

Examples.
τ = 21435, i(τ) = 132, x(τ) = 213
τ = 123456 (monotone), x(τ) = 12345
τ = 654321 (monotone), x(τ) = 54321
τ = 18765432, x(τ) = 1

Theorem [BFS, SW (2011)]. For σ ≤ τ ,

µ(σ, τ) =


µ(σ, x(τ)) if |τ | − |σ| > 2 and σ ≤ x(τ) 6≤ i(τ),
1 if |τ | − |σ| = 2, τ is not monotone,

and σ ∈ {i(τ), x(τ)},
(−1)|τ |−|σ| if |τ | − |σ| < 2,
0 otherwise.

Note. x(τ) plays a crucial role.
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5. Which intervals have Möbius function equal to 0?

Answer. Almost all of them.

Theorem [Elizalde & McN.] Fix σ. Randomly choosing τ of length n
with τ ≥ σ,

lim
n→∞

(Probability that µ(σ, τ) = 0) = 1.
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Length of the exterior
n\k 1 2 3 4 5 6 7 8 9

2 2
3 4 2
4 12 10 2
5 48 58 12 2
6 280 306 118 14 2
7 1864 2186 822 150 16 2
8 14840 17034 6580 1660 186 18 2
9 132276 154162 58854 15118 2222 226 20 2

10 1323504 1532574 588898 150388 30238 2904 270 22 2

τ ∈ Sn, k = |x(τ)|.

Clear. Main diagonal values are 2.

Lemma [Elizalde & McN.]. Next diagonal values when n ≥ 4 are
2n + 2.

Theorem [Elizalde & McN.]. e − 1 ≤ lim
n→∞

En(|x(τ)|) ≤ e.

Unknown. Everything else.
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Open probems

: exterior
n\k 1 2 3 4 5 6 7 8 9

2 2
3 4 2
4 12 10 2
5 48 58 12 2
6 280 306 118 14 2
7 1864 2186 822 150 16 2
8 14840 17034 6580 1660 186 18 2
9 132276 154162 58854 15118 2222 226 20 2

10 1323504 1532574 588898 150388 30238 2904 270 22 2

1. Find a formula for the entries in the table.

2. Known: #{t ∈ Sn : |x(τ)| = 1} ≡ 0 mod 4.
True? #{t ∈ Sn : |x(τ)| = 2} ≡ 2 mod 4.

3. For each k , find lim
n→∞

Pn(|x(τ)| = k). (Know limit exists.)

Bóna: 0.3640981 ≤ lim
n→∞

Pn(|x(τ)| = 1) ≤ 0.3640993.

4. Find the exact value of lim
n→∞

En(|x(τ)|).
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Open problems: pattern posets

Consecutive case:
5. Characterize those intervals [σ, τ ] that are lattices (in terms of

easy conditions on σ and τ ).
6. Find an easy classification of intervals that contain no non-trivial

disconnected subinterval (and are thus shellable).
Classical case:

7. The question that started it all: what’s the Möbius function
µ(σ, τ)?

8. Prove the rank-unimodality conjecture.
9. Can anything be said about when σ occurs just once in τ?

10. Understand non-shellable intervals without non-trivial
disconnected subintervals. e.g. [123,3416725].

General:
11. Find a good way to test shellability by computer.

Thanks!
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