The Schur-Positivity Poset

Peter McNamara

Bucknell University

Cornell Discrete Geometry & Combinatorics Seminar 30 August 2010

Slides and papers available from www.facstaff.bucknell.edu/pm040/

- Symmetric functions background
- Definition of the Schur-positivity poset, and some known and unknown properties
- ► Focus on necessary conditions for A ≤_s B

Preview

What are symmetric functions?

Definition. A symmetric polynomial is a polynomial that is invariant under any permutation of its variables $x_1, x_2, ..., x_n$.

Example.

x₁²x₂ + x₁²x₃ + x₂²x₁ + x₂²x₃ + x₃²x₁ + x₃²x₂ is a symmetric polynomial in x₁, x₂, x₃.

What are symmetric functions?

Definition. A symmetric polynomial is a polynomial that is invariant under any permutation of its variables $x_1, x_2, ..., x_n$.

Example.

► $x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$ is a symmetric polynomial in x_1, x_2, x_3 .

Definition. A symmetric function is a formal power series that is invariant under any permutation of its (infinite set of) variables $x = (x_1, x_2, ...)$.

Examples.

- $(x_1 + x_2 + x_3 + \cdots)(x_1^2 + x_2^2 + x_3^2 + \cdots)$ is a symmetric function.
- $\sum_{i < j} x_i^2 x_j$ is not symmetric.

Fact: The symmetric functions (over \mathbb{Q} , say) form an algebra.

Schur functions

Cauchy, 1815

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

Young diagram. Example: λ = (4,4,3,1)

Schur functions

Cauchy, 1815

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

- Young diagram.
 Example:
 λ = (4,4,3,1)
- Semistandard Young tableau (SSYT)

Schur functions

Cauchy, 1815

• Partition
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

- Young diagram.
 Example:
 λ = (4,4,3,1)
- Semistandard Young tableau (SSYT)

The Schur function s_{λ} in the variables $x = (x_1, x_2, ...)$ is then defined by

$$s_{\lambda} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots$$

Example.

$$s_{4431} = x_1 x_3^2 x_4^4 x_5 x_6^2 x_7 x_9 + \cdots$$

•

Cauchy, 1815

- Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$
- μ fits inside λ .
- Young diagram. Example: λ/µ = (4,4,3,1)/(3,1)
- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda/\mu}$ in the variables $x = (x_1, x_2, ...)$ is then defined by

$$s_{\lambda/\mu} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots$$

Example.

*s*_{4431/31} =

$$x_4^3 x_5 x_6^2 x_7 x_9 + \cdots$$

Examples.

 $s_{21}(x_1, x_2, x_3) =$

Fact: Skew Schur functions are symmetric functions.

Examples.

 $s_{21}(x_1, x_2, x_3) =$

Fact: Skew Schur functions are symmetric functions. Question: Why do we care about Schur functions?

s_{λ} and $c_{\mu\nu}^{\lambda}$ are superstars!

Fact: The Schur functions form a basis for the algebra of symmetric functions.

$$\mathbf{s}_{\lambda/\mu} = \sum_{
u} \mathbf{c}_{\mu
u}^{\lambda} \mathbf{s}_{
u}.$$

 $c_{\mu\nu}^{\lambda}$: Littlewood-Richardson coefficients

s_{λ} and $c_{\mu\nu}^{\lambda}$ are superstars!

Fact: The Schur functions form a basis for the algebra of symmetric functions.

$$m{s}_{\lambda/\mu} = \sum_{
u} m{c}^{\lambda}_{\mu
u} m{s}_{
u}.$$

 $c_{\mu\nu}^{\lambda}$: Littlewood-Richardson coefficients

- 1. Multiplicative coefficients: $s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda}s_{\lambda}$.
- 2. Representation Theory of S_n : $\chi^{\mu} \cdot \chi^{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} \chi^{\lambda}$.
- 3. Representations of $GL(n, \mathbb{C})$: $s_{\lambda}(x_1, \dots, x_n) =$ the character of the irreducible rep. V^{λ} .
- 4. Algebraic Geometry: Schubert classes σ_{λ} form a linear basis for $H^*(Gr_{kn})$.

$$\sigma_{\mu}\sigma_{
u} = \sum_{\lambda \subseteq k \times (n-k)} c^{\lambda}_{\mu
u} \sigma_{\lambda}.$$

5. Linear Algebra: When do there exist Hermitian matrices *A*, *B* and C = A + B with eigenvalue sets μ , ν and λ , respectively?

5. Linear Algebra: When do there exist Hermitian matrices *A*, *B* and C = A + B with eigenvalue sets μ , ν and λ , respectively? When $c_{\mu\nu}^{\lambda} > 0$. (Heckman, Helmke, Rosenthal, Klyachko,

Knutson, Tao, Woodward)

5. Linear Algebra: When do there exist Hermitian matrices *A*, *B* and C = A + B with eigenvalue sets μ , ν and λ , respectively? When $c^{\lambda}_{\mu\nu} > 0$. (Heckman, Helmke, Rosenthal, Klyachko,

Knutson, Tao, Woodward)

By 2 we get:

 $c_{\mu
u}^{\lambda}\geq0.$

5. Linear Algebra: When do there exist Hermitian matrices *A*, *B* and *C* = *A* + *B* with eigenvalue sets μ , ν and λ , respectively? When $c_{\mu\nu}^{\lambda} > 0$. (Heckman, Helmke, Rosenthal, Klyachko,

Knutson, Tao, Woodward)

By 2 we get:

$$c_{\mu
u}^{\lambda} \geq 0.$$

Consequences:

- ► We say that $s_{\lambda/\mu} = \sum_{\nu} c_{\mu\nu}^{\lambda} s_{\nu}$ is a Schur-positive function, i.e., coefficients in Schur expansion are all non-negative.
- Want a combinatorial proof: "They must count something simpler!"

Littlewood-Richardson Rule

$$m{s}_{\lambda/\mu} = \sum_{
u} m{c}^{\lambda}_{\mu
u} m{s}_{
u}.$$

Littlewood-Richardson Rule

$$m{s}_{\lambda/\mu} = \sum_{
u} m{c}_{\mu
u}^{\lambda} m{s}_{
u}.$$

Littlewood-Richardson rule [Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974].

 $c_{\mu\nu}^{\lambda}$ is the number of SSYT of shape λ/μ and content ν whose reverse reading word is a ballot sequence.

Littlewood-Richardson Rule

$$m{s}_{\lambda/\mu} = \sum_{
u} m{c}_{\mu
u}^{\lambda} m{s}_{
u}.$$

Littlewood-Richardson rule [Littlewood-Richardson 1934, Schützenberger 1977, Thomas 1974].

 $c_{\mu\nu}^{\lambda}$ is the number of SSYT of shape λ/μ and content ν whose reverse reading word is a ballot sequence.

Example.

When $\lambda = (5, 5, 2, 1), \mu = (3, 2), \nu = (4, 3, 1)$, we get $c_{\mu\nu}^{\lambda} = 2$.

The story so far

Consequences of the Littlewood Richardson rule :

- A combinatorial proof that $s_{\lambda/\mu} = \sum_{\nu} c_{\mu\nu}^{\lambda} s_{\nu}$ is Schur-positive.
- A way to calculate $c_{\mu\nu}^{\lambda}$.

(Natural connections between Schur-positivity and representation theory.)

Summary so far:

- Schur functions form important basis for symmetric functions.
- Skew Schur functions indexed by skew shapes.
- Skew Schur functions are Schur-positive.
- Littlewood-Richardson rule gives a way to determine the Schur expansion of a skew Schur function.

Schur-positivity order

$$m{s}_{\lambda/\mu} = \sum_{
u} m{c}_{\mu
u}^{\lambda} m{s}_{
u}.$$

When is $s_{\lambda/\mu} - s_{\sigma/\tau}$ Schur-positive?

Schur-positivity order

$$m{s}_{\lambda/\mu} = \sum_{
u} m{c}_{\mu
u}^{\lambda} m{s}_{
u}.$$

When is $s_{\lambda/\mu} - s_{\sigma/\tau}$ Schur-positive? Definition. Let *A*, *B* be skew shapes. We say that

 $A \leq_s B$ if $s_B - s_A$ is Schur-positive.

Goal: Characterize the Schur-positivity order \leq_s in terms of skew shapes.

Example of a Schur-positivity poset

More examples

Known properties: first things first

 \leq_s is not yet anti-symmetric. So identify skew shapes such as

Known properties: first things first

 \leq_s is not yet anti-symmetric. So identify skew shapes such as

Definition.

A ribbon is a connected skew shape containing no 2 \times 2 rectangle.

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

- Question: When is $s_A = s_B$?
 - ► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

- ► Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- McN., Steph van Willigenburg (2006)
- Gutschwager (2008) solved multiplicity-free case

Enough for our purposes: we can consider P_n to be a poset.

Open Problem: Find necessary and sufficient conditions on *A* and *B* for $s_A = s_B$.

Known properties: Sufficient conditions

Sufficient conditions for $A \leq_s B$:

- Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
- Andrei Okounkov (1997)
- Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon (2003)
- Anatol N. Kirillov (2004)
- Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
- François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)

۱...

Note: $s_{\lambda}s_{\mu}$ is a special case of s_A .

Example: Lam, Postnikov and Pylyavskyy's result

Theorem [LPP]. For skew shapes λ and μ ,

$$s_{\lambda}s_{\mu}\leq_{s}s_{\lambda\cup\mu}s_{\lambda\cap\mu}$$

Known properties: special classes of skew shapes

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$$
 for all *i*.

► Macdonald's "Symmetric functions and Hall polynomials": For horizontal strips, A ≤_s B if and only if

row lengths of $A \succ$ row lengths of B

 P_n restricted to horizontal strips: (dual of the) dominance lattice.

Unknown property: maximal connected skew shapes

Question: What are the maximal elements of P_n among the connected skew shapes?

Unknown property: maximal connected skew shapes

Question: What are the maximal elements of P_n among the connected skew shapes?

Conjecture [McN., Pylyavskyy]. For each r = 1, ..., n, there is a unique maximal connected element with r rows, namely the ribbon marked out by the diagonal of an r-by-(n - r + 1) box.

Examples.

The Schur-Positivity Poset

Question: Suppose $A \leq_s B$ (i.e. $s_B - s_A$ is Schur-positive). Then what can we say about the shapes *A* and *B*?

Such necessary conditions for $A \leq_s B$ give us a way to show that $C \not\leq_s D$.

Example. If $A \leq_{s} B$, then |A| = |B|.

Important: We want our necessary conditions to be as simple as possible and only depend on the shapes of *A* and *B*.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_A = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

 $support(A) = \{551, 542, 5411, 533, 5321, 53111, \}$

52211, 4421, 44111, 4331, 43211 }.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- ▶ rows(A) is the **least** dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- ▶ rows(*A*) is the **least** dominant partition in the support of *A*.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- ▶ rows(*A*) is the **least** dominant partition in the support of *A*.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- ▶ rows(*A*) is the **least** dominant partition in the support of *A*.
- $(cols(A))^t$ is the **most** dominant partition in the support of *A*. "Proof":

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- ▶ rows(*A*) is the **least** dominant partition in the support of *A*.
- $(cols(A))^t$ is the **most** dominant partition in the support of *A*. "Proof":

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- rows(A) is the least dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

2

Proposition. In the Schur expansion of *A*:

- ▶ rows(A) is the **least** dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of A:

- rows(A) is the least dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- ▶ rows(A) is the **least** dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Notation. For a skew shape A, let rows(A) denote the partition of row lengths of A. Define cols(A) similarly.

Example. rows(A) = 43211, cols(A) = 32222.

$$s_{A} = s_{551} + s_{542} + 2s_{5411} + s_{533} + 2s_{5321} + s_{53111} \\ + s_{52211} + s_{4421} + s_{44111} + s_{4331} + s_{43211}.$$

support(A) = {551, 542, 5411, 533, 5321, 53111, 52211, 4421, 44111, 4331, 43211}.

Proposition. In the Schur expansion of *A*:

- ▶ rows(A) is the **least** dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Proposition. In the Schur expansion of A:

- rows(A) is the least dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Corollary. If $A \leq_s B$, then

 $rows(A) \succcurlyeq rows(B)$ and $cols(A) \succcurlyeq cols(B)$.

Proposition. In the Schur expansion of A:

- rows(A) is the least dominant partition in the support of A.
- $(cols(A))^t$ is the **most** dominant partition in the support of A.

Corollary. If $A \leq_s B$, then

 $rows(A) \succcurlyeq rows(B)$ and $cols(A) \succcurlyeq cols(B)$.

Proof:

 $A \leq_{s} B$

- \Leftrightarrow $s_B s_A$ is Schur-positive
- \Rightarrow support(*A*) \subseteq support(*B*)
- \Rightarrow rows(A) \succ rows(B) and $(cols(A))^t \preccurlyeq (cols(B))^t$
- \Leftrightarrow rows(A) \succ rows(B) and cols(A) \succ cols(B).

П

Corollary. If $A \leq_s B$, then

```
rows(A) \succcurlyeq rows(B) and cols(A) \succcurlyeq cols(B).
```

Example.

 $rows(C) = 2221 \prec 3211 = rows(D).$ Thus $C \not\leq_s D$.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape *A*, let $\operatorname{overlap}_{k}(i)$ be the number of columns occupied in common by rows $i, i + 1, \ldots, i + k - 1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$. Define $\operatorname{cols}_k(A)$ similarly.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape *A*, let $\operatorname{overlap}_{k}(i)$ be the number of columns occupied in common by rows $i, i + 1, \ldots, i + k - 1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

Define $cols_k(A)$ similarly.

Example.

• overlap₁(*i*)=length of the *i*th row. Thus $rows_1(A) = rows(A)$.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape *A*, let $\operatorname{overlap}_{k}(i)$ be the number of columns occupied in common by rows $i, i + 1, \ldots, i + k - 1$.

Then $row_{s_k}(A)$ is the weakly decreasing rearrangement of

 $(\text{overlap}_k(1), \text{overlap}_k(2), \ldots).$

Define $cols_k(A)$ similarly.

- overlap₁(*i*)=length of the *i*th row. Thus $rows_1(A) = rows(A)$.
- overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so rows₂(A) = 3211.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape *A*, let $\operatorname{overlap}_{k}(i)$ be the number of columns occupied in common by rows $i, i + 1, \ldots, i + k - 1$.

Then $rows_k(A)$ is the weakly decreasing rearrangement of

 $(\text{overlap}_k(1), \text{overlap}_k(2), \ldots).$

Define $cols_k(A)$ similarly.

- overlap₁(*i*)=length of the *i*th row. Thus $rows_1(A) = rows(A)$.
- overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so rows₂(A) = 3211.
- $rows_3(A) = 11$,

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape *A*, let $\operatorname{overlap}_{k}(i)$ be the number of columns occupied in common by rows $i, i + 1, \ldots, i + k - 1$.

Then $rows_k(A)$ is the weakly decreasing rearrangement of

$$(\text{overlap}_k(1), \text{overlap}_k(2), \ldots).$$

Define $cols_k(A)$ similarly.

- overlap₁(*i*)=length of the *i*th row. Thus $rows_1(A) = rows(A)$.
- overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so rows₂(A) = 3211.

• rows₃(
$$A$$
) = 11, rows_k(A) = \emptyset for $k > 3$.

Definitions [Reiner, Shaw, van Willigenburg]. For a skew shape *A*, let $\operatorname{overlap}_{k}(i)$ be the number of columns occupied in common by rows $i, i + 1, \ldots, i + k - 1$.

Then $rows_k(A)$ is the weakly decreasing rearrangement of

$$(\text{overlap}_k(1), \text{overlap}_k(2), \ldots).$$

Define $cols_k(A)$ similarly.

- overlap₁(*i*)=length of the *i*th row. Thus $rows_1(A) = rows(A)$.
- overlap₂(1) = 2, overlap₂(2) = 3, overlap₂(3) = 1, overlap₂(4) = 1, so rows₂(A) = 3211.
- rows₃(A) = 11, rows_k(A) = \emptyset for k > 3.
- ▶ $cols_1(A) = cols(A) = 33222$, $cols_2(A) = 2221$, $cols_3(A) = 211$, $cols_4(A) = 11$, $cols_k(A) = \emptyset$ for k > 4.

Theorem [RSvW]. Let *A* and *B* be skew shapes. If $s_A = s_B$, then

 $rows_k(A) = rows_k(B)$ for all k.

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then

 $rows_k(A) = rows_k(B)$ for all k.

Theorem [McN.]. Let *A* and *B* be skew shapes. If $s_B - s_A$ is Schur-positive, then

 $rows_k(A) \succ rows_k(B)$ for all k.

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then

 $rows_k(A) = rows_k(B)$ for all k.

Theorem [McN.]. Let *A* and *B* be skew shapes. If $s_B - s_A$ is Schur-positive, then

 $rows_k(A) \succ rows_k(B)$ for all k.

In fact, it suffices to assume that support(A) \subseteq support(B).

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then

 $rows_k(A) = rows_k(B)$ for all k.

Theorem [McN.]. Let *A* and *B* be skew shapes. If $s_B - s_A$ is Schur-positive, then

 $rows_k(A) \succcurlyeq rows_k(B)$ for all k.

In fact, it suffices to assume that support(A) \subseteq support(B).

Corollary. Let A and B be skew shapes. If support(A) = support(B), then

$$rows_k(A) = rows_k(B)$$
 for all k.

Relating rows $_k(A)$ and cols $_k(A)$

Let $\operatorname{rects}_{k,\ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside *A*.

$$rects_{3,1}(A) = 2$$
, $rects_{2,2}(A) = 3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- $rows_k(A) = rows_k(B)$ for all k;
- $\operatorname{cols}_{\ell}(A) = \operatorname{cols}_{\ell}(B)$ for all ℓ ;

• rects<sub>k,
$$\ell$$</sub>(A) = rects_{k, ℓ} (B) for all k, ℓ .

Relating rows $_k(A)$ and cols $_k(A)$

Let $\operatorname{rects}_{k,\ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside *A*.

$$rects_{3,1}(A) = 2$$
, $rects_{2,2}(A) = 3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- $rows_k(A) = rows_k(B)$ for all k;
- $\operatorname{cols}_{\ell}(A) = \operatorname{cols}_{\ell}(B)$ for all ℓ ;

• rects<sub>k,
$$\ell$$</sub>(A) = rects_{k, ℓ} (B) for all k, ℓ .

Theorem [McN]. Let A and B be skew shapes. TFAE:

- rows_k(A) \succeq rows_k(B) for all k;
- $\operatorname{cols}_{\ell}(A) \succcurlyeq \operatorname{cols}_{\ell}(B)$ for all ℓ ;
- $\operatorname{rects}_{k,\ell}(A) \ge \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Summary result

Theorem [McN]. Let *A* and *B* be skew shapes. If $A \leq_s B$, i.e. $s_B - s_A$ is Schur-positive, or if *A* and *B* satisfy the weaker condition that support(*A*) \subseteq support(*B*), then the following three equivalent sets of conditions are true:

- rows_k(A) \succeq rows_k(B) for all k;
- $\operatorname{cols}_{\ell}(A) \succcurlyeq \operatorname{cols}_{\ell}(B)$ for all ℓ ;
- $\operatorname{rects}_{k,\ell}(A) \ge \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Example.

 $rows(C) = 2221 \prec 3211 = rows(D)$. Thus $C \not\leq_s D$.

Summary result

Theorem [McN]. Let *A* and *B* be skew shapes. If $A \leq_s B$, i.e. $s_B - s_A$ is Schur-positive, or if *A* and *B* satisfy the weaker condition that support(*A*) \subseteq support(*B*), then the following three equivalent sets of conditions are true:

- rows_k(A) \succeq rows_k(B) for all k;
- $\operatorname{cols}_{\ell}(A) \succcurlyeq \operatorname{cols}_{\ell}(B)$ for all ℓ ;
- $\operatorname{rects}_{k,\ell}(A) \ge \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Example.

 $rows(C) = 2221 \prec 3211 = rows(D)$. Thus $C \leq_s D$. $rows_2(C) = 21 \succ 111 = rows_2(D)$. Thus $D \leq_s C$.

Outlook

- Instead of looking at the Schur-positivity poset, could look at the support containment poset; it seems to have more structure.
- Almost nothing is known about the covering relations in P_n.
- Why restrict to skew Schur functions? Could try:
 - Stanley symmetric functions
 - Hall-Littlewood polynomials
 - LLT-polynomials
 - Cylindric Schur functions
 - Skew Grothendieck polynomials
 - Poset quasisymmetric functions
 - Wave Schur functions
 - ▶ ...