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Outline

I Symmetric functions background

I Definition of the Schur-positivity poset, and some known and
unknown properties

I Focus on necessary conditions for A ≤s B
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Preview

n = 4
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What are symmetric functions?

Definition. A symmetric polynomial is a polynomial that is invariant
under any permutation of its variables x1, x2, . . . xn.

Example.
I x2

1 x2 + x2
1 x3 + x2

2 x1 + x2
2 x3 + x2

3 x1 + x2
3 x2

is a symmetric polynomial in x1, x2, x3.

Definition. A symmetric function is a formal power series that is
invariant under any permutation of its (infinite set of) variables
x = (x1, x2, . . .).

Examples.
I (x1 + x2 + x3 + · · · )(x2

1 + x2
2 + x2

3 + · · · ) is a symmetric function.
I

∑
i<j x2

i xj is not symmetric.

Fact: The symmetric functions (over Q, say) form an algebra.
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Skew

Schur functions

Cauchy, 1815
I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.

I Young diagram.
Example:
λ

/µ

= (4,4,3,1)

/(3,1)
I Semistandard Young tableau

(SSYT)

7

4

1 3 3 4

944

6 65

The

skew

Schur function sλ

/µ

in the variables x = (x1, x2, . . .) is then
defined by

sλ

/µ

=
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4431

/31

=

x1x2
3

x4x5x2
6 x7x9 + · · · .

The Schur-Positivity Poset Peter McNamara 5



Skew

Schur functions

Cauchy, 1815
I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.

I Young diagram.
Example:
λ

/µ

= (4,4,3,1)

/(3,1)

I Semistandard Young tableau
(SSYT)

3
4 9

7
6
4

4

6
4
5

1 3

The

skew

Schur function sλ

/µ

in the variables x = (x1, x2, . . .) is then
defined by

sλ

/µ

=
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4431

/31

=

x1x2
3

x4x5x2
6 x7x9 + · · · .

The Schur-Positivity Poset Peter McNamara 5



Skew

Schur functions

Cauchy, 1815
I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.

I Young diagram.
Example:
λ

/µ

= (4,4,3,1)

/(3,1)

I Semistandard Young tableau
(SSYT)

3
4 9

7
6
4

4

6
4
5

1 3

The

skew

Schur function sλ

/µ

in the variables x = (x1, x2, . . .) is then
defined by

sλ

/µ

=
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4431

/31

= x1x2
3 x4

4 x5x2
6 x7x9 + · · · .

The Schur-Positivity Poset Peter McNamara 5



Skew Schur functions

Cauchy, 1815
I Partition λ = (λ1, λ2, . . . , λ`)

I µ fits inside λ.
I Young diagram.

Example:
λ/µ = (4,4,3,1)/(3,1)

I Semistandard Young tableau
(SSYT)

6
4 9

5
7

6
4

4

The skew Schur function sλ/µ in the variables x = (x1, x2, . . .) is then
defined by

sλ/µ =
∑

SSYT T

x#1’s in T
1 x#2’s in T

2 · · · .

Example.
s4431/31 =

x1x2
3

x3
4 x5x2

6 x7x9 + · · · .

The Schur-Positivity Poset Peter McNamara 5



Skew Schur functions

Examples.
s21(x1, x2, x3) =

1 1
2

1 2
2

1 1
3

1 3
3

2 2
3

2 3
3

1 2
3

1 3
2

x2
1 x2 + x1x2

2 + x2
1 x3 + x1x2

3 + x2
2 x3 + x2x2

3 + 2x1x2x3

s22/1(x1, x2, x3) happens to be the same:

1
1
33

1
1 32

1
1

1
2 2

2
32 3 3

2 1
32 3

2

s21(x) = s22/1(x) =
∑
i 6=j

x2
i xj + 2

∑
i<j<k

xixjxk

Fact: Skew Schur functions are symmetric functions.
Question: Why do we care about Schur functions?
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sλ and cλµν are superstars!

Fact: The Schur functions form a basis for the algebra of symmetric
functions.

sλ/µ =
∑
ν

cλµνsν .

cλµν : Littlewood-Richardson coefficients

1. Multiplicative coefficients: sµsν =
∑

λ cλµνsλ.

2. Representation Theory of Sn: χµ · χν =
∑

λ cλµνχλ.

3. Representations of GL(n,C):
sλ(x1, . . . , xn) = the character of the irreducible rep. Vλ.

4. Algebraic Geometry: Schubert classes σλ form a linear basis for
H∗(Grkn).

σµσν =
∑

λ⊆k×(n−k)

cλµνσλ.
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There’s more!

5. Linear Algebra: When do there exist Hermitian matrices A, B
and C = A + B with eigenvalue sets µ, ν and λ, respectively?

When cλµν > 0. (Heckman, Helmke, Rosenthal, Klyachko,

Knutson, Tao, Woodward)

By 2 we get:
cλµν ≥ 0.

Consequences:
I We say that sλ/µ =

∑
ν cλµνsν is a Schur-positive function, i.e.,

coefficients in Schur expansion are all non-negative.

I Want a combinatorial proof:
“They must count something simpler!”
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Littlewood-Richardson Rule

sλ/µ =
∑
ν

cλµνsν .

Littlewood-Richardson rule [Littlewood-Richardson 1934,
Schützenberger 1977, Thomas 1974].

cλµν is the number of SSYT of shape λ/µ and content ν whose
reverse reading word is a ballot sequence.

Example.
When λ = (5,5,2,1), µ = (3,2), ν = (4,3,1), we get cλµν = 2.

11221312

3
1

2 2
11

2
1

11
2 21

21
3 2

1 3
1 2 2

1 1

11222113
to prevent bottom from getting cut off

No 11221213 Yes Yes
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The story so far

Consequences of the Littlewood Richardson rule :
I A combinatorial proof that sλ/µ =

∑
ν cλµνsν is Schur-positive.

I A way to calculate cλµν .

(Natural connections between Schur-positivity and representation
theory.)

Summary so far:
I Schur functions form important basis for symmetric functions.
I Skew Schur functions indexed by skew shapes.
I Skew Schur functions are Schur-positive.
I Littlewood-Richardson rule gives a way to determine the Schur

expansion of a skew Schur function.
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Schur-positivity order

sλ/µ =
∑
ν

cλµνsν .

When is sλ/µ − sσ/τ Schur-positive?

Definition. Let A, B be skew shapes. We say that

A ≤s B if sB − sA is Schur-positive.

Goal: Characterize the Schur-positivity order ≤s in terms of skew
shapes.
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Example of a Schur-positivity poset

If A ≤s B then |A| = |B|.
Call the resulting
ordered set Pn.
Then P4:
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More examples

P5: P6:
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Known properties: first things first

≤s is not yet anti-symmetric. So identify skew shapes such as

1.

2.

3.

Definition.
A ribbon is a connected skew shape containing no 2× 2 rectangle.
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Known properties: skew Schur equality

Question: When is sA = sB ?

I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions
I Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
I McN., Steph van Willigenburg (2006)
I Gutschwager (2008) solved multiplicity-free case

Enough for our purposes: we can consider Pn to be a poset.

Open Problem: Find necessary and sufficient conditions on A and B
for sA = sB.
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Known properties: Sufficient conditions

Sufficient conditions for A ≤s B:
I Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
I Andrei Okounkov (1997)
I Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon

(2003)
I Anatol N. Kirillov (2004)
I Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
I François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
I ...

Note: sλsµ is a special case of sA.

λ

µ

The Schur-Positivity Poset Peter McNamara 16



Example: Lam, Postnikov and Pylyavskyy’s result

Theorem [LPP]. For skew shapes λ and µ,

sλsµ ≤s sλ∪µsλ∩µ

Example.

s
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Known properties: special classes of skew shapes

Notation. Write λ 4 µ if λ is less than or equal to µ in dominance
order, i.e.

λ1 + · · ·λi ≤ µ1 + · · ·µi for all i .

I Macdonald’s “Symmetric functions and Hall polynomials”: For
horizontal strips, A ≤s B if and only if

row lengths of A < row lengths of B

s

Pn restricted to horizontal strips: (dual of the) dominance lattice.

The Schur-Positivity Poset Peter McNamara 18



Unknown property: maximal connected skew shapes

Question: What are the
maximal elements of Pn
among the connected
skew shapes?

Conjecture [McN., Pylyavskyy]. For each r = 1, . . . ,n, there is a
unique maximal connected element with r rows, namely the ribbon
marked out by the diagonal of an r -by-(n − r + 1) box.

Examples.
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Necessary conditions

Question: Suppose A ≤s B (i.e. sB − sA is Schur-positive).
Then what can we say about the shapes A and B?

Such necessary conditions for A ≤s B give us a way to show that
C 6≤s D.

Example. If A ≤s B, then |A| = |B|.

Important: We want our necessary conditions to be as simple as
possible and only depend on the shapes of A and B.
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Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

1
1

2
1

3

1

5
4

3
2
1

2

3
2

2 2
2 2

1
1 1

1

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

1
1

2
1

3

1

5
4

3
2
1

2

3
2

2 2
2 2

1
1 1

1

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

1
1

2
1

3

1

5
4

3
2
1

2

3
2

2 2
2 2

1
1 1

1

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”: 1
1

2
1

3

1

5
4

3
2
1

2

3
2

2 2
2 2

1
1 1

1

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”: 1
1

2
1

3

1

5
4

3
2
1

2

3
2

2 2
2 2

1
1 1

1

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

3

1
1

1
11

1
2

1
3

1

5
4

3
2
1

2

2
2 2

2 2

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

3

21
21

2

1
2

2
11

1
2

1
3

1

5
4

3
2
1

2

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”: 1
21

21
2

1
2

2
11

3

1
2

1
3

2
1

5
4

3
2

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”: 1
21

21
2

1
2

2
11

3

1
2

1
3

2
1

5
4

3
2

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

3
21

21
2

1
2

2
11

3
4

3
2
1

5

1
2

1
1
2

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

121
21

2

1
2

2
11

3

2
3

4
3

2
1

5

1
1

2

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Notation. For a skew shape A, let rows(A) denote the partition of row
lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

sA = s551 + s542 + 2s5411 + s533 + 2s5321 + s53111

+s52211 + s4421 + s44111 + s4331 + s43211.

support(A) = {551,542,5411,533,5321,53111,
52211,4421,44111,4331,43211}.

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

“Proof”:

2
21

21
2

1
2

2
11

3

21
3

4
3

2
1

5

1
1

The Schur-Positivity Poset Peter McNamara 21



Classical necessary conditions

Proposition. In the Schur expansion of A:
I rows(A) is the least dominant partition in the support of A.
I (cols(A))t is the most dominant partition in the support of A.

Corollary. If A ≤s B, then

rows(A) < rows(B) and cols(A) < cols(B).

Proof: A ≤s B
⇔ sB − sA is Schur-positive
⇒ support(A) ⊆ support(B)

⇒ rows(A) < rows(B) and (cols(A))t 4 (cols(B))t

⇔ rows(A) < rows(B) and cols(A) < cols(B). �
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Classical necessary conditions

Corollary. If A ≤s B, then

rows(A) < rows(B) and cols(A) < cols(B).

Example.

C D ==

rows(C) = 2221 ≺ 3211 = rows(D).

Thus C 6≤s D.
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Key definitions: generalize rows(A) and cols(A)

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlapk (i) be the number of columns occupied in common by rows
i , i + 1, . . . , i + k − 1.
Then rowsk (A) is the weakly decreasing rearrangement of
(overlapk (1),overlapk (2), . . .).
Define colsk (A) similarly.
Example.

=

3
2

2 2
2 2

1
1 1

1 1

A

I overlap1(i)=length of the i th row. Thus rows1(A) = rows(A).
I overlap2(1) = 2, overlap2(2) = 3, overlap2(3) = 1,

overlap2(4) = 1, so rows2(A) = 3211.
I rows3(A) = 11, rowsk (A) = ∅ for k > 3.
I cols1(A) = cols(A) = 33222, cols2(A) = 2221, cols3(A) = 211,

cols4(A) = 11, colsk (A) = ∅ for k > 4.
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Necessary conditions

Theorem [RSvW]. Let A and B be skew shapes. If sA = sB, then

rowsk (A) = rowsk (B) for all k .

Theorem [McN.]. Let A and B be skew shapes. If sB − sA is
Schur-positive, then

rowsk (A) < rowsk (B) for all k .

In fact, it suffices to assume that support(A) ⊆ support(B).

Corollary. Let A and B be skew shapes. If support(A) = support(B),
then

rowsk (A) = rowsk (B) for all k .
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Relating rowsk(A) and colsk(A)

Let rectsk ,`(A) denote the number of k × ` rectangular subdiagrams
contained inside A.

=

3
2

2 2
2 2

1
1 1

1 1

A rects3,1(A) = 2, rects2,2(A) = 3, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:
I rowsk (A) = rowsk (B) for all k ;
I cols`(A) = cols`(B) for all `;
I rectsk ,`(A) = rectsk ,`(B) for all k , `.

Theorem [McN]. Let A and B be skew shapes. TFAE:
I rowsk (A) < rowsk (B) for all k ;
I cols`(A) < cols`(B) for all `;
I rectsk ,`(A) ≥ rectsk ,`(B) for all k , `.
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Summary result

Theorem [McN]. Let A and B be skew shapes. If A ≤s B, i.e. sB − sA
is Schur-positive, or if A and B satisfy the weaker condition that
support(A) ⊆ support(B), then the following three equivalent sets of
conditions are true:
I rowsk (A) < rowsk (B) for all k ;
I cols`(A) < cols`(B) for all `;
I rectsk ,`(A) ≥ rectsk ,`(B) for all k , `.

Example.

C D ==

rows(C) = 2221 ≺ 3211 = rows(D). Thus C 6≤s D.

rows2(C) = 21 � 111 = rows2(D). Thus D 6≤s C.
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Outlook

I Instead of looking at the Schur-positivity poset, could look at the
support containment poset; it seems to have more structure.

I Almost nothing is known about the covering relations in Pn.

I Why restrict to skew Schur functions? Could try:
I Stanley symmetric functions
I Hall-Littlewood polynomials
I LLT-polynomials
I Cylindric Schur functions
I Skew Grothendieck polynomials
I Poset quasisymmetric functions
I Wave Schur functions
I . . .
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